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Abstract A highly selective and easily handled monoalkylation of pri-
mary amide derivatives by using trialkyl phosphates as alkylating re-
agents in cyclopentyl methyl ether (CPME) was developed. Various
monoalkylated amide derivatives were efficiently synthesized by chang-
ing the alkyl moiety (e.g., methyl, ethyl, butyl, or benzyl) of the trialkyl
phosphate. These phosphate reagents are relatively stable and easily
available, and CPME is a useful solvent in process chemistry.

Key words alkylation, monoalkylation, amides, trialkyl phosphates,
cyclopentyl methyl ether

The amide group is widely used as a fundamental func-
tional group in various scientific fields. The N-monoalkylat-
ed amide backbone is frequently found in pharmaceutical
agents1,2 and in natural products.3 Although the alkylation
of primary amides by using alkyl halides (e.g., MeI, EtBr,
BuBr, i-PrBr) occurs in the presence of an appropriate base,4
prevention of overalkylation to give the corresponding N,N-
dialkyl amide is difficult. In particular, N-monomethylation
by using small and highly reactive methylating agents, such
as MeI or Me2SO4, is difficult. In addition, such methylating
agents are potentially toxic and exhibit mutagenicity. Effi-
cient mono-selective methylations have been achieved by
using a copper catalyst and dicumyl peroxide as a methylat-
ing agent in chlorobenzene at 120 °C5 or by a stepwise
method through silylmethylation of primary amides with
chloro(chloromethyl)dimethylsilane and subsequent desil-
ylation by CsF.6 Although trialkyl phosphates have also been
used as alkylating reagents for alcohols and dimethyl
amines to give alkyl ethers7 and tertiary amines,8 respec-
tively, harsh reaction conditions were required. Meanwhile,

a synthesis of N-monoaryl amides from the corresponding
primary amides by using pyrimidin-2-yl phosphates as aryl
sources in the presence of CuSO4·5H2O, sodium ascorbate,
and t-BuONa in DMSO at 100 °C was reported.9 We recently
developed a method for the activation of hydroxy groups
under basic conditions by using stable and easily available
trimethyl phosphate.10 We now report a novel and highly
selective method for the N-monoalkylation of primary am-
ides by using trialkyl phosphates as alkylating agents.

We initially examined the effects of the base and sol-
vent on the N-monoalkylation of benzamide (1a) with
trimethyl phosphate [PO(OMe)3] as a methylating agent in
cyclopentyl methyl ether (CPME) at 100 or 115 °C for 24
hours (Table 1, entries 1–8). In the presence of 1.8 equiva-
lents of NaOH at 115 °C, benzamide (1a) was smoothly
transformed into N-methylbenzamide (2a)11 in 86% yield,
together with a small amount (4%) of the overmethylated
N,N-dimethylbenzamide (3a) (entry 8). Whereas NaH, KH,
and BuLi also gave acceptable results (entries 1–6), t-BuO-
Na, t-BuOK, KOH, LiOH·H2O, CsOH, and 1,8-diazabicyc-
lo[5.4.0]undec-7-ene (DBU) were inefficient (entries 11–
16). Prolongation of the reaction time from 24 to 48 hours
gave a similar result (entries 8 and 9), and the use of a
smaller amount (2 equiv) of PO(OMe)3 led to the slightly
lower yield of 2a (entries 9 and 10). The reaction proceeded
smoothly in hot CPME or toluene in a highly selective man-
ner (entries 7, 8, 17, and 18), whereas DMSO and DCE were
ineffective solvents (entries 19 and 20). As a result, we
chose CPME as a solvent, as it gave a slightly higher yield of
2a than did toluene. Additionally, CPME has recently at-
tracted attention as a useful solvent for process chemistry
due to its excellent stability to oxidation (peroxide forma-
tion).12,13 Further detailed optimizations of the reaction
conditions are described in the Supporting Information.
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Table 1  Effect of the Base

The substrate scope was next examined. Because the re-
action efficiency was sometimes improved by the use of
BuLi instead of NaOH, the reaction was performed under
both sets of conditions (Table 2).14 4-Methoxybenzamide
(1b) and 4- and 3-methylbenzamides (1c and 1d) were ef-
fectively converted into their corresponding N-monomethyl
derivatives 2b–d in moderate to high yields (entries 3–8) in
the presence of NaOH or BuLi. The reactions of 2-methyl-,
4-chloro-, or 4-nitrobenzamide (1e–g, respectively) or thio-
phene-2-carboxamide (1h) proceeded selectively in the
presence of NaOH as a base to give the corresponding N-
monomethylated amides, whereas significant amounts of
the corresponding overmethylated N,N-dimethylated deriv-
atives 3e-h were obtained in the presence of BuLi (entries
9–16). On the other hand, stearamide (1i), an aliphatic am-
ide, underwent N-monomethylation in the presence of ei-
ther NaOH or BuLi (entries 17 and 18).

Table 2  N-Monomethylation of Primary Amides

The ethylation, butylation, or benzylation of benzamide
could also be carried out by using the appropriate trialkyl
phosphate16 in the presence of BuLi as a base to give the N-
monoalkylated benzamides 2j–l, respectively, in moderate
yields (Table 3, entries 2, 4, and 6). Whereas NaOH was inef-
fective for the ethylation or butylation reactions (entries 1
and 3), benzylation by tribenzyl phosphate was facilitated
by NaOH (entry 5). The formation of the N,N-dialkylated
products 3 was not detected under any of these reaction
conditions; the use of alkyl substituents that are bulkier
than the methyl group might suppress the second N-alkyla-
tion.

The present method could also be applied to N-alkyla-
tion to give tertiary amides, but only in cases in which the
corresponding secondary amide or imide derivatives were
used as substrates, whereas a second N-alkylation of prima-
ry amides was almost entirely suppressed (see Tables 1 and
2). N-Methylbenzamide (2a) was transformed into N,N-di-
methylbenzamide (3a) in 71% yield by using BuLi as a base
(entry 2). N-Phenylbenzamide (4a) reacted efficiently with
trimethyl phosphate in the presence of NaOH or BuLi to

Entry Base Solvent Yielda

1a 2a 3a

 1 NaH CPME 17 70  0

 2b NaH CPME  1 57 37

 3 KH CPME 14 78  3

 4b KH CPME 16 77  4

 5 BuLi CPME 25 72  3

 6b BuLi CPME 14 77  4

 7 NaOH CPME 45 55  0

 8b NaOH CPME  3 86  4

 9b,c NaOH CPME  3 83  5

10b,c,d NaOH CPME  5 78 11

11 t-BuONa CPME 80  7  0

12 t-BuOK CPME 72 13  0

13 KOH CPME 77 19  0

14 LiOH·H2O CPME 81 18  0

15 CsOH CPME 71 26  2

16 DBU CPME 100  0  0

17 NaOH toluene  9 83  2

18b NaOH toluene  7 83  4

19 NaOH DMSO  2 40 38

20 NaOH DCE 89  5  0
a Determined by 1H NMR with durene as an internal standard.
b At 115 ˚C.
c For 48 h.
d PO(OMe)3 (2 equiv) was used.
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PO(OMe)3 (3.0 equiv)
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Entry R Base Yielda

1 2 3

 1 Ph (1a) NaOH  3 86 (79)b  4

 2 BuLi 14 77  4

 3 4-MeOC6H4 (1b) NaOH 34 52  0

 4 BuLi  5 66 (66)b  0

 5 4-Tol(1c) NaOH 18 76 (80)b  0

 6 BuLi 15 73 trace

 7 3-Tol (1d) NaOH 46 36  0

 8 BuLi  8 87 (76)b trace

 9 2-Tol (1e) NaOH 54 41 (34)b  2

10 BuLi trace 18 58

11 4-ClC6H4 (1f) NaOH 26 69 (73)b  2

12 BuLi  6 53 30

13 4-O2NC6H4 (1g) NaOH 58 25  0

14 BuLi 12 46 (46)b 16

15 2-thienyl (1h) NaOH trace 85 (81)b  8

16 BuLi  3 22 54

17 (CH2)16Me (1i) NaOH 77 23  0

18 BuLi 34 64 (65)b  2
a Determined by 1H NMR with durene as an internal standard.
b Isolated yield. 

R NH2

O base (1.8 equiv)
PO(OMe)3 (3.0 equiv)

CPME, 115 °C, 24 h
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give N-methyl-N-phenylbenzamide (5a) in excellent yield
(entries 3 and 4). Phthalimide (4b) was similarly converted
into N-methylphthalimide (5b) in good yield (entries 5 and
6).

Table 4  N-Methylation of Secondary Amides

In conclusion, we have accomplished a highly selective
N-monoalkylation of amides by using trialkyl phosphates in
the presence of NaOH or BuLi in CPME, a solvent useful for
chemical processes. Although the selectivity is not perfect,
the desired N-monoalkylated amide derivatives are readily
separated from the recovered substrate and overreacted

N,N-dialkyl amides by silica gel column chromatography.
Consequently, the present N-monoalkylation method is
useful from the viewpoint of using stable and easily han-
dled alkylating reagents.
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