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Abstract: Treatment of fused oxetanes with Et2AlCl, TMSCl,
acetyl chloride, or ethereal hydrochloric acid leads to the formation
of spirocyclic dihydrobenzofurans through intramolecular attack of
an oxygen atom of a proximal phenolic methyl ether.
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The regio- and stereoselective ring opening of oxetanes
has been extensively utilized in organic synthesis as a
route to functionalized alcohols.1 Intramolecular attack on
oxetanes has been less frequently studied than the inter-
molecular case, although examples of opening with car-
bon,2 nitrogen,3,4 sulfur,3 and oxygen3,5–11 nucleophiles
have been reported. Attack by oxygen nucleophiles is
known under both acidic and basic conditions. Masaki re-
ported the Lewis acid catalyzed rearrangement of mono-
substituted oxetanes to give ring-expanded cyclic ethers
accompanied by transfer of ethereal benzylic and allylic
groups.8 Intramolecular attack of phenoxide, generated in
situ by methyllithium-mediated deprotection of a pivaloyl
ester, on a disubstituted oxetane, led to the formation of a
substituted dihydrobenzofuran.3

As part of our studies on the application of an intramolec-
ular Paternò–Büchi photocyclization–oxetane fragmenta-
tion sequence to the synthesis of herbertane and cuparene
sesquiterpenes,11 we required a means of converting oxe-
tane 1a into the homoallylic alcohol 2. Oxetane 1a was
readily prepared in five steps from commercially avail-
able 2,5-dimethoxytoluene 3 (Scheme 1) according to a
general route we have previously developed.11,12 Attempt-
ed ring opening of 1a using the Yamamoto protocol (di-
ethylaluminium chloride and N-methylanilide in refluxing
benzene)13 failed to provide any of the expected homoal-
lylic alcohol 2, but instead led to recovery of starting ma-
terial. However, we fortuitously discovered that omission
of N-methylanilide led to the formation of a new com-
pound, the spirobenzofuran 8a, in reasonable yield at
room temperature (Table 1, entry 1).

Further screening of reagents showed that even simpler
activators could be used in place of the metal Lewis acid:
treatment of oxetane 1a with trimethylsilyl chloride,
acetyl chloride or ethereal hydrochloric acid all resulted in
the formation of a spirobenzofuran in good yield (Table 1,
entries 2–4). In the case of trimethylsilyl chloride, the ini-
tial product was the trimethylsilyl ether (observable by
TLC), which subsequently hydrolyzed to alcohol 8a14

upon aqueous workup. Use of acetyl chloride directly led

Scheme 1 Reagents and conditions: i) for 4a: Me2CHCOCl, AlCl3,
CH2Cl2, 0 °C to r.t., 2 h, 98%; for 4b: C6H11COCl, AlCl3,
ClCH2CH2Cl, r.t., 3 h, 70%; ii) acrylonitrile, tetrabutylammonium hy-
droxide (1 M, MeOH), 1,4-dioxane, 35 °C; for 5a: 72 h, 82%; for 5b:
48 h, 20% (+70% RSM); iii) Ph3PMeBr, KOt-Bu, toluene, 60 °C; for
6a: 17 h, 94%; for 6b: 48 h, 67%; iv) DIBAL-H, CH2Cl2, –78 °C to
0 °C, 3 h; for 7a: 85%; for 7b: 91%; v) hexane, medium-pressure (125
W) mercury arc lamp, Pyrex immersion well photoreactor, r.t.; for 1a:
0.01 M, 18 h, 61%; for 1b: 0.005 M, 4 h, 53%; vi) Table 1.
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to the corresponding ester 9a15 (entry 4). Formation of
1,3-chlorohydrins, typical products in the intermolecular
opening of oxetanes with acid derivatives, was not ob-
served under any of these conditions.

We have used this methodology to rapidly assemble an
unusual bis-spirocyclic ring system. Oxetane 1b, contain-
ing a cyclohexane ring in place of the geminal dimethyl
group in 1a, was prepared in a manner analogous to that
of 1a (Scheme 1). Treatment of 1b with ethereal hydro-
chloric acid gave alcohol 8b (Table 1, entry 5), whereas
acetyl chloride gave rise to the acetate 9b (entry 6).

Ring opening of oxetane 10,11 containing just one meth-
oxy group on the aromatic ring, was also investigated. Re-
actions were slower than with the dimethoxy ethers 1a
and 1b. Under acidic conditions, 34% of alcohol 11 was
obtained, along with 52% recovered oxetane 10 after 24

hours at room temperature (Table 1, entry 7). A reason-
able yield of acetate 12 was obtained using acetyl chloride
activation after 48 hours (entry 8).

A plausible mechanism for these transformations is
shown in Scheme 2, exemplified for the reaction of oxet-
ane 1a with acetyl chloride. Activation of the Lewis basic
oxetane oxygen is followed by intramolecular attack by
the neighboring phenolic ether on 13 to cleave the strained
heterocycle. Loss of chloromethane from 14 through a
second nucleophilic displacement leads to the spirobenzo-
furan 9a.

We have also evaluated neighboring-group participation
in the ring opening of the isomeric [2.2.1]oxabicyclic
ether 15, prepared from oxetane 1a in two steps
(Scheme 3). Although oxetane 1a proved inert to the
Yamamoto conditions13 and to NaH in DMA at 100–

Table 1 Formation of Spirobenzofurans from Oxetanes

Entry Oxetane Conditions Spirobenzofuran Yield (%)

1

1a

Et2AlCl (10 equiv), toluene, 0 °C to r.t., 1 h

8a

59

2 1a TMSCl (10 equiv), DCE, r.t., 18 h 8a 76

3 1a HCl (10 equiv), Et2O, 0–5 °C, 18 h 8a 78

4 1a AcCl (10 equiv), DCE, r.t., 18 h

9a

81

5

1b

HCl (10 equiv), Et2O, 0 °C to r.t., 18 h

8b

71

6 1b AcCl (10 equiv), DCE, r.t., 5 h

9b

61

7

10

HCl (10 equiv), Et2O, 0 °C to r.t., 24 h

11

34a

8 10 AcCl (10 equiv), DCE, r.t., 48 h

12

65

a Starting material (52%) was recovered.
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140 °C,16 ring opening to homoallylic alcohol 2 was ac-
complished by treatment of 1a with an excess of butyllith-
ium, diisopropylamine, and potassium tert-butoxide in
refluxing THF.17 Treatment of alkene 2 with mercuric ac-
etate followed by reduction of the intermediate organo-
mercurial resulted in formation of the [2.2.1]oxabicyclic
ether 15 through a formal 5-endo-trig ring closure.18 Sub-
jecting 15 to acetyl chloride did not result in spirobenzo-
furan formation, but instead to the formation of
chloroacetate 16 in low yield.19 However, when 15 was
treated with ZnI2 and acetic anhydride, known conditions
for the cleavage of tetrahydrofurans,20 the spirocyclic
ether 17 was produced in good yield.

A comparison of the structure of 17 with that of spiroben-
zofuran 9a shows that regioisomeric acetates can be pre-
pared from the same starting oxetane 1a in one or three

steps respectively. Interestingly, 17 contains the core
structure of spirobenzofuran 18, a bioactive fungal metab-
olite isolated from Acremonium sp. HKI 0230,21 which
has recently been synthesized for the first time.22 
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