

Journal of Asian Natural Products Research

ISSN: 1028-6020 (Print) 1477-2213 (Online) Journal homepage: http://www.tandfonline.com/loi/ganp20

Two new iridoid glycosides from the leaves of Callicarpa nudiflora

Jie Wang, Hui-Zheng Fu, Yue-Hua Luo, Yuan-Yu Ma, Bo Huang & Shuang-Cheng Ma

To cite this article: Jie Wang, Hui-Zheng Fu, Yue-Hua Luo, Yuan-Yu Ma, Bo Huang & Shuang-Cheng Ma (2017): Two new iridoid glycosides from the leaves of Callicarpa nudiflora, Journal of Asian Natural Products Research, DOI: 10.1080/10286020.2017.1323884

To link to this article: <u>http://dx.doi.org/10.1080/10286020.2017.1323884</u>

+

View supplementary material 🗹

Published online: 24 May 2017.

|--|

Submit your article to this journal 🗹

Article views:	1
----------------	---

View related articles

Full Terms & Conditions of access and use can be found at http://www.tandfonline.com/action/journalInformation?journalCode=ganp20

Check for updates

Two new iridoid glycosides from the leaves of *Callicarpa nudiflora*

Jie Wang^{a,b#}, Hui-Zheng Fu^{a#}, Yue-Hua Luo^a, Yuan-Yu Ma^{a,b}, Bo Huang^a and Shuang-Cheng Ma^c

^aJiangxi Provincial Institute for Drug Control, Jiangxi Provincial Engineering Research Center for Drug and Medical Device Quality, Nanchang 330029, China; ^bCollege of Pharmacy, Pharmaceutical Department of Nanchang University, Nanchang 330006, China; ^cResearch and Inspection Center of Traditional Chinese Medicine and Ethnomedicine, National Institutes for Food and Drug Control, Beijing 100050, China

ABSTRACT

Two new iridoid glycosides, callicoside C (1) and callicoside D (2), together with three known compounds (3–5), were isolated from the leaves of *Callicarpa nudiflora*. Their structures were established by 1D and 2D NMR spectroscopy and mass spectrometry. In an *in vitro* bioassay, compound 1 showed pronounced hepatoprotective activity against D-galactosamine-induced toxicity in WB-F344 rat hepatic epithelial stem-like cells.

ARTICLE HISTORY

Received 13 February 2017 Accepted 23 April 2017

KEYWORDS

Verbenacase; *Callicarpa nudiflora*; iridoid glycosides; hepatoprotective activity

1. Introduction

Callicarpa nudiflora Hook belongs to the family Verbenacase and has been used as traditional Chinese herbal medicines to treat inflammation and bleeding [1]. Previous investigation on *C. nudiflora* has led to the isolation of iridoids, flavonoids, triterpenoides, and phenyl-propanoid glycosides [2–5]. Some of them have been shown to exhibit anti-inflammatory, antibacterial, cytotoxic and hemostatic activies [6]. *C. nudiflora* has been intensively studied in our previous work and was found containing diverse constituents including triterpenoid glycosides, flavonoids, furofuran lignans, and iridoid glucosides, among which two iridoid glucosides, callicoside A and callicoside B, showed pronounced hepatoprotective activity

CONTACT Yue-Hua Luo 😒 emailluo@sohu.com; Shuang-Cheng Ma 🐼 masc@nifdc.org.cn

[#]These authors contributed equally to this work.

The supplemental data for this article can be accessed at http://dx.doi.org/10.1080/10286020.2017.1323884.

2 🔄 J. WANG ET AL.

against D-galactosamine-induced toxicity in WB-F344 rat hepatic epithelial stem-like cells [6-9]. In continuation of our investigation on the iridoid composition of *C. nudiflora*, two further new iridoid glycosides, callicoside C (1), callicoside D (2) and three known compounds 6-O-caffeoyl ajugo (3), nudifloside (4), minecoside (5) were isolated from the 80% EtOH extract of *C. nudiflora*. Reported herein are the isolation, structure elucidation and biological activity of these compounds.

2. Results and discussion

The 80% EtOH extract of *Callicarpa nudiflora* was partitioned with petroleum ether, EtOAc, and *n*-BuOH, successively. The *n*-BuOH-soluble portion was separated by a combination of silica gel, ODS column chromatography and preparative HPLC, and afforded two new compounds **1** and **2** (Figure 1) together with three known compounds 6-*O*-caffeoylajugo (**3**) [10], nudifloside (**4**) [2], minecoside (**5**) [11]. Their structures were elucidated by extensive NMR techniques including 1D NMR (¹H and ¹³C NMR), 2D NMR (COSY, NOESY, HSQC and HMBC), and HRESIMS, as well as chemical evidence.

Compound 1 was obtained as a white amorphous powder. Its molecular formula, $C_{25}H_{30}O_{12}$, was determined from HRESIMS at m/z 521.1656 [M – H]⁻ and supported by the NMR spectroscopic data. The ¹H NMR spectrum of 1 in CD₃OD exhibited two trans olefinic protons at $\delta_{\rm H}$ 7.61 (1H, d, J = 15.6 Hz) and 6.32 (1H, d, J = 15.6 Hz), one disubstituted olefinic protons at $\delta_{\rm H}$ 7.45 (1H, s), a set of AA'BB'-type coupled aromatic protons at $\delta_{\rm H}$ 7.46 (2H, d, *J* = 7.8 Hz) and 6.80 (2H, d, *J* = 7.8 Hz), two hemiacetal protons at $\delta_{\rm H}$ 5.55 (1H, d, J = 4.2 Hz) and 4.69 (1H, d, J = 7.8 Hz), one secondary methyl at $\delta_{\rm H}$ 1.12 (3H, d, J = 7.2 Hz) (Table 1). The ¹³C NMR spectrum of 1 displayed 25 carbon signals including two carboxy carbonyl carbons at δ_c 170.6 and 169.0. From the foregoing evidence it was concluded that 1 was likely to be a carboxylated iridoid glucoside. Comparison of the NMR spectroscopic data of 1 (Table 1) with those of linearoside [12–14] demonstrated that two compounds were almost identical. The only difference between 1 and linearoside is the configurations at C-7 and C-8. Acid hydrolysis of 1 with 2 M HCl afforded D-glucose, which was identified by GC analysis of their trimethylsilyl L-cysteine derivatives [15,16]. In the HMBC spectrum of 1, the HMBC correlation from H-7 ($\delta_{\rm H}$ 4.94) to C-9' ($\delta_{\rm C}$ 169.0) confirmed that the *p*-coumaroyl ester group is attached to C-7 of the aglycone (Figure 2). In addition, a HMBC correlation from Glc-H-1" ($\delta_{\rm H}$ 4.69) to C-1 ($\delta_{\rm C}$ 96.0) indicated the β -D-glucopyranosyl unit is located

Figure 1. Chemical structures of compounds 1 and 2.

Position	1 ^a		2 ^b	
	$\delta_{\rm H}$	δ_{c}	$\delta_{_{ m H}}$	δ _c
iridoid				
1	5.55 (1H, d, 4.2)	96.0	5.84 (1H, d, 5.4)	96.4
3	7.45 (1H, s)	152.7	7.97 (1H, s)	152.8
4		113.7		111.9
5	3.09–3.11 (1H, m)	31.8	3.65 (1H, d, 7.2)	33.3
6	2.24–2.26 (1H, m)	39.1	2.58–2.60 (1H, m)	38.9
	1.98–2.00 (1H, m)		2.43-2.45 (1H, m)	
7	4.94 (1H, overlap)	82.6	5.93 (1H, br t)	75.9
8	2.46-2.48 (1H, m)	43.1		149.0
9	2.60-2.62 (1H, m)	43.3	3.27 (1H, s)	44.8
10	1.12 (3H, d, 7.2)	14.3	5.67 (1H, s)	116.4
			5.55 (1H, s)	
11		170.6		169.7
<i>p</i> -coumaroyl				
1'		127.2		126.6
2′	7.46 (1H, d, 7.8)	131.1	7.61(1H, d, 8.4)	131.2
3′	6.80 (1H, d, 7.8)	116.9	7.18 (1H, d, 8.4)	117.3
4′		161.2		162.0
5′	6.80 (1H, d, 7.8)	116.9	7.18 (1H, d, 8.4)	117.3
6′	7.46 (1H, d, 7.8)	131.1	7.61 (1H, d, 8.4)	131.2
7′	7.61 (1H, d, 15.6)	146.5	7.96 (1H, d, 15.6)	145.8
8'	6.32 (1H, d, 15.6)	111.5	6.59 (1H, d, 15.6)	115.8
9′		169.0		167.6
Glc				
1″	4.69 (1H, d, 7.8)	99.9	5.50 (1H, d, 8.4)	101.2
2″	3.19–3.21 (1H, m)	74.8	4.16 (1H, t, 8.4)	75.4
3″	3.36–3.38 (1H, m)	78.1	4.32–4.34 (1H, m)	79.0
4″	3.23–3.25 (1H, m)	71.8	4.30–4.32 (1H, m)	72.1
5″	3.31–3.33 (1H, m)	78.4	4.05–4.07 (1H, m)	79.4
6″	3.91 (1H, d, 11.4)	63.0	4.59 (1H, dd, 12.0, 2.4)	63.3
	3.64–3.66 (1H, m)		4.41 (1H, dd, 12.0, 5.4)	

Table 1. ¹H (600 MHz) and ¹³C NMR (150 MHz) spectral data of compounds **1** and **2** (δ in ppm, *J* in Hz).

^aRecorded in CD₂OD.

^bRecorded in pyridine- d_5 .

Figure 2. Key HMBC ($H \rightarrow C$) and NOE ($H \leftrightarrow H$) correlations of compounds 1 and 2.

at C-1. In the NOESY spectrum of **1**, NOESY correlations were observed between the following proton pairs: H-5/H-6 β , H-5/H-9, and H-9/H-8, indicating that methyl group at C-8 should be α -oriented. However, NOE interactions were observed among H-1, H-7, and H-10, which indicated the hydroxyl group at C-7 should be β -oriented. Further structure analysis suggested the configurations at C-7 and C-8 in compound **1** was 7S, 8S, while the configurations at C-7 and C-8 in linearoside was 7S, 8R. Full assignments of the proton and carbon resonances of **1** could be achieved by comprehensive analysis of ¹H NMR, ¹³C NMR, ¹H-¹H COSY, HSQC, HMBC, and NOESY spectra. Thus, compound **1** was determined as 7-*O*-*E*-*p*-coumaroyl-8-*epi*-loganic acid, named callicoside C.

Compound 2 was obtained as a white amorphous powder. The HRESIMS of 2 showed a quasi-molecular ion peak at m/z 543.1479 [M + Na]⁺, indicating a molecular formula of C₂₅H₂₈O₁₂. The ¹H NMR spectrum (Table 1) of **2** was similar to that of **1**, including a *p*-coumaroyl group and a glucose unit, as well as the resonance at $\delta_{\rm H}$ 7.97 (1H, s, H-3) and $\delta_{\rm H}$ 5.84 (1H, d, J = 5.4 Hz, H-1). The major differences were in the iridoid moiety. Thus, additional resonances [$\delta_{\rm H}$ 5.67 (1H, s) and 5.55 (1H, s)] were present, while that from a methyl group was missing. In the ¹³C NMR spectrum of **2**, the expected 25 carbon signals were observed. When compared with the spectrum of 1, only the resonances for the iridoid aglycone differed. The two resonances at δ_c 149.0 and 116.4 suggested an iridoid with a 8, 10-double bond, which was further confirmed by HMBC correlations from H_{2-10} to C-7, C-8, and C-9. However, comparison of the NMR data of 2 with those of gardoside [17] indicated that **2** is a derivative of gardoside. HMBC correlations from Glc-H-1" ($\delta_{\rm H}$ 5.50) to C-1 ($\delta_{\rm C}$ 96.4) and H-7 ($\delta_{\rm H}$ 5.93) to C-9' ($\delta_{\rm C}$ 167.6) indicated β -D-glucopyranosyl unit and p-coumaroyl group are attached to C-1 and C-7 of aglycone, respectively. In the NOESY spectrum of 2, NOE interactions were observed among H-1, H-7, and H-6 α , which indicated the hydroxyl groups at C-1 and C-7 should be β -oriented. Thus, compound **2** was elucidated as 7-O-E-p-coumaroyl-gardoside, named callicoside D.

In an *in vitro* bioassay, compound 1 at 10 μ M showed pronounced hepatoprotective activities against D-galactosamine-induced toxicity in WB-F344 rat hepatic epithelial stem-like cells (Table 2). Structure analysis indicated that compound 1 was very similar to compound 2 except that the methyl group of C-8 in 1 was replaced by the olefinic bond of C-8 in 2. However, there were significant differences in the activity of the two compounds. It may be that the methyl group of C-8 is an active group.

3. Experimental

3.1. General experimental procedures

Optical rotations were measured on an Autopol IV-T/V (Rudolph Research Analytical, New Jersey, USA). UV spectra were recorded in MeOH on a Jasco V650 spectrophotometer (JASCO, Inc., Easton, Maryland, USA). The ¹H (600 MHz), ¹³C (150 MHz), and 2D NMR spectra were recorded on a Bruker AVANCE III 600 instrument using TMS

Table 2. Hepatoprotective effects of compounds	1 and 2 against D-galactosamine-induced toxicity in
WB-F344 Cells ^a .	

Compound	x ± s	Cell survival rate (% of normal)
Normal	1.026 ± 0.037	100
Control	0.325 ± 0.076	28##
Bicyclol ^b	0.537 ± 0.049	50*
1	0.572 ± 0.016	52 ^{**}
2	0.311 ± 0.067	27

^aResults are expressed as means \pm SD (n = 3).

^bPositive control compound.

^{##}p < 0.001, significantly different from control by Student's t-test; p < 0.05; p < 0.01, significantly different from normal by Student's t-test; p < 0.05, significantly different from positive control by Student's t-test.

(Tetramethylsilane) as an internal reference (Bruker Company, Massachusetts, USA). HRESIMS data were obtained on an Agilent 7890–7000A mass spectrometer (Agilent Technologies, Santa Clara, USA). Preparative HPLC (high-performance liquid chromatography) was conducted with an Angilent Technologies 1200 series instrument with a MWD detector using a YMC-pack ODS (Octadecylsilyl)-A column (5 μ m, 250 × 20 mm). Column chromatography was performed with silica gel (200–300 mesh, Qingdao Haiyang Chemical Ltd., Qingdao, China), Develosil ODS (50 μ m, Nomura Chemical Co. Ltd., Osaka, Japan), Sephadex LH-20 (GE Healthcare Bio-Sciences AB, Uppsala, Sweden). TLC (thin layer chromatography) was carried out with glass precoated with silica gel GF₂₅₄. Spots were visualized under UV light or by spraying with 10% sulfuric acid in EtOH followed by heating. WB-F344 cells come from the Institute of Materia Medica, Chinese Academy of Medical Sciences, Beijing.

3.2. Plant material

The leaves of *Callicarpa nudiflora* Hook were collected from Wuzhishan, Hainan, China and identified by Prof. Guiping Yuan at Jiangxi Provincial Institute for Drug and Food Control, China. A voucher specimen (No. 20110817) has been deposited in the Herbarium of Jiangxi Provincial Institute for Drug and Food Control.

3.3. Extraction and isolation

The powdered dried leaves of Callicarpa nudiflora (9.6 kg) were extracted with 80% EtOH at reflux for 3×2 h, and the extract was evaporated under reduced pressure to yield a dark brown residue (1.8 kg), which was suspended in water (15 L) and then partitioned with petroleum ether (3×15 L), EtOAc (3×15 L), and *n*-BuOH (3×15 L), successively. After removing the solvent, the *n*-BuOH extract (545 g) was passed through a XAD-7 macroporous resin column eluted with H₂O and H₂O-EtOH (5:95, v/v), respectively. The H₂O-EtOH (5:95, v/v) fraction (236 g) was separated by silica gel column chromatography (CC), eluting with CHCl₃-MeOH gradient mixtures (99:1-60:40, v/v), to afford 13 fractions, E1–E13. Fraction E6 (23.9 g) was fractionated via silica gel CC, eluting with CHCl₃-MeOH (85:15-75:25, v/v) to give five fractions (E6-1-E6-5). Fraction E6-4 (7.18 g) was again subjected to silica gel CC and eluted with CHCl₃-MeOH (95:5-80:20, v/v) to afford 12 fractions (E6-4-1–E6-4-12). Fraction E6–4-10 (4.31 g) was separated by ODS CC (30–100%, MeOH-H₂O) to give 17 subfractions. Subfraction 9 (457 mg) was further separated by preparative HPLC (YMC-ODS-A 5 µm, 250 mm × 20 mm, detection at 210 nm) using 19% CH₃CN-H₂O (5 ml/min) containing 0.01% TFA as mobile phase to yield compounds 1 (14.0 mg, $t_{\rm R}$ 84 min) and 2 (47.4 mg, $t_{\rm R}$ 93 min). Subfraction 12 (457 mg) was purified further by preparative HPLC (YMC-ODS-A 5 µm, 250 mm × 20 mm, detection at 210 nm) using 16% CH₃CN-H₂O (7 ml/min) as mobile phase to yield compounds 3 (7.0 mg, $t_{\rm p}$ 121 min), 4 (12.6 mg, $t_{\rm R}$ 133 min) and 5 (6.7 mg, $t_{\rm R}$ 148 min).

3.3.1. Callicoside C (1)

White amorphous powder; $[\alpha]_D^{20} - 58.8 (c \, 0.08, \text{MeOH})$; UV (MeOH) $\lambda_{\text{max}} (\log \varepsilon)$: 228 (4.72) and 312 (4.38) nm; ¹H NMR (600 MHz, CD₃OD) and ¹³C NMR (150 MHz, CD₃OD) spectral data see Table 1; HRESIMS: m/z 521.1656 [M – H]⁻ (calcd for C₂₅H₂₉O₁₂, 521.1659).

3.3.2. Callicoside D (2)

White amorphous powder; $[\alpha]_{D}^{20} - 25.3 (c \ 0.07, MeOH)$; UV (MeOH) λ_{max} (log ε): 228 (4.42) and 312 (4.26) nm; ¹H NMR (600 MHz, C₅D₅N) and ¹³C NMR (150 MHz, C₅D₅N) spectral data see Table 1; HRESIMS: *m/z* 543.1479 [M + Na]⁺ (calcd for C₂₅H₂₈O₁₂Na, 543.1478).

3.4. Determination of absolute configurations of the sugar moieties in 1 and 2

The determination of the absolute configuration of the sugars in compounds 1 and 2 was conducted as described previously [7].

3.5. Protective effect on cytotoxicity induced by D-galactosamine in WB-F344 cells

The hepatoprotective effects of compounds 1 and 5 were determined by a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) colorimetric assay in WB-F344 cells, with some modification [8]. Each cell suspension of 1×10^4 cells in 200 µl of Dulbecco's modified Eagle's medium containing fetal calf serum (3%), penicillin (100 units/ml), and streptomycin (100 µg/ml) was planted in a 96-well microplate and precultured for 24 h at 37 °C under a 5% CO₂ atmosphere. Fresh medium (200 µl) containing bicyclol and test samples was added, and the cells were cultured for 1 h. Then, the cultured cells were exposed to 40 mM D-galactosamine for 24 h. Cytotoxic effects of test samples were measured simultaneously in the absence of D-galactosamine. The medium was changed into a fresh one containing 0.5 mg/ml MTT. After 3.5 h incubation, the medium was removed and 150 µl of dimethyl sulfoxide was added to dissolve formazan crystals. The optical density (OD) of the formazan solution was measured on a microplate reader at 492 nm.

Acknowledgments

We thank Prof. Ai-Hong Liu at Center of Analysis And Testing Nanchang University for NMR measurements.

Disclosure statement

No potential conflict of interest was reported by the authors.

Funding

This work was financially supported by the National Natural Science Foundation of China [NSFC, grant number 81373955 and 81460589], Natural Science Foundation of Jiangxi, China [grant number 20142BAB205085], and Fund for the Development of Youth in Inspection Institute of Research [grant number 2013WA9].

References

- [1] Guangdong Institute of Botany, Flora Hainanica, (Science Press, Beijing, 1977), p. 10.
- [2] W.L. Mei, Z. Han, H.B. Cui, Y.X. Zhao, Y.Y. Deng, and H.F. Dai, Nat. Prod. Res. 24, 899 (2010).
- [3] J. Fu, S.T. Kuang, and S.X. Wang, J. Hainan Univ. Nat. Sci. Ed. 20, 154 (2002).
- [4] F.P. Gao, H. Wang, W.C. Ye, and S.X. Zhao, J. China Pharm. Univ. 41, 120 (2010).
- [5] Z.N. Wang, Z. Han, H.B. Cui, and H.F. Dai, J. Trop. Subtrop. Bot. 15, 359 (2007).

- [6] Y.H. Luo, Z.Q. Zhou, S.C. Ma, and H.Z. Fu, Phytochem. Lett. 7, 194 (2014).
- [7] Z.Q. Zhou, X.Y. Wei, H.Z. Fu, and Y.H. Luo, Fitoterapia. 88, 91 (2013).
- [8] B. Huang, H.Z. Fu, W.K. Chen, Y.H. Luo, and S.C. Ma, Chem. Pharm. Bull. 62, 695 (2014).
- [9] Y.H. Luo, H.Z. Fu, B. Huang, W.K. Chen, and S.C. Ma, J. Asian Nat. Prod. Res. 18, 274 (2016).
- [10] H. Laiva, R. Kasai, M. Rakotovao, and K. Yamasaki, Nat. Med. 55, 187 (2001).
- [11] J.H. Kwak, H.J. Kim, K.H. Lee, S.C. Kang, and O.P. Zee, Arch. Pharm. Res. 32, 207 (2009).
- [12] J. Shi, C.J. Li, J.Z. Yang, Y.H. Yuan, N.H. Chen, and D.M. Zhang, Planta Med. 78, 1844 (2012).
- [13] C. Bergeron, A. Marston, R. Gauthier, and K. Hostettmann, Phytochemistry 44, 633 (1997).
- [14] S.X. Feng, B. Yi, M. Zhang, J. Xu, H. Lin, and W.T. Xu, Nat. Prod. Res. 31, 181 (2017).
- [15] J. Kinjo, K. Araki, K. Fukui, H. Higuchi, T. Ikeda, T. Nohara, Y. Ida, N. Takemoto, M. Miyakoshi, and J. Shoji, *Chem. Pharm. Bull.* 40, 3269 (1992).
- [16] H.Z. Fu, R.J. Zhong, D.M. Zhang, and D. Wang, J. Asian Nat. Prod. Res. 15, 1139 (2013).
- [17] H. Inouye, Y. Takeda, and H. Nishimura, *Phytochemistry* 13, 2219 (1974).