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Synthesis of (2R,4R)- and (2S,4S)-4-hydroxypipecolic acid
derivatives and (2S,4S)-(−)-SS20846A
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Abstract—Syntheses of protected derivatives of both enantiomers of trans-4-hydroxypipecolic acid (2) and the natural product
(−)-SS20846A (3) were accomplished from vinylglycinols. Key transformations involved construction of the piperidine ring via
ring-closing metathesis (Grubbs’ catalyst) and installation of the 4-hydroxy substituent by Prevost reaction. X-Ray diffraction
analyses conclusively established the regio- and stereochemistry of key intermediates. © 2001 Elsevier Science Ltd. All rights
reserved.

The enantiopure naturally-occurring 4-hydroxy-2-
pipecolic acids 11a and 21b,c have been isolated from
various green plants.1 These 4-substituted piperidines
constitute important chiral building blocks of biologi-
cally active molecules;2 (2S,4R)-1 was utilized in the
synthesis of palinavir,2a a potent antiviral, and the
synthesis of pipecolic acid derivatives is of considerable
interest.3 (−)-SS20846A (3) is a 2-alkyl-4-hydroxypipe-
ridine natural product, which has been isolated from
Streptomyces sp. S20846. This compound has demon-
strated antibacterial and anticonvulsant properties.
Additionally, ent-3 has shown remarkable DNA bind-
ing properties.4b

This letter discloses syntheses of both enantiomers of
trans-4-hydroxypipecolic acid (2), the natural product

(−)-SS20846A4,5 (3), and ent-3, in the protected form,
from protected derivatives of vinylglycinol [(R and S)-
4].6

Treatment of compound (S)-4 with NaH in THF
resulted in high yields of the corresponding oxazolidin-
one,7 which was alkylated with commercially available

Scheme 1. Reagents and conditions : (a) i. NaH, THF, ii. NaH, 4-bromo-1-butene, LiI, DMF; (b) Grubbs’ catalyst, CH2Cl2; (c) I2,
silver benzoate, benzene; (d) Raney Ni, THF/MeOH; (e) i. KCN, MeOH/H2O (9/1), ii. MOMCl, Hünig’s base, CH2Cl2; (f) i. 3N
NaOH, MeOH/H2O (9/1), reflux 24 h, ii. Boc2O, EtOAc.
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Scheme 2. Reagents and conditions : (g) i. Dess–Martin/THF ii. NaClO2, NaH2PO4; (h) i. Dess–Martin/CH2Cl2 ii.
CH3CH�CH�PPh3, THF; iii. I2, benzene, hn, 30 min; (i) CH2N2; (j) AcCl/MeOH.

4-bromo-1-butene.8,9 Alternatively, (S)-5 was synthe-
sized directly from (S)-4 using a one-pot two-step pro-
cess.8 Ring-closing metathesis of 5 with Grubbs’
catalyst, bis(tricyclohexylphosphine)benzylidineruthen-
ium(IV) dichloride,10 under standard conditions for 24
h afforded (S)-6 in 88% yield along with a small
amount of recovered 5. Compound (S)-6 when sub-
jected to Prevost reaction conditions afforded 7. Stereo-
chemistry was unequivocally established by X-ray
analysis of 7.11 Dehalogenation of 7 with Pd/C proved
slow even in the presence of triethylamine. However,
Raney nickel afforded 811 successfully in 92% yield.
This compound was subjected to protecting group
exchange in a one-pot procedure with KCN and
MOMCl to afford 9. NaOH hydrolysis of the oxazo-
lidinone ring of 9 followed by Boc2O protection of the
resultant free amine then afforded the key intermediate
10 (Scheme 1).

The reaction sequence (Scheme 1) was repeated using
R-4 to afford ent-10. Intermediates 10 and ent-10 were
oxidized using a two-step Dess–Martin/NaClO2

process6a to MOM-protected trans-4-hydroxypipecolic
acids 11 and ent-11. The latter was characterized as the
methyl ester 13. The intermediate aldehydes from Dess–
Martin oxidation were also subjected to Wittig olefina-
tion with CH3CH�CH�PPh3

12 to afford compounds 12
as 20/80 mixtures of E/Z isomers (Scheme 2). Treat-
ment of these mixtures of isomers with I2/benzene/hn13

gave an enriched 85/15 mixture of E/Z isomers.
Attempts at removal of the remaining unwanted Z
isomer by chromatography or through Diels–Alder
addition of SO2

14 were unsuccessful. Full deprotection
of ent-12 was accomplished with acetyl chloride in
MeOH to afford an 85/15 mixture of E/Z isomers of
(2S,4S)-(−)-SS20846A hydrochloride in quantitative
yield possessing spectral properties and optical rotation
in accordance with the literature ([a ]D22 −9.8 (c 0.4,
MeOH); lit. for 145b [a ]D22 −10.8 (c 1.1, MeOH)).15

In summary, the chiral building blocks, vinylglycinols
[(R and S)-4], were utilized for the synthesis of deriva-

tives of trans-4-hydroxypipecolic acids. Key transfor-
mations include ring-closing metathesis to construct the
piperidine ring and the Prevost reaction to install the
4-hydroxy regio- and stereoselectively as determined by
X-ray structural analysis of compounds 7 and 8. The
intermediate 10 was additionally used to synthesize the
hydrochloride of the natural product (−)-SS20846A.
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found 233.0897; 1H NMR of 14·HCl (CD3OD) d 6.40
(dd, 1H, J=15.5, 10.5 Hz), 6.09 (dd, 1H, J=15.5, 10.5
Hz), (5.89 unresolved dq, 1H, J=15.5, 7 Hz), (5.49 m,
1H), 4.16 (bs, 1H), 4.01 (bt, 1H, J=8.5 Hz), 3.38–3.18
(overlapping m, bd, 2H, J=12.5 Hz), 1.96–1.76 (overlap-
ping bd, bd, d, d 7H, J=14.5, 8.0, 13.5, 11.5 Hz), the

cis/trans isomer displays additional peaks at: d 6.80 (dd,
1H, J=10.5, 4.0 Hz), 6.03 (tapp, 1H, J=11.5 Hz), 5.68
(m, 1H), 5.60 (dd, 1H, J=15.5, 7.5 Hz), 4.09 (bt, 1H);
13C NMR of 14·HCl (CD3OD) d 136.44, 133.24, 130.02,
124.09, 61.15, 52.81, 39.02, 35.62, 28.50, 17.10. HRMS
(EI) calcd for C10H17NO 167.1310 (M+), found 167.1309.
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