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Abstract: A highly efficient synthesis of the C1–C13 fragment of
the marine macrolide lyngbouilloside is presented starting from
commercial (S)-citramalic acid.
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Marine cyanobacteria are an exceptionally rich source of
bioactive mainly nitrogenous secondary metabolites.1 Iso-
lated from the filamentous species Lyngbya bouillonii
(Oscillatoriaceae) collected off the coast of Papua New
Guinea, lyngbouilloside (1) represents one of the first gly-
cosidic macrolides of cyanobacterial origin and its struc-
ture was determined as a 14-membered lactone containing
a six-membered hemiacetal, a pendant dienyl side chain
and a rhamnose derivative attached at C5 (Figure 1).2

While 1 shares these structural features with the related
callipeltosides3a or the aurisides,3b the presence of an un-
usual tertiary methyl carbinol at C13 is in common only
with lyngbyaloside B, a brominated analogue from Lyng-
bya sp.4

Despite its interesting cytotoxic activity against neuro-2a
tumor cells (IC50 = 17 mM) and its challenging chemical
structure no total synthesis of 1 has been reported to date.
In the course of our ongoing efforts towards a first total
synthesis of 1, we herein wish to present a rapid access to
the linear carbon backbone 2 containing the complete ste-
reochemical information of the macrocyclic core
(Scheme 1). As the key step in our convergent approach
we envisioned a selective cross-metathesis (CM) of the
fully functionalized C1–C8 and C9–C13 fragments 3 and
4 which are easily derived from commercial (S)-citramal-
ic acid and 4-pentenal, respectively. Subsequent protect-

ing-group manipulations in fragment 2 followed by
introduction of the side chain and thermal macrolacton-
ization via intramolecular ketene trapping5 should then
give rise to the aglycon of lyngbouilloside in a few steps.

While the C5 stereocenter in the eastern fragment 4 was
planned to be introduced via an asymmetric vinylogous
aldol reaction, the 1,2-anti relationship found in the west-
ern fragment 3 at C10 and C11 should be installed by an
enantioselective crotyltitanation of the corresponding al-
dehyde.

Thus, the synthesis of 3 began with an esterification of
(S)-citramalic acid using SOCl2 in MeOH followed by
LiAlH4 reduction of the resulting dimethyl citramalate
(Scheme 2). Selective 1,2-diol protection with acetone in
the presence of PTSA then gave the known acetal 5 in
76% overall yield (three steps).6 Treatment of the crude
aldehyde obtained upon PCC oxidation of 5 with the high-
ly face-selective crotyltitanium complex (S,S)-Ti7 pro-
duced the homoallylic alcohol 6 with excellent
diastereoselectivity (dr >95:5) in 72% overall yield. The
latter was then protected as a PMB ether (NaH, PMBBr,
DMF–THF) to efficiently afford the desired CM partner
3.8

Whereas various examples for the asymmetric aldol reac-
tion of silyl dienol ethers of type 7 with aromatic or ole-
finic aldehydes are known, efficient and highly
enantioselective methods for the conversion of aliphatic

Figure 1 Proposed structure of lyngbouilloside
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aldehydes are rare and the availability of the required cat-
alyst systems is usually low.9 As initial attempts to control
the C5 stereocenter in 8 by reaction of 7 with 4-pentenal
using conditions described by Sato10 and Denmark et al.11

were rather unsatisfying, we decided to separate the race-
mate of 8 by preparative chiral HPLC.12

Fortunately, the pure R-enantiomer 8 could be obtained in
40% overall yield from commercial 4-pentenal.13 In
course of the subsequent allylic oxidation we were
pleased to find that a sequential treatment of alkene 8 with
SeO2 and t-BuOOH in refluxing CH2Cl2 and DDQ in THF
regioselectively furnished the desired enone 4 in an ac-
ceptable yield of 42% (two steps).14

With both fragments available, CM of 3 with a slight ex-
cess (1.2 equiv) of 4 in the presence of 20 mol% of the
Hoveyda–Grubbs catalyst Ru15 followed by direct cata-
lytic hydrogenation (1 atm H2, Pd/C, EtOAc) of the crude

enone gave rise to the entire carbon backbone of 1 in 79%
(Scheme 3).16 Finally 1,3-anti reduction of 9 with tetra-
methylammonium triacetoxyborohydride (TABH)17 then
afforded the C1–C13 fragment 2 as the only product (dr
>95:5) in almost quantitative yield.18

In conclusion, we have described a facile stereoselective
access to the fully functionalized C1–C13 fragment 2 of
lyngbouilloside (1), which was obtained in nine steps and
38% overall yield starting from commercially available
(S)-citramalic acid. The completion of the total synthesis
of lyngbouilloside (1) will be reported in due course.
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