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Synthesis of all stereoisomers of 3-hydroxypipecolic acid
and 3-hydroxy-4,5-dehydropipecolic acid and their evaluation

as glycosidase inhibitors
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Abstract—A highly practicable synthesis of both enantiomers of 3-hydroxypipecolic acid derivatives 1, 2, 3, 4 is described. Screening
of these molecules for glycosidase inhibition has been examined. Compound 3 was shown to be a potent inhibitor of b-N-acetylglu-
cosaminidase as well as Escherichia coli b-glucuronidase.
� 2008 Elsevier Ltd. All rights reserved.
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Figure 1. Structures of pipecolic acids and their derivatives.
Functionalized chiral, non-racemic piperidines are com-
mon structural units found in many biologically and
medicinally important natural and non-natural prod-
ucts.1 Among them, pipecolic acid, the next higher
homolog of proline, has received considerable attention
as a proline analogue. In particular, 3-hydroxypipecolic
acids 1 and 2, six-membered cyclic-amino-hydroxy
acids, constitute non-natural variants of a structural
motif often encountered in a variety of functional mole-
cules, and they may be regarded as expanded hydroxyl-
ated proline or a conformationally restricted serine
derivative and may affect physiological and pathological
processes.2 In addition, (�)-3-hydroxybaikiain 4, the
4,5-dehydro derivative of 2, has been isolated from a
toxic mushroom, Russula subnigricans Hongo.3 The
piperidine unit of 3-hydroxypipecolic acid is found in
a number of biologically important products. For exam-
ple, the cis-isomer 2 forms a part of the structure of tet-
razomine 5, an antitumor antibiotic,4 while the trans-
isomer 1 is a precursor of (�)-swainsonine 6, which
has shown potent and specific a-DD-mannosidase inhibi-
tory activity,5 and one-carbon homologated analogue
of 1 is also found in the structure of febrifugine 7, a po-
tent antimalarial agent6 (Fig. 1). In addition, pipecolic
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acids 1–4 might be precious scaffolds to be incorporated
into conformationally restricted peptidomimetics of bio-
logical relevance.7

Over the past several years, we have been interested in
the synthesis of polyhydroxylated piperidines (azasug-
ars), which show attractive biological activities such as
glycosidase inhibition.8 In the other hand, glycosidase
inhibitory activities using uronic types changed from a
hydroxymethyl to a carboxyl has been little reported
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compared with azasugars.9 A practical route providing
an easy access to the title compounds is therefore highly
desirable, and a chiral synthesis constitutes an area of
considerable current interest. However, a simultaneous
synthesis of all stereoisomers (1, ent-1, 2, and ent-2) of
3-hydroxypipecolic acid and the chiral synthesis of their
4,5-dehydro compounds (3, ent-3, 4, and ent-4) have
not been achieved up to now. Accordingly, we became
interested in developing a simple and feasible route to
3-hydroxypipecolic acid and 4,5-dehydro-3-hydroxy-
pipecolic acid. In this letter, we report a new chiral
synthesis of all stereoisomers of 1 and 3 in conjunction
with their inhibitory activities of glycosidases such as
b-glucuronidase, b-N-acetylglucosaminidase, and a-N-
acetylgalactosaminidase.

Our simple synthetic approach to 3 began with aldol
condensation between tert-butyl (ethoxycarbonyl)meth-
ylallylcarbamate 811 and acrolein. Treatment of 8 with
LHMDS followed by the addition of acrolein at
�80 �C in THF gave a diastereomeric isomer of allyl
alcohol 9 in 87% yield.12 Grubbs’ catalyst13 could be
used directly on 9 to afford the ring-closing metathesis
products 10 in high yields, which were separated to
2,3-cis-10 and 2,3-trans-10 in a ratio of 1 to 4 in 99%
yield.14 With a desired 2,3-trans-piperidenol as a major
product in hand, the lipase-catalyzed transesterification
of 2,3-trans-10 with vinyl acetate was carried out. Of
the various lipases tested, resolution of 2,3-trans-10
was best achieved with lipase PS (Pseudomonas cepacia),
immobilized on ceramic particles in diisopropyl ether at
40 �C, which gave the acetate (�)-2,3-trans-11 in 47%
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yield, along with the unreacted alcohol (+)-2,3-trans-10
in 47% yield. The enatiomeric purity of (+)-2,3-trans-
10 was 99% ee, as determined by chiral HPLC analysis
after replacing the N-protecting group with tosyl. The
ee of the acetate (�)-2,3-trans-11 was determined to be
97% after deacetylation of (�)-2,3-trans-11 with LiOH
in CH3OH–H2O followed by a procedure similar to that
described above. Global deprotection of (+)-2,3-trans-10
and (�)-2,3-trans-11 with 5 N HCl at 120 �C provided
the desired (+)-3 ([a]D +60.6� (c 1.0, H2O)) and (�)-
ent-3 (�58.7� c 1.0, H2O) in 99% and 94% yields, respec-
tively (Scheme 1).

Next, an inversion of hydroxyl of 2,3-trans-10 using the
Mitsunobu reaction was performed to give the acetate
2,3-cis-11 in <90% yield, which contained a small
amount of impurities. Resolution of the contaminated
acetate 2,3-cis-11 with enzymatic hydrolysis using the
same lipase in 0.1 M phosphate buffer afforded the ace-
tate 2,3-cis-11 and the alcohol (�)-2,3-cis-10 (30% yield
and 99% ee). Unfortunately, the small amount of impu-
rities in the acetate 2,3-cis-11 remained at this stage.
Subsequently, hydrolysis of the acetate with LiOH in
CH3OH–H2O gave pure (+)-2,3-cis-10 (31% yield from
2,3-trans-10 and 99% ee). Finally, global deprotection
of (�)-2,3-cis-10 and (+)-2,3-cis-10 with 5 N HCl affor-
ded the desired (�)-4 {[a]D �335.3� (c 1.0, H2O)}, lit.3

{[a]D �332.7� (c 0.3, H2O)}, and (+)-ent-4 {[a]D
+343.3� (c 0.74, H2O)}, in 85% and 88% yields, respec-
tively. The optical rotation and spectral characteristics
of (�)-4 were in good agreement with those reported
in the literature3 (Scheme 2).
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With the homochiral four piperidenols 10 in hand, our
objective was directed to their conversion to four
3-hydroxypipecolic acids 1 and 2. Hydrogenation of
(+)-2,3-trans-10 with Pd–carbon gave the piperidenol
(�)-2,3-trans-12 in 99% yield, which was deprotected
with 5 N HCl to provide (+)-1 {([a]D +16.2� (c 1.0,
10% H2O)) in 84% yield. Deacetylation of (�)-2,3-
trans-11 with LiOH afforded (�)-2,3-trans-10 (97%),
which was transformed into (+)-ent-1 in a two-step
sequence (hydrogenation and deprotection) in 86%
yield. In a similar manner, (�)-2 {([a]D �59.6� (c 0.57,
10% H2O)), and (+)-ent-2 were obtained from (�)-2,3-
cis-10 and (+)-2,3-cis-10 in a two-step sequence in
76%, and 76% yields, respectively. The spectral data
for all 3-hydroxypipecolic acids were in excellent agree-
ment with data reported in the literature10 (Scheme 3).

As mentioned earlier, there are few reports on the inhib-
itory effect of pipecolic acid derivatives on glycosidases.
Thus, we examined inhibitory activities of the obtained
3-hydroxypipecolic acid derivatives against various
glycosidases, including b-glucuronidase. Since the
3-hydroxypipecolic acid derivatives are designed as an
azasugar analogue of uronic acid derivatives, they are
thought to act as a transition state analogue and to be
a potential inhibitor of b-glucuronidase. In addition,
b-glucuronidase inhibitors are important since this class
of inhibitors recently exhibited attractive effects such as
a protective effect against antitumor camptothecin deriv-
ative (CPT-11)-induced mucosa damage and diarrhea in
treatment of advanced non-small-cell lung cancer.15 A
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Table 1. Inhibition rates of 3-hydroxypipecolic acid derivatives against b-glu

dase at 1 mM

Run Comp Inhib

b-Glucuronidase b-N

Bovine liver (%) E. coli (%) Bovine kidne

1 1 0.89 31 38

2 ent-1 0.62 20 32

3 2 0.18 24 20

4 ent-2 15 23 47

5 3 19 2 58 (0.72 mM

6 ent-3 0.2 0.9 15

7 4 8.6 3.3 7.3

8 ent-4 10 0.9 0.8
primary screening of the 3-hydroxypipecolic acid deriv-
atives against various glycosidases revealed a rather low
level of activity against bovine liver b-galactosidase (EC
3.2.1.23) and Aspergillus niger amyloglycosidase (data
not shown). On the other hand, some of the compounds
tested showed moderate inhibition against b-glucuroni-
dase, b-N-acetylglucosaminidase, and a-N-acetylgalac-
tosaminidase.16 The results are summarized in Table 1.
3-Hydroxypipecolic acids 1 and 2 showed moderate
inhibitory activity against Escherichia coli b-glucuroni-
dase, and their enantiomers ent-1 and -2 also showed
similar results. However, these compounds showed only
weak inhibitory activity against the same enzyme ob-
tained from bovine liver (runs 1–4). Unexpectedly, all
the compounds showed weak to moderate inhibitory
activity against b-N-acetylglucosaminidase. Among
them, compound 3 showed the most potent inhibitory
activity and its IC50 values were 0.72 and 0.75 mM
against b-N-acetylglucosaminidase isolated from bovine
kidney and human placenta, respectively (run 5).
Recently, reversible O-glycosylation with b-N-acetylglu-
cosamine (O-GlcNAc) to serine and threonine residues
of cytosolic and nuclear proteins has been found to be
one of the post-translational modifications such as
protein phosphorylation.17 It has also been shown that
O-GlcNAc is stimulated by high glucose flux and is
implicated in type II diabetes.18 The O-GlcNAcase
inhibitor PUGNAc is used as a tool for investigating
the biological function of O-GlcNAc.18 Therefore, the
result is quite interesting because 3 may be a new lead
for designing novel N-acetylglucosaminidase inhibitors.
The stereochemistries of 3 at 2- and 3-positions accord
well with N-acetylglucosamine and this may lead to a
potent inhibitory activity. In contrast to 4,5-dehydro-
3-hydroxypipecolic acids 3 and 4, all stereoisomers of
3-hydroxypipecolic acids 1, 2, ent-1, and ent-2 showed
inhibitory activity against b-N-acetylglucosaminidase
as well as E. coli b-glucuronidase. These results suggest
that the recognition of 1 and 2 by these enzymes is dif-
ferent from that of 3 and 4 since their inhibition potency
does not depend on their stereochemistry. Although
most of the compounds tested show negligible inhibitory
activity against a-N-acetylgalactosaminidase obtained
from chicken liver, only 4,5-dehydro-3-hydroxypipecolic
acid 3 showed a weak inhibitory activity against the
same enzyme (run 5). However, the reason for this is
unclear.
curonidase, b-N-acetylglucosaminidase, and a-N-acetylgalactosamini-

ition rate (IC50 value)

-Acetylglucosaminidase a-N-Acetylgalactosaminidase

y (%) Human placenta (%) Chicken liver (%)

36 5.2

25 1.3

30 2.5

46 3.2

) 60 (0.75 mM) 25

14 3.2

17 0.2

14 1.3
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In summary, we have achieved a highly feasible synthe-
sis of 3-hydroxypipecolic acid derivatives 1, 2, 3, 4 and
their enantiomers. Among the compounds obtained,
4,5-dehydro-3-hydroxypipecolic acid 3 showed inhibi-
tory activity against b-N-acetylglucosaminidase. The re-
sult revealed that 3 may be a new lead compound for
designing novel inhibitors of b-N-acetylglucosamini-
dase, which would be a useful biological tool to investi-
gate the function of O-GlcNAc. It is also emphasized
that intermediate 10 will serve as a useful synthetic pre-
cursor for polyhydroxylated pipecolic acids. Study along
this line is ongoing, and the results, including results for
the synthesis of a 5-aza analogue of glucuronic acid, will
be reported elsewhere.
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