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a,a-Dibromo-2-methoxyacetophenone reacts, under mild reaction conditions, with C-, N- and O-nucleo-
philes via a bromophilic substitution/protonation/carbophilic substitution cascade process to afford a-
monosubstituted-2-methoxyacetophenones in moderate to good yield. The only exception from this
reaction pathway is the reaction with the anion derived from malononitrile in which 2-aroyl-1,1,3,3-tet-
racyanopropene is obtained.

� 2010 Elsevier Ltd. All rights reserved.
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Nucleophilic substitution reactions, occurring by the attack of a
nucleophile on a carbon atom, are the widely studied reactions in
organic chemistry. Less familiar are nucleophilic substitutions at
halogens, known as halophilic reactions1 (SNX, Scheme 1).

These reactions usually take place if the normal (SNC) substitu-
tion reaction is made difficult, and/or if the resulting carbanion is
stabilized by electron-withdrawing substituents. For example, per-
haloalkanes are rather inert towards nucleophilic displacement
reactions, but they can undergo halophilic attack by a range of
nucleophiles.2 Halophilic reactions have also been observed for
a-halo sulfones,3 a-halo ketones,4 a-halo nitriles,5 halogenated
nitroalkanes,6 diethyl bromo-7 and diethyl dibromomalonate,8

3-methyl-5-trichloromethyl-1,2,4-oxadiazole,9 2-halomethyl-
5-nitrofurans10 and geminal5 and vicinal dihalides.5,11 In many
cases halophilic attack results in protonation of the carbanion 2,
that is, reductive dehalogenation.3,4,9,10

Selective a-monobromination of methyl ketones can be difficult
to achieve.12 a,a-Dibromo derivatives can be formed as the side
products, or even as the major products.13 In such cases, an addi-
tional step, involving selective debromination, is needed to afford
bromomethylketones,13b which are important synthetic intermedi-
ates. In our previous communication,13a we reported that ortho-
substituted a,a-dibromoacetophenones undergo nucleophile-in-
duced cascade reactions giving rise to a-monosubstituted aceto-
phenone derivatives in good to high yields (Nu = CN�, SCN�, AcS�,
I�, N3

� and AcO�). It was envisaged that this mode of reactivity
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could be extended to other nucleophiles, such that dibromides
could be used as synthetic equivalents of monobromo derivatives,
thereby circumventing the additional debromination step. For this
purpose, a,a-dibromo-2-methoxyacetophenone (3) was chosen as
a substrate, since it can easily be obtained by bromination of
2-methoxyacetophenone with bromine in CHCl3; the correspond-
ing monobromo derivative is not as easy to prepare.13a Herein, we
report the first combined bromophilic substitution/carbophilic sub-
stitution reactions directed towards the preparation of syntheti-
cally valuable 1,4-dicarbonyl compounds,14 a-phthalimido15 and
a-hydroxy ketones.16

The 1,4-dicarbonyl compounds 7a–d were obtained, under mild
reaction conditions, by the reaction of a,a-dibromo-2-methoxyace-
tophenone (3) with 3–4 mol equiv of carbanions derived from ac-
tive methylene compounds 4a–d (Scheme 2, Table 1).17 The
formation of the products 7a–d occurs via a stepwise process begin-
ning with a relatively rare bromophilic attack of the C-nucleophile
on dibromide 3 yielding, after protonation of the initially formed
carbanion, monobromide 6 and monobrominated active methylene
compounds 5a–d. The existence of monobromide 6 as an interme-
diate was confirmed by TLC18 (eluent:toluene; Rf = 0.4), carried out
Y2 Y2
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30 min after the reaction had started, and by isolation of 6 after
work-up of the reaction. The next step involved nucleophilic
substitution of the bromine in 6 by a second mol equiv of the
C-nucleophile 4a–d which resulted in the formation of products
7a–d in moderate to good yields (59–77%). In the case of 7d
(R = CN; R1 = OEt) a further reaction with the monobromide 6 oc-
curred yielding 1,5-diketone 8 in 31% yield, whereas 7c
(R = CO2Et; R1 = OEt) was alkylated with diethyl bromomalonate
(5c) to give the tetraester 9 in low yield (6%). On the other hand,
the a-bromo compounds 5a–c reacted with excess of C-nucleo-
philes to give dimers 10a–c (16–30%). In the case of diethyl
bromomalonate (5c), the base-assisted coupling followed by
HBr elimination yielded the tetrasubstituted alkene 1119 (11%),
isolated as a mixture with 10c. A small amount of epoxide 1220

(8%, Table 1, entry 3) was also formed in the reaction of dibro-
mide 3 with diethyl malonate. It accompanied the isolated main
product 7c (10% by weight) and could not be separated from it
using standard techniques.

Similarly, the reactions of 2-methoxy-a,a-dibromoacetophe-
none (3) with potassium phthalimide, potassium carbonate in
DMF/H2O and the previously reported13a reaction with KCN pro-
ceeded via the bromophilic substitution/protonation/carbophilic
substitution cascade process to give a-phthalimido ketone 13a,
a-hydroxy ketone 13b and nitrile 13c (Scheme 3, Table 2). In the
case of CN� as the nucleophile, the second step was slow enough
to allow isolation of the monobromide 6 when 1 equiv of nucleo-
phile was employed (Table 2, entry 4).

The reaction of 2-methoxy-a,a-dibromoacetophenone (3) with
3 equiv of the anion derived from malononitrile17 took a different
reaction path. Monobromide 6 was not detected as an intermediate
and an intense yellow-coloured product was formed, the structure
of which was assigned as 2-aroyl-1,1,3,3-tetracyanopropene 14
(Scheme 4).

In the 1H NMR spectrum of 14 only signals belonging to the aro-
matic portion of the molecule and OMe group could be seen, both
in DMSO-d6 and acetone-d6 solutions. The 13C NMR spectrum
showed eight signals due to the 2-methoxybenzoyl group, but only
four signals arising from the tetracyanopropene moiety, two for
the CN groups at 115.4(DMSO-d6)/116.4(acetone-d6) and
117.6(DMSO-d6)/118.5(acetone-d6) ppm, and two signals at
169.0(DMSO-d6)/170.2(acetone-d6) and 49.1(DMSO-d6)/50.1(ace-
tone-d6) ppm, both due to non-protonated C-atoms, as determined
by a DEPT experiment. Quantitative 13C NMR measurement
showed that each of the signals at 115.4/116.4 ppm, 117.6/
118.5 ppm and 49.1/50.1 ppm was due to two C-atoms, whereas
the signal at 169.0/170.2 ppm was due to one C-atom. The latter
signal was attributed to the double bonded carbon next to the car-
bonyl group. These data indicate the equivalence of the C(1) and
C(3) atoms of the tetracyanopropene moiety, which can be ex-
plained by the existence of rapid prototropic tautomerism as
shown in Figure 1. The value of 49.1/50.1 ppm corresponds to
the mean value of the calculated shifts21 for the C(1) (�87 ppm)
and C(3) (�14 ppm) atoms. The non-existence of the CH signal in
the 1H NMR spectrum and inability to obtain any C–H correlation
by 2D NMR techniques can be ascribed to a broadening of the CH
signal to such an extent that it merged with the base line. Another
possible explanation is that the recorded spectra are for the carb-
anion formed by the ionization of the highly acidic C-hydrogen
in tetracyanopropenes.22

Although the exact mechanism for the formation of compound
14 is as yet, not known, it may be consistent with a double SN2 dis-
placement reaction on 3 followed by oxidation.

The reaction of 2-methoxy-a,a-dibromoacetophenone (3) with
excess pyridine in wet MeCN resulted in C–C bond cleavage and
the formation of 2-methoxybenzoic acid (16) (Scheme 5), probably
via initial formation of the pyridinium salt 15 which was then
cleaved to the acid 16.23

In conclusion, we have shown that 2-methoxy-a,a-dibromoace-
tophenone reacts with 3–4 mol equiv of carbanions derived from
the active methylene compounds via a three-step cascade process
involving bromophilic substitution/protonation/carbophilic substi-
tution, to give a-monosubstituted 2-methoxyacetophenones, as
the main products. This reaction could be useful for the synthesis
of a-monosubstituted methyl ketones when their monobromo
derivatives are not readily available. If 1 mol equiv of KCN was
used, only the bromophilic reaction occurred, allowing the isola-
tion of an a-bromo-2-methoxyacetophenone. The a-brominated
active methylene compounds, formed in the first step of the cas-
cade process, react further to form dimers, or a tetrasubstituted al-
kene. The only exception from this reaction pathway was the



Table 1
The reactions of 2-methoxy-a,a-dibromoacetophenone (3) with active methylene compounds 4a–d

Entry Nucleophile Conditions Products (yields)a
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a Yield of isolated product.
b Yield was determined from the 1H NMR spectrum of the mixture of 7c and 12.
c Yield was determined from the 1H NMR spectrum of the mixture of 10c and 11.
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Table 2
The reactions of 2-methoxy-a,a-dibromo-acetophenone (3) with potassium phthal-
imide, K2CO3 in DMF/H2O and KCN

Entry Nucleophile Conditions Product (yield)a

1
N

O

O
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Me2CO/H2O, rt,
24 h

OMe O

N

13a (64%)

O

O
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reaction with the anion formed from malononitrile, yielding 2-ar-
oyl-1,1,3,3-tetracyanopropene, which exists in a very fast prototro-
pic equilibrium when dissolved in DMSO-d6 or acetone-d6.
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