DOI: 10.1002/ejoc.201402222

Synthesis of Chondroitin Sulfate Oligosaccharides Using N-(Tetrachlorophthaloyl)- and N-(Trifluoroacetyl)galactosamine Building Blocks

Giuseppe Macchione,^{[a][‡]} Susana Maza,^{[a][‡]} M. Mar Kayser,^[a] José L. de Paz,^{*[a]} and Pedro M. Nieto^{*[a]}

Keywords: Carbohydrates / Oligosaccharides / Glycosylation / Glycosaminoglycans / Protecting groups

We have explored synthetic routes for the preparation of chondroitin sulfate (CS) oligosaccharides based on the use of *N*-tetrachlorophthaloyl- (*N*-TCP) and *N*-trifluoroacetyl-substituted (*N*-TFA) galactosamine building blocks. Using *N*-TCP units, we carried out the total synthesis of two CS disaccharides, demonstrating the compatibility of TCP protection with the final deprotection/sulfation steps. However, an attempted 2+2 coupling of *N*-TCP-containing disaccharides for the synthesis of CS tetrasaccharides failed. In contrast, a synthetic route using *N*-TFA galactosamine units efficiently

led to biologically relevant CS-like oligosaccharides. The *N*-TFA groups could easily be removed at the end of the synthesis, and microwave irradiation greatly facilitated the sulfation reactions. The utility of this approach is illustrated with the total synthesis of two CS-like tetrasaccharides with different sulfate distribution patterns. Finally, we used a fluorescence polarization assay to estimate the relative abilities of the synthesized compounds to inhibit the interaction between FGF-2 and heparin.

Introduction

Chondroitin sulfate (CS) is a linear sulfated polysaccharide that belongs to the glycosaminoglycan family.^[1] CS is made up of repeating of GlcA- $\beta(1\rightarrow 3)$ -GalNAc- $\beta(1\rightarrow 4)$ disaccharide units (GlcA = D-glucuronic acid, GalNAc = *N*-acetyl-D-galactosamine). This repeating unit can be sulfated at various positions, giving rise to CS polymer chains with different sulfation patterns and a high level of structural diversity. CS chains are classified into different types based on the distribution pattern of the sulfate groups, although a combination of different patterns is often found in CS samples. For instance, CS-A predominantly contains one sulfate at position 4 of the GalNAc unit, CS-C has a sulfate group at position 6 of the GalNAc, and CS-E has two sulfates at positions 4 and 6 of the GalNAc residue (Figure 1).

CS is involved in important biological processes such as central nervous system development^[2] and malaria infection.^[3] The participation of CS in these processes is due to the action of certain oligosaccharide sequences, with particular sulfate distributions, which interact with several pro-

Figure 1. Some of the typical disaccharide units found in CS.

tein receptors.^[4] For example, CS-E binds to several heparin-binding growth factors and chemokines,^[5,6] and so plays important roles in the central nervous system. Recent studies indicated that a CS-E tetrasaccharide interacts with midkine, a growth factor that participates in the development and repair of neural tissues.^[7] This interaction requires a specific arrangement of sulfate groups, since other oligosaccharides with different sulfation patterns bind significantly more weakly (or not at all) to midkine. A different class of CS, CS-A, has an important role in pregnancy-associated malaria.^[8] This subtype of CS binds to *Plasmodium falciparum* erythrocyte membrane protein 1 (PfEMP1), and this binding event is a critical step in the adhesion of *P. falciparum* infected red blood cells to the placenta.

Due to the heterogeneity of the polymer, structurally defined CS oligosaccharides are not easily obtained in significant amounts from natural sources. Therefore, well-defined synthetic oligosaccharides are required for the study of CS– protein interactions at the molecular level, the establishment of structure–activity relationships, and the evaluation of the biological activities and potential therapeutic applications of this type of compounds. Despite recent advances in the synthesis of CS oligosaccharides and their ana-

[[]a] Glycosystems Laboratory, Instituto de Investigaciones Químicas (IIQ), Centro de Investigaciones Científicas Isla de La Cartuja, CSIC and Universidad de Sevilla, Americo Vespucio, 49, 41092 Sevilla, Spain E-mail: jlpaz@iiq.csic.es http://www.iiq.csic.es/en/glycosystem-laboratory

^[‡] These authors contributed equally to this work

Supporting information for this article is available on the

WWW under http://dx.doi.org/10.1002/ejoc.201402222.

logues,^[7,9–19] new approaches to the preparation of these molecules are still required. A well-designed protecting group strategy is required to obtain the right configurations for the glycosidic bonds and the correct positions for the sulfate groups. The choice of protection for the amino group^[20] of the GalNAc units is an important point in this design. Most reported syntheses of CS oligomers have used N-(trichloroacetyl)galactosamine building blocks.^[21] However, the use of this type of units presents some limitations. The formation of stable trichlorooxazoline by-products has been reported in glycosidation reactions of 2-deoxy-2-trichloroacetamido donors.[22-24] Additionally, the final transformation of the 2-trichloroacetamide to the desired 2-acetamido group can be problematic. The basic hydrolysis of multiple trichloroacetamide groups requires very long reaction times,^[22] and the alternative reduction method [using tributylstannane/AIBN (azobisisobutyronitrile) or Zn/acetic acid] leads, in some cases, to significant amounts of mono- and dichloroacetamide intermediates.^[25-27] For these reasons, we decided to explore the use of new galactosamine monomers that contain a N-tetrachlorophthaloyl (N-TCP)^[28,29] or a N-trifluroacetyl (N-TFA)^[30-32] protecting group for the synthesis of CS oligosaccharides.

We envisioned that the TCP group would be a good alternative for 2-amino protection because this group avoids the formation of stable oxazolines, while strongly favouring the formation of 1,2-trans glycosidic linkages.^[20,33] Moreover, cleavage of the N-TCP moiety does not require the harsh reaction conditions needed for the removal of the analogous N-phthaloyl group.^[34] On the other hand, we envisioned that the N-TFA group could facilitate the final deprotection steps, since it can be removed under milder conditions than the trichloroacetyl group. The N-TFA group also ensures high β selectivities in glycosidation reactions.^[35,36] Below, we describe the results obtained with both types of building block. As a first goal, we considered the synthesis of CS tetrasaccharides, since it has been demonstrated that tetramers are long enough to interact with several proteins and show biological activity.^[7,9,37,38]

Results and Discussion

N-TCP Galactosamine Building Blocks for the Synthesis of CS Oligosaccharides

We prepared GalNAc monomers 1 and 2 (Scheme 1), which can be used as glycosyl acceptor and donor, respectively, in coupling reactions with glucuronic acid derivatives to give CS-like disaccharides. The 4,6-*O*-benzylidene acetal allows the regioselective sulfation of these positions at the end of the synthesis (see below). Tetraacetate $3^{[39]}$ was converted into 4-methoxyphenyl glycoside 4 by treatment with 4-methoxyphenol and BF₃·Et₂O. De-*O*-acetylation of 4 is not trivial: the *N*-TCP group is base-sensitive, and the formation of methyl glycoside by-products has been observed during the acid-catalysed hydrolysis of a similar glucosamine derivative.^[40] Therefore, de-*O*-acetylation was carried out under strictly controlled basic conditions to give, after

benzylidenation, compound 1. Donor 2 was prepared from 1 by levulination at position 3, followed by oxidative removal of the 4-methoxyphenyl group with cerium(IV) ammonium nitrate (CAN) and trichloroacetimidate activation.

Next, we studied the utility of 1 and 2 in glycosylation reactions with glucuronic acid moieties to give fully protected CS disaccharide precursors (Scheme 2). Glucuronic acid trichloroacetimidate $8^{[41,42]}$ was coupled with acceptor 1 to give disaccharide 9 in good yield. We tested different reaction conditions, and the best results were obtained with BF₃·Et₂O as catalyst and toluene as solvent. On the other hand, donor 2 was coupled to acceptor $10^{[43]}$ to give disaccharide 11, with the alternative monosaccharide sequence GalNAc-GlcA. To introduce an amine-terminated linker at the reducing end of the chain to allow further conjugation of the final molecules, 11 was transformed into trichloroacetimidate 13. Glycosylation between 13 and 5-(benzyloxy-carbonylamino)-1-pentanol gave the desired disaccharide (i.e., 14) in good yield.

Scheme 2. *Reagents and conditions:* a) BF₃·Et₂O, toluene, 54% + 27% recovered 1; b) TMSOTf (trimethylsilyl trifluoromethanesulfonate), CH₂Cl₂, 58% + 16% recovered 10; c) CAN, CH₂Cl₂/ CH₃CN/H₂O, 84%; d) Cl₃CCN, K₂CO₃, CH₂Cl₂, 95%; e) 5-(benzyloxycarbonylamino)-1-pentanol, TMSOTf, CH₂Cl₂, 67%; Z = benzyloxycarbonyl.

Scheme 3. *Reagents and conditions:* a) TFA, CH_2Cl_2 , 0 °C, 99% b) $SO_3 \cdot Me_3N$ (10 equiv.), DMF, 100 °C, 40 min, MW, 83%; c) $SO_3 \cdot Me_3N$ (2 equiv.), DMF, 50 °C, 30 min, MW, 84%; d) H_2O_2 , LiOH, THF; NaOH, MeOH, 86% for 19, 89% for 23; e) $NH_2(CH_2)_2NH_2$, DMF, 100 °C, 90 min, MW; f) Ac_2O , Et_3N , MeOH, 75% for 21, 88% for 25 (2 steps, from 19 and 23, respectively); g) H_2 , Pd(OH)₂, $H_2O/MeOH$, quantitative for 15, quantitative for 16.

Having achieved the synthesis of these fully protected disaccharides, we then checked the compatibility of the N-TCP group with the deprotection and sulfation steps required for the synthesis of final deprotected CS oligomers. Thus, starting from 14, we successfully prepared disaccharides 15 and 16, which correspond to the sulfation patterns of CS-E and CS-C, respectively (Scheme 3). The benzylidene acetal of 14 was removed using TFA (trifluoroacetic acid), and the resulting diol was extensively sulfated to give 18. Here, the reaction time was significantly decreased (40 min) using microwave heating (MW).^[44] The next step was the basic hydrolysis of the ester groups, which occurred with concomitant partial hydrolysis of the N-TCP moiety to give 19. The amide bond in 19 was cleaved by treatment with ethylenediamine in DMF. This reaction took only 90 min using microwave heating.^[45,46] Finally, the amine group of 20 was selectively acetylated, and the resulting derivative 21 was hydrogenated to give CS-E disaccharide 15 in good yield. For the preparation of CS-C dimer 16, diol 17 was heated at 50 °C under microwave irradiation in the presence of SO₃·NMe₃ complex (2 equiv.). The mixture was stirred for 30 min, and 6-O-sulfated compound 22 was obtained in high yield. When we carried out the selective 6-OH sulfation with conventional heating in an oil bath, the reaction time was much longer, and the yield was lower, due to the recovery of some unsulfated starting material. Saponification, followed by amide bond cleavage, N-acetylation, and hydrogenolysis gave final disaccharide 16.

Next, we attempted the synthesis of longer CS sequences by a 2+2 coupling of disaccharide units. For this purpose, disaccharide **9** was transformed into the corresponding glycosyl acceptor (by delevulination) and donor (by cleavage of the anomeric 4-methoxyphenyl group and trichloroacetimidate formation). Unfortunately, the 2+2 glycosylation failed, and the desired (GlcA-GalNAc)₂ tetrasaccharide could not be isolated. In an alternative approach, we tried to prepare a $(GalNAc-GlcA)_2$ tetrasaccharide from compound 11. Compound 11 was similarly converted into the corresponding acceptor and donor disaccharides, but the 2+2 condensation of these units failed again. In all these glycosylation trials, most of the starting glycosyl acceptor was recovered from the reaction mixture.

Synthesis of CS Oligomers Using *N*-TFA-Protected Galactosamine Units

For the synthesis of biologically relevant CS tetrasaccharides, we turned our attention to *N*-TFA-protected GalNAc units. We have previously reported the preparation and use of this type of building blocks for the synthesis of a hybrid chondroitin/dermatan sulfate oligosaccharide,^[43] containing both GlcA and L-iduronic acid (IdoA). Monosaccharide **26**, containing a 4,6-*O*-di-*tert*-butylsilylene group, acted as an excellent glycosyl acceptor in a coupling reaction with poorly reactive GlcA trichloroacetimidate **27** to generate key intermediate **28** (Scheme 4).^[43]

Here, we expand the utility of this *N*-TFA monomer to the preparation of a CS tetrasaccharide sequence, containing exclusively GlcA (Scheme 5). For this purpose, we planned a 2+2 condensation of appropriate disaccharide derivatives. First, **28** was transformed into a suitable donor containing acyl groups at positions 4 and 6 of the GalNAc moiety in order to selectively obtain the $\beta(1\rightarrow 4)$ glycosidic bond. Thus, compound **28** was treated with (HF)_n. Py and then with levulinic anhydride and DMAP to give disaccharide **29**. Trichloroacetimidate **31** was obtained by cleavage of the anomeric 4-methoxyphenyl group followed by treatment with trichloroacetonitrile and DBU. Coupling between **31** and **32**^[43] gave tetrasaccharide **33** in good yield. Importantly, **31** was prepared immediately before its use in

Scheme 4. Synthesis of key disaccharide 28 using N-TFA unit 26.

the glycosidation reaction, since we observed partial decomposition of this trichloroacetimidate after extended storage, even at low temperature (-28 °C/4 °C range). Tetrasaccharide 33 has a versatile protecting group distribution that paves the way for the preparation of CS sequences with different sulfation motifs. We decided to prepare, for the first time, unnatural oversulfated compound 38, since we have found that analogous IdoA-containing tetrasaccharides (Figure 3, see below) are able to interact with FGF-2 (basic fibroblast growth factor), a heparin-binding protein involved in angiogenesis. Thus, removal of the silylene group was followed by basic hydrolysis and selective Nacetylation to give 36. Treatment with SO₃·NMe₃ complex at 100 °C using microwave irradiation^[47] gave hepta-O-sulfated tetrasaccharide 37. The introduction of the sulfate groups at the desired positions was confirmed by ¹H and ¹³C NMR spectroscopic data, which showed typical downfield shifts for the sulfated positions (Tables 1 and 2). Finally, hydrogenolysis of 37 yielded the fully deprotected CS tetramer 38. NMR spectroscopic analysis confirmed the structure of 38. The ¹H and ¹³C NMR spectroscopic data are in full agreement with those reported for similar CS derivatives.

As mentioned before, 38 is an oversulfated CS sequence with a sulfation pattern not found in nature. To demonstrate that *N*-TFA building blocks can be also used for the preparation of oligosaccharides with naturally occurring sulfation patterns, we synthesized, for the first time, tetrasaccharide **50** (Scheme 6). This compound contains sulfate groups at positions 4 and 6 of the GalNAc units, the sulfation pattern of biologically relevant CS-E. Moreover, **50** has a IdoA unit at the nonreducing end. It has been reported that the presence of IdoA (instead of GlcA) in CS chains, giving rise to hybrid chondroitin/dermatan sulfate

Scheme 5. Reagents and conditions: a) (HF)_{*n*}·Py, THF, 0 °C; Lev₂O, Py, DMAP, 83%; b) CAN, CH₂Cl₂/CH₃CN/H₂O, 81%; c) Cl₃CCN, DBU, CH₂Cl₂, 70%; d) TMSOTf, CH₂Cl₂, 0 °C, 71%; e) (HF)_{*n*}·Py, THF, 0 °C, 75%; f) LiOH, H₂O₂, THF; NaOH, MeOH; g) Ac₂O, MeOH, Et₃N, 90% (2 steps, from **34**); h) SO₃·Me₃N, DMF, 100 °C, MW, 2 h, 56%; i) H₂, Pd(OH)₂, H₂O/ MeOH, 97%.

Table 2. ¹³C NMR chemical shifts [ppm] for sulfated positions of compounds **37** and **38**, and the corresponding nonsulfated positions of **36**.

	C-4A	C-6A	C-2B	C-4C	C-6C	C-2D	C-4D
36 ^[a]	67.6	61.1	72.7	67.6	61.1	73.0	_[c]
37 ^[b]	76.9	69.3-68.6	80.0	76.9	69.3-68.6	80.0	77.2
38 ^[b]	77.0	69.0–68.7	80.7	77.0	69.0-68.7	80.7	79.0

[a] Sodium salt, in $[D_4]$ methanol. [b] Sodium salt, in D_2O . [c] Not determined.

copolymers, has critical roles in the development of the central nervous system.^[2,48] Oligosaccharide sequences containing GlcA/IdoA-GalNAc (4,6-OSO₃⁻⁻) interact with

Table 1. ¹H NMR Chemical shifts [ppm] for sulfated positions of compounds **37** and **38**, and the corresponding nonsulfated positions of **36**.

	4A-H	6A-H	2B-H	4C-H	6С-Н	2D-Н	4D-H
36 ^[a]	4.19-4.12	3.86-3.56	3.46	4.19-4.12	3.86-3.56	3.41	3.72-3.56
37 ^[b]	4.96	4.36-4.10	4.41	4.96	4.36-4.10	4.41	4.93-4.85
38 ^[b]	4.95	4.36-4.21	4.28-4.21	4.93	4.36-4.21	4.28-4.21	4.51

[a] Sodium salt, in $[D_4]$ methanol. [b] Sodium salt, in D_2O .

L- and P-selectins and several chemokines and heparinbinding growth factors.^[6,49] The chemical synthesis of these structures, containing both GlcA and IdoA, will contribute to determine the role of hybrid sequences in biological processes, including stem-cell proliferation, neurogenesis, and neural network formation.

Scheme 6. Building blocks required for the synthesis of tetrasaccharide **50**.

Tetrasaccharide 50 was obtained from disaccharides $39^{[43]}$ and 32 (Scheme 6). The protecting groups of 39 were rearranged to produce the CS-E sulfation pattern at the end of the synthesis. Delevulination followed by pivaloylation gave compound 40 (Scheme 7). The silylene group was then exchanged for two levulinovl groups (\rightarrow 41). This allows selective deprotection and subsequent sulfation at positions 4 and 6 of the GalNAc moiety, and, at the same time, favours the correct stereochemistry for the glycosidic bond in the 2+2 condensation. The formation of trichloroacetimidate 43 was then achieved by oxidative removal of the anomeric 4-methoxyphenyl group with CAN followed by treatment with trichloroacetonitrile and DBU. Fully protected tetramer 44 was prepared by glycosylation of 43 and 32. The protecting group distribution of 44 can lead, among other outcomes, to a CS-E sulfation pattern. Treatment with hydrazine monohydrate and then with $(HF)_n$ ·Py complex gave tetraol 46. The released hydroxy groups were sulfated in 30 min, using microwave heating, to give 47. The ¹H NMR spectrum of 47 showed the expected downfield shifts for 4-H GalNAc (δ = 4.14–3.93 ppm in 46; δ = 4.85– 4.80 ppm in 47) and 6a,b-H GalNAc ($\delta = 3.83-3.48$ ppm in **46**; δ = 4.52–4.25 in **47**). The ¹³C NMR spectrum of **47** also

Scheme 7. Reagents and conditions: a) $NH_2NH_2\cdot H_2O$, Py/AcOH, CH_2Cl_2 ; PivCl, DMAP, Py, 87%; b) $(HF)_n\cdot Py$, THF, 0 °C; Lev_2O , Py, DMAP, 81%; c) CAN, $CH_2Cl_2/CH_3CN/H_2O$, 70%; d) Cl_3CCN , DBU, CH_2Cl_2 , 78%; e) **32**, TMSOTf, CH_2Cl_2 , 0 °C, 53%; f) $NH_2NH_2\cdot H_2O$, Py/AcOH, CH_2Cl_2 , 87%; g) $(HF)_n\cdot Py$, THF, 0 °C, 97%; h) $SO_3\cdot Me_3N$, DMF, 100 °C, MW, 30 min, quantitative; i) LiOH, H_2O_2 , THF; NaOH, MeOH; j) Ac_2O, MeOH, Et_3N, 86\% (2 steps, from **47**); k) H_2 , $Pd(OH)_2$, $H_2O/MeOH$, quantitative.

showed the expected downfield shifts of the signals for C-4 GalNAc (δ = 68.6 ppm in 46; δ = 75.4–75.1 ppm in 47) and C-6 GalNAc (δ = 62.7–62.5 ppm in 46; δ = 68.0–67.5 ppm in 47). Hydrolysis of ester and amide functionalities followed by *N*-acetylation and hydrogenolysis gave tetrasaccharide 50 in high yield. The structure of this compound was confirmed by NMR spectroscopy (COSY, TOCSY, and HSQC experiments) and mass spectrometry. The ¹H and ¹³C NMR chemical shifts are in good agreement with those published for similar oligosaccharides.

Fluorescence Polarization Competition Assay

FGF-2 is a heparin-binding protein^[50,51] that also recognizes CS sequences.^[5] We finally screened the interactions between FGF-2 and the synthetic water-soluble CS oligosaccharides (15, 16, 38, and 50, and dibenzylated tetrasaccharide precursors 37 and 49). For this purpose, we used a fluorescence polarization competition assay, previously developed in our group.^[43] This assay measures the relative ability of the synthetic CS oligomers to inhibit the interaction between FGF-2 and a fluorescently labelled heparin probe. Briefly, the fluorescence polarization of samples containing fixed concentrations of protein and fluorescent probe were measured in the presence of the different CS oligosaccharides (Figure 2). The binding of a CS oligomer to FGF-2 displaces the fluorescent probe from its complex with the protein, resulting in a decrease of the polarization value. In this experiment we included two control samples (in white, Figure 2). The first one (on the left) contained only the fluorescent probe, and indicates the expected value for 100% inhibition. The second one (on the right) contained FGF-2 and fluorescent probe, without inhibitor, and indicates the expected value for 0% inhibition. As shown in Figure 2, at a 25 µM inhibitor concentration, disaccharides 15 and 16 and tetrasaccharides 49 and 50 showed only low inhibitory activity, while compounds 37 and 38 were able to inhibit 47 and 63%, respectively, of the interaction. However, the inhibitory activities of oversulfated compounds 37 and 38 were lower than those obtained with previously synthesized IdoA-containing tetrasaccharides 51 and 52 (Figure 3).^[43] In summary, these data indicate that oversulfated, unnatural tetrasaccharides (i.e., 37-38 and 51-52) show stronger inhibitory abilities that those tetrasaccharides with natural sulfation patterns (i.e., 49 and 50). These results also suggest that the presence of an IdoA unit, instead of a GlcA, at the nonreducing end of oversulfated structures, as in compounds 51 and 52, can increase the relative binding affinities of the synthetic unnatural CS oligosaccharides to FGF-2. The interaction between FGF-2 and heparin is crucial for tumor growth and angiogenesis. Therefore, the discovery of compounds that inhibit the FGF-2/heparin interaction is an area of great interest.^[52,53] Although the tested compounds showed modest activities, this experiment gives some interesting data on structural features beneficial for the inhibition of heparin binding to FGF-2. Moreover, this assay illustrates the potential of our fluorescence polarization method for the fast comparison of relative inhibitory activities.

Figure 2. Competition assay to compare the relative inhibitory potencies of the synthetic CS-like oligosaccharides. The graphic presents (in grey) the polarization values obtained from wells containing inhibitor (25μ M), FGF-2 (73 nM), and fluorescent heparin-like probe (10 nM). The composition of the control wells (in white) is described in the main text. All the measurements are the average of three replicate wells, and the error bars show the standard deviations for these measurements.

Figure 3. Structures of IdoA-containing tetrasaccharides 51 and 52.

Conclusions

We have explored and compared the utility of two differently protected galactosamine units for the preparation of CS oligosaccharides. Although N-TCP protection was useful at the disaccharide level, we were not able to synthesize longer sequences with this type of unit. In contrast, we have showed that a strategy based on N-TFA building blocks can be used to synthesize biologically relevant CS oligosaccharides in good yield. The efficiency of this approach was exemplified by the synthesis of two new CSlike tetrasaccharides, with different sulfation patterns and uronic acid distributions. The N-TFA groups led to the stereoselective formation of 1,2-trans glycosidic bonds, and they could be easily removed at the end of the synthesis. Microwave irradiation facilitated the sulfation reactions. Finally, we compared the abilities of the synthetic CS oligosaccharides to inhibit heparin binding to FGF-2, and we obtained some interesting information about structural features that influence inhibitory activity.

Experimental Section

General Procedures: Thin-layer chromatography (TLC) analysis was carried out on silica gel 60 F_{254} precoated on aluminium plates (Merck), and the compounds were detected by staining with sulfuric acid/ethanol (1:9), with cerium(IV) sulfate (10 g)/phosphomolybdic acid (13 g)/sulfuric acid (60 mL) solution in water (1 L), or with anisaldehyde solution [anisaldehyde (25 mL) with sulfuric acid (25 mL), ethanol (450 mL), and acetic acid (1 mL)], followed by heating at >200 °C. Column chromatography was carried out on silica gel 60 (0.2–0.5 mm, 0.2–0.063 mm or 0.040–0.015 mm; Merck). Optical rotations were determined with a Perkin–Elmer 341 polarimeter. ¹H and ¹³C NMR spectra were acquired on

Bruker DPX-300, Avance III-400, and DRX-500 spectrometers. Unit A refers to the reducing-end monosaccharide in the NMR spectroscopic data. Electrospray mass spectra (MS (ESI)) were recorded with an Esquire 6000 ESI-Ion Trap from Bruker Daltonics. High-resolution mass spectra (HRMS) were carried out by CITIUS (Universidad de Sevilla), CCiT (Universitat de Barcelona), and SIdI (Universidad Autónoma de Madrid). Microwave-based sulfation reactions were carried out using a Biotage Initiator Eight synthesizer in sealed reaction vessels.

4-Methoxyphenyl 4,6-O-Benzylidene-2-deoxy-2-tetrachlorophthalimido- β -D-galactopyranoside (1): BF₃·Et₂O (731 μ L, 5.82 mmol) was added to a mixture of 3 (1.79 g, 2.91 mmol) and 4-methoxyphenol (723 mg, 5.82 mmol) in dry CH_2Cl_2 (8.0 mL) under an argon atmosphere at 0 °C. The temperature was gradually raised to room temperature over 2 h, and the mixture was stirred for 24 h. Then it was diluted with CH₂Cl₂ (40 mL), and washed with H₂O, saturated aqueous NaHCO₃, and H₂O. The organic phase was dried (MgSO₄) and concentrated to dryness. The residue was purified by column chromatography (hexane/EtOAc, 3:1) to give 4 (1.63 g). TLC (toluene/acetone, 3:2): $R_{\rm f} = 0.44$. ¹H NMR (300 MHz, CDCl₃): δ = 6.86 (m, 2 H, Ar), 6.75 (m, 2 H, Ar), 5.79 (d, $J_{1,2}$ = 8.5 Hz, 1 H, 1-H), 5.78 (dd, $J_{2,3}$ = 11.3, $J_{3,4}$ = 3.1 Hz, 1 H, 3-H), 5.53 (d, 1 H, 4-H), 4.79 (dd, 1 H, 2-H), 4.28-4.10 (m, 3 H, 5-H, 6a-H, 6b-H), 3.74 [s, 3 H, Me(OMP)], 2.23, 2.06, 1.91 (3 s, 9 H, OAc) ppm. MS (ESI): calcd. for C₂₇H₂₃Cl₄NO₁₁Na [M + Na]⁺ 700.0; found 700.1.

Compound 4 (1.63 g, 2.4 mmol) was dissolved in MeOH (186 mL), and NaOMe (1 m in MeOH; 3.2 mL) was added. The mixture was stirred at 0 °C for 10 min, and then AcOH (15.5 mL) was added. The mixture was stirred at room temperature for 10 min, and then it was coconcentrated twice with toluene. The residue was filtered through a silica column (toluene/acetone, 2:1) to give 5 (855 mg) and a mixture of partially deacetylated compounds (348 mg). The partially deprotected products were dissolved in MeOH (40 mL) and treated with additional NaOMe (1 M in MeOH; 0.68 mL) at 0 °C. After stirring for 7 min at 0 °C, AcOH (3.3 mL) was added, and the mixture was concentrated. The residue was purified by column chromatography to give additional 5 (197 mg). TLC (toluene/ acetone, 2:1): $R_{\rm f} = 0.29$. ¹H NMR (300 MHz, CDCl₃): $\delta = 6.87$ (m, 2 H, Ar), 6.74 (m, 2 H, Ar), 5.62 (d, $J_{1,2}$ = 8.4 Hz, 1 H, 1-H), 4.61 (br. t, 1 H, 2-H), 4.46 (dd, $J_{2,3} = 11.0$, $J_{3,4} = 3.0$ Hz, 1 H, 3-H), 4.03 (d, 1 H, 4-H), 3.84-3.75 (m, 3 H, 5-H, 6a-H, 6b-H), 3.69 [s, 3 H, Me(OMP)] ppm. MS (ESI): calcd. for $C_{21}H_{17}Cl_4NO_8Na$ [M + Na]⁺ 574.0; found 574.1.

Compound 5 (1.052 g, 1.90 mmol) was dissolved in dry MeCN (19 mL). Benzaldehyde dimethyl acetal (0.43 mL, 2.85 mmol) and pTsOH (0.5 M solution in dry MeCN; 188 µL) were added, and the mixture was stirred for 45 min. Then it was diluted with EtOAc (200 mL), and washed with saturated aqueous NaHCO₃ and H₂O. The organic phase was dried (MgSO₄) and concentrated to dryness. The residue was purified by column chromatography (toluene/ EtOAc, 8:1) to give 1 (930 mg, 50% over three steps from 3). TLC (toluene/EtOAc, 8:1): $R_{\rm f} = 0.27$. $[a]_{\rm D}^{20} = +11$ (c = 1.0, CHCl₃). ¹H NMR (300 MHz, CDCl₃): δ = 7.55 (m, 2 H, Ar), 7.40 (m, 3 H, Ar), 6.91 (m, 2 H, Ar), 6.75 (m, 2 H, Ar), 5.75 (d, J_{1,2} = 8.3 Hz, 1 H, 1-H), 5.61 (s, 1 H, Ph-CH), 4.69 (br. t, 1 H, 2-H), 4.51 (dd, J_{2,3} = 10.9, $J_{3,4}$ = 3.1 Hz, 1 H, 3-H), 4.38 (d, $J_{6a,6b}$ = 12.4 Hz, 1 H, 6a-H), 4.33 (br. d, 1 H, 4-H), 4.13 (d, 1 H, 6b-H), 3.73 [s, 3 H, Me(-OMP)], 3.70 (s, 1 H, 5-H) ppm. ¹³C NMR (75 MHz, CDCl₃): δ = 164.2, 163.6 (2 CO), 155.8, 150.6, 140.5, 140.4, 137.3, 130.1, 129.8 (Ar-C), 129.6, 128.5 (Ar-CH), 127.6, 127.3 (Ar-C), 126.6, 119.3, 114.5 (Ar-CH), 101.7 (Ph-CH), 97.6 (C-1), 74.9 (C-4), 69.2 (C-6),

67.8 (C-3), 67.0 (C-5), 55.7 [Me(OMP)], 55.4 (C-2) ppm. HRMS: calcd. for $C_{28}H_{21}Cl_4NO_8Na$ [M + Na]⁺ 661.9919; found 661.9899.

4-Methoxyphenyl 4,6-O-Benzylidene-2-deoxy-3-O-levulinoyl-2-tetrachlorophthalimido-\beta-D-galactopyranoside (6): Lev₂O preparation: LevOH (2.0 mL, 19.1 mmol) was added to a solution of 1,3-dicyclohexylcarbodiimide (1.97 g, 9.54 mmol) in CH₂Cl₂ (16 mL) at 0 °C. The mixture was stirred for 5 min at room temperature, then it was cooled and filtered, and the urea precipitate was washed with additional CH₂Cl₂ (2.7 mL), to give a Lev₂O solution (0.51 m; 18.7 mL).

Lev₂O (0.51 M solution in CH₂Cl₂; 16.4 mL) was added at room temperature to a mixture of 1 (2.16 g, 3.37 mmol) and DMAP (61.1 mg, 0.51 mmol). The mixture was stirred for 1 h 30 min, then it was diluted with CH₂Cl₂, and washed with saturated aqueous NaHCO₃ and H₂O. The organic phase was dried (MgSO₄), filtered, and concentrated to dryness. The residue was purified by column chromatography (toluene/EtOAc, 9:1) to give 6 (2.29 g, 92%). TLC (toluene/EtOAc, 6:1): $R_{\rm f} = 0.31$. $[a]_{\rm D}^{20} = +14$ (c = 1.0, CHCl₃). ¹H NMR (300 MHz, CDCl₃): δ = 7.60–7.55 (m, 2 H, Ar), 7.42–7.38 (m, 3 H, Ar), 6.90 (m, 2 H, Ar), 6.74 (m, 2 H, Ar), 5.82 (d, $J_{1,2}$ = 8.5 Hz, 1 H, 1-H), 5.80 (dd, $J_{2,3} = 11.4$, $J_{3,4} = 3.6$ Hz, 1 H, 3-H), 5.58 (s, 1 H, Ph-CH), 5.00 (dd, 1 H, 2-H), 4.45 (br. d, 1 H, 4-H), 4.37 (dd, $J_{5,6a}$ = 1.4, $J_{6a,6b}$ = 12.5 Hz, 1 H, 6a-H), 4.12 (dd, $J_{5,6b}$ = 1.4 Hz, 1 H, 6b-H), 3.73 [s, 3 H, Me(OMP)], 3.72 (m, 1 H, 5-H), 2.76-2.39 [m, 4 H, CH₂(Lev)], 1.93 [s, 3 H, CH₃(Lev)] ppm. ¹³C NMR (75 MHz, CDCl₃): δ = 206.4 [CO(Lev)], 172.0 [CO(Lev)], 164.0, 163.0 (2 CO), 155.8, 150.5, 140.3, 140.2, 137.6, 130.1, 129.9 (Ar-C), 129.3, 128.4 (Ar-CH), 127.7, 127.4 (Ar-C), 126.5, 119.3, 114.5 (Ar-CH), 101.1 (Ph-CH), 97.6 (C-1), 73.0 (C-4), 69.1 (C-6), 68.7 (C-3), 66.9 (C-5), 55.7 [Me(OMP)], 51.7 (C-2), 37.9 [CH₂(Lev)], 29.6 [CH₃(Lev)], 28.2 [CH₂(Lev)] ppm. HRMS: calcd. for $C_{33}H_{27}Cl_4NO_{10}Na [M + Na]^+$ 760.0287; found 760.0278.

4,6-O-Benzylidene-2-deoxy-3-O-levulinoyl-2-tetrachlorophthalimido- α,β -D-galactopyranose (7): CAN (6.65 g, 11.9 mmol) was added at $0 \,^{\circ}\text{C}$ to a solution of 6 (2.2 g, 3.0 mmol) in toluene/MeCN/H₂O (1:6:1; 104 mL). The mixture was stirred for 1 h at 0 °C, then it was diluted with EtOAc, and washed with H2O, saturated aqueous NaHCO₃, and H₂O. The organic phase was dried (MgSO₄), filtered, and concentrated to dryness. The residue was purified by column chromatography (toluene/EtOAc, 4:1) to give 7 (1.60 g, 84%) as a mixture of α/β anomers (2:10). TLC (toluene/EtOAc, 4:1): $R_f = 0.23$ (for a mixture of α/β anomers). ¹H NMR (300 MHz, CDCl₃, data for β anomer): δ = 7.55–7.48 (m, 2 H, Ar), 7.39–7.33 (m, 3 H, Ar), 5.77 (dd, $J_{2,3} = 11.3$, $J_{3,4} = 3.5$ Hz, 1 H, 3-H), 5.54 (s, 1 H, Ph-CH), 5.47 (d, $J_{1,2}$ = 8.3 Hz, 1 H, 1-H), 4.67 (dd, 1 H, 2-H), 4.40 (br. d, 1 H, 4-H), 4.34 (dd, $J_{5,6a} = 1.4$, $J_{6a,6b} = 12.6$ Hz, 1 H, 6a-H), 4.08 (dd, $J_{5,6b}$ = 1.4 Hz, 1 H, 6b-H), 3.84 (br. s, 1 H, OH), 3.67 (m, 1 H, 5-H), 2.69-2.35 [m, 4 H, CH₂(Lev)], 1.91 [s, 3 H, CH₃(Lev)] ppm. 13 C NMR (75 MHz, CDCl₃, data for β anomer): $\delta = 206.5$ [CO(Lev)], 171.9 [CO(Lev)], 163.8, 163.5 (2 CO), 140.1, 137.5, 129.9, 129.8 (Ar-C), 129.3, 128.3 (Ar-CH), 127.6, 127.5 (Ar-C), 126.3 (Ar-CH), 100.9 (Ph-CH), 92.8 (C-1), 72.9 (C-4), 69.2 (C-6), 68.5 (C-3), 66.9 (C-5), 53.5 (C-2), 37.9 [CH₂(Lev)], 29.6 [CH₃(Lev)], 28.2 [CH₂(Lev)] ppm. ¹H NMR (300 MHz, CDCl₃, data for α anomer): δ = 7.55–7.48 (m, 2 H, Ar), 7.39–7.33 (m, 3 H, Ar), 6.33 (dd, $J_{2,3} = 12.1$, $J_{3,4} = 3.4$ Hz, 1 H, 3-H), 5.57 (s, 1 H, Ph-CH), 5.50 (m, 1 H, 1-H), 5.04 (dd, $J_{1,2} = 3.1$ Hz, 1 H, 2-H), 4.57 (br. d, 1 H, 4-H), 4.26 (br. d, $J_{6a,6b} = 12.2$ Hz, 1 H, 6a-H), 4.14-4.07 (m, 2 H, 5-H, 6b-H), 4.00 (br. s, 1 H, OH), 2.69-2.35 [m, 4 H, CH₂(Lev)], 1.97 [s, 3 H, CH₃(Lev)] ppm. ¹³C NMR (75 MHz, CDCl₃, significant data for α anomer): δ = 93.0 (C-1), 73.3 (C-4), 69.5 (C-6), 65.5 (C-3), 62.6 (C-5), 51.3 (C-2) ppm.

HRMS: calcd. for $C_{26}H_{21}Cl_4NO_9Na \ [M + Na]^+ \ 653.9868;$ found 653.9876.

O-(4,6-*O*-Benzylidene-2-deoxy-3-*O*-levulinoyl-2-tetrachlorophthalimido-β-D-galactopyranosyl) Trichloroacetimidate (2): Trichloroacetonitrile (5.3 mL, 54 mmol) and catalytic DBU (0.11 M solution in dry CH₂Cl₂; 96 µL) were added to a solution of 7 (680 mg, 1.07 mmol) in dry CH₂Cl₂ (15 mL). The mixture was stirred for 7 h at room temperature, then it was concentrated to dryness. The residue was purified by flash chromatography (toluene/EtOAc, 5:1 + 1% Et₃N) to give **2** (763 mg, 91%). TLC (toluene/EtOAc, 3:1): $R_{\rm f}$ = 0.40. ¹H NMR (300 MHz, CDCl₃): δ = 8.64 (s, 1 H, NH), 7.57 (m, 2 H, Ar), 7.41 (m, 3 H, Ar), 6.54 (d, $J_{1,2}$ = 8.9 Hz, 1 H, 1-H), 5.90 (dd, $J_{2,3}$ = 11.4, $J_{3,4}$ = 3.6 Hz, 1 H, 3-H), 5.59 (s, 1 H, Ph-CH), 5.05 (dd, 1 H, 2-H), 4.49 (d, 1 H, 4-H), 4.43 (d, $J_{6a,6b}$ = 12.4 Hz, 1 H, 6a-H), 4.14 (d, 1 H, 6b-H), 3.87 (br. s, 1 H, 5-H), 2.71–2.41 [m, 4 H, CH₂(Lev)], 1.93 [s, 3 H, CH₃(Lev)] ppm. MS (ESI): calcd. for C₂₈H₂₁Cl₇N₂O₉Na [M + Na]⁺ 796.9; found 797.0.

4-Methoxyphenyl 3-O-(Methyl 2,3-Di-O-benzoyl-4-O-levulinoyl-β-D-glucopyranosyluronate)-4,6-O-benzylidene-2-deoxy-2-tetrachlorophthalimido-β-D-galactopyranoside (9): BF₃·Et₂O (0.26 M solution in dry toluene; 326 µL) was added under an argon atmosphere at room temperature to a mixture of 1 (154 mg, 0.24 mmol) and 8 (475 mg, 0.72 mmol) containing freshly activated 4 Å molecular sieves in dry toluene (2.5 mL). The mixture was stirred for 45 min at room temperature, then it was neutralized with Et₃N, and concentrated to dryness. The residue was purified by column chromatography (toluene/acetone, 8:1) to give 9 (148 mg, 54%), and unreacted acceptor (41 mg, 27%). TLC (toluene/acetone, 3:1): $R_f = 0.48$. $[a]_{D}^{20} = +18 \ (c = 1.0, \text{ CHCl}_3).$ ¹H NMR (300 MHz, CDCl₃): $\delta =$ 7.76-7.09 (m, 15 H, Ar), 6.79 (m, 2 H, Ar), 6.68 (m, 2 H, Ar), 5.64 (t, $J_{2,3} = J_{3,4} = 9.5$ Hz, 1 H, 3B-H), 5.59 (s, 1 H, PhCH), 5.49 (d, $J_{1,2} = 8.3$ Hz, 1 H, 1A-H), 5.41 (t, $J_{4,5} = 9.6$ Hz, 1 H, 4B-H), 5.34 (dd, $J_{1,2}$ = 7.6 Hz, 1 H, 2B-H), 5.07 (d, 1 H, 1B-H), 4.99 (dd, $J_{2,3}$ = 11.3 Hz, 1 H, 2A-H), 4.82 (dd, $J_{3,4}$ = 3.2 Hz, 1 H, 3A-H), 4.63 (br. d, 1 H, 4A-H), 4.36 (br. d, $J_{6a,6b}$ = 12.2 Hz, 1 H, 6aA-H), 4.24 (d, 1 H, 5B-H), 4.13 (br. d, 1 H, 6bA-H), 3.72, 3.69 [2 s, 6 H, COOMe, Me(OMP)], 2.66-2.30 [m, 4 H, CH₂(Lev)], 2.03 [m, 3 H, CH₃(Lev)] ppm. ¹³C NMR (75 MHz, CDCl₃): δ = 171.3, 167.0, 165.6, 164.4, 164.1, 162.0 [CO(Lev, N-TCP, COOMe, Bz], 155.6, 150.5, 140.3, 140.0, 137.7 (Ar-C), 133.5, 133.1, 129.9-125.4, 119.0, 114.4 (Ar-CH, Ar-C), 101.7 (C-1B), 100.9 (PhCH), 97.7 (C-1A), 76.2 (C-3A), 75.1 (C-4A), 72.3 (C-5B), 72.2 (C-3B), 71.9 (C-2B), 69.4 (C-4B), 69.0 (C-6A), 66.9 (C-5A), 55.5, 52.9 [COOMe, Me-(OMP)], 52.0 (C-2A), 37.4 [CH₂(Lev)], 29.5 [CH₃(Lev)], 27.6 $[CH_2(Lev)]$ ppm. HRMS: calcd. for $C_{54}H_{45}Cl_4NO_{18}Na [M + Na]^+$ 1158.1288; found 1158.1327.

Benzyl [4-Methoxyphenyl 2-O-Benzoyl-3-O-benzyl-4-O-(4,6-Obenzylidene-2-deoxy-3-O-levulinoyl-2-tetrachlorophthalimido-B-D-galactopyranosyl)-β-D-glucopyranoside]uronate (11): Donor 2 (655 mg, 0.842 mmol) and acceptor 10 (274 mg, 0.468 mmol) were dissolved in dry CH₂Cl₂ (5 mL) in the presence of freshly activated 4 Å molecular sieves. The mixture was stirred for 10 min at room temperature, then TMSOTf (0.18 M solution in dry CH_2Cl_2 ; 229 µL) was added under an argon atmosphere. The mixture was stirred for 9 min, then it was neutralized with Et₃N and concentrated to dryness. The residue was purified by column chromatography (toluene/ EtOAc, 9:1) to give 11 (325 mg, 58%), and unreacted 10 (45 mg, 16%). TLC (toluene/EtOAc, 4:1): $R_{\rm f} = 0.43$. $[a]_{\rm D}^{20} = -9$ (c = 1.0, CH₂Cl₂). ¹H NMR (300 MHz, CDCl₃): δ = 7.94 (m, 2 H, Ar), 7.56 (m, 1 H, Ar), 7.48–7.15 (m, 17 H, Ar), 6.77 (m, 2 H, Ar), 6.64 (m, 2 H, Ar), 5.75 (dd, $J_{2,3}$ = 11.4, $J_{3,4}$ = 3.6 Hz, 1 H, 3B-H), 5.48 (s, 1 H, PhCH), 5.46 (dd, $J_{1,2}$ = 7.4, $J_{2,3}$ = 8.6 Hz, 1 H, 2A-H), 5.38

 $(d, J_{1,2} = 8.4 \text{ Hz}, 1 \text{ H}, 1\text{B-H}), 5.20 [d, 1 \text{ H}, \text{CH}_2(\text{Bn})], 5.04 [d, 1 \text{ H}, \text{CH}_2(\text{Bn})]$ CH₂(Bn)], 4.99 [d, 1 H, CH₂(Bn)], 4.91 (d, 1 H, 1A-H), 4.81 [d, 1 H, CH₂(Bn)], 4.70 (dd, 1 H, 2B-H), 4.36 (t, $J_{3,4} = J_{4,5} = 9.0$ Hz, 1 H, 4A-H), 4.31 (d, 1 H, 4B-H), 4.17 (d, $J_{6a,6b} = 12.4$ Hz, 1 H, 6aB-H), 3.95-3.89 (m, 2 H, 3A-H, 5A-H), 3.86 (d, 1 H, 6bB-H), 3.69 [s, 3 H, Me(OMP)], 3.19 (br. s, 1 H, 5B-H), 2.69-2.32 [m, 4 H, CH₂(Lev)], 1.92 [s, 3 H, CH₃(Lev)] ppm. ¹³C NMR (75 MHz, $CDCl_3$): $\delta = 206.3 [CO(Lev)], 171.9, 167.3, 165.1, 164.2, 163.4$ [CO(Lev, N-TCP, COOBn, Bz)], 155.8, 151.0, 140.0, 139.8, 138.3, 137.7, 135.1 (Ar-C), 133.3 (Ar-CH), 130.0, 129.8, 129.7, 129.5, 129.1, 128.7, 128.5, 128.2, 128.1, 127.9, 127.6, 127.3, 126.4 (Ar-C, Ar-CH), 119.1, 114.5 (Ar-CH), 101.1, 101.0 (PhCH, C-1A), 97.9 (C-1B), 80.2 (C-3A or C-5A), 77.8 (C-4A), 74.7 (C-3A or C-5A), 74.5 [CH₂(Bn)], 73.0 (C-2A), 72.7 (C-4B), 68.9 (C-6B), 68.3 (C-3B), 67.5 [CH₂(Bn)], 66.4 (C-5B), 55.7 [Me(OMP)], 52.0 (C-2B), 37.9 [CH2(Lev)], 29.6 [CH3(Lev)], 28.2 [CH2(Lev)] ppm. HRMS: calcd. for C₆₀H₅₁Cl₄NO₁₇Na [M + Na]⁺ 1220.1809; found 1220.1812.

Benzyl [2-O-Benzoyl-3-O-benzyl-4-O-(4,6-O-benzylidene-2-deoxy-3-O-levulinoyl-2-tetrachlorophthalimido-β-D-galactopyranosyl)-α,β-Dglucopyranose [uronate (12): A solution of CAN (79 mg, 0.14 mmol) in H₂O (0.3 mL) was added to a solution of 11 (42 mg, 0.035 mmol) in CH₂Cl₂/MeCN (1:2; 2.7 mL). The mixture was vigorously stirred for 1 h at room temperature, then it was diluted with EtOAc, and washed with H₂O, saturated aqueous NaHCO₃, and H₂O. The organic phase was dried (MgSO₄), filtered, and concentrated to dryness. The residue was purified by column chromatography (CH₂Cl₂/MeOH, 80:1) to give 12 (40 mg, 84%) as a mixture of α / β anomers (2:1). TLC (CH₂Cl₂/MeOH, 80:1): $R_f = 0.23, 0.27.$ ¹H NMR [300 MHz, CDCl₃, for major anomer (α)]: δ = 7.94 (m, 2 H, Ar), 7.58–7.07 (m, 18 H, Ar), 5.69 (dd, $J_{2,3} = 11.3$, $J_{3,4} = 3.6$ Hz, 1 H, 3B-H), 5.49–5.45 (m, 3 H, PhCH, 1B-H, 1A-H), 5.19 [d, 1 H, CH₂(Bn)], 5.11–5.00 [m, 3 H, CH₂(Bn), 2A-H], 4.85 [d, 1 H, CH₂(Bn)], 4.69 (m, 1 H, 2B-H), 4.39 (d, J_{4.5} = 9.0 Hz, 1 H, 5A-H), 4.29–4.08 (m, 4 H, 4B-H, 3A-H, 4A-H, 6aB-H), 3.80 (d, $J_{6a,6b}$ = 12.0 Hz, 1 H, 6bB-H), 3.10 (s, 1 H, 5B-H), 2.68-2.37 [m, 4 H, CH₂(Lev)], 1.91 [s, 3 H, CH₃(Lev)] ppm. ¹³C NMR [75 MHz, CDCl₃, for major anomer (α)]: δ = 206.3 [CO(Lev)], 171.9, 168.5, 165.9, 164.2, 163.5 [CO(Lev, N-TCP, COOBn, Bz)], 140.0, 139.8, 138.3, 137.7, 135.2 (Ar-C), 133.4 (Ar-CH), 130.0-126.5 (Ar-C, Ar-CH), 101.0 (PhCH), 98.0 (C-1B), 90.7 (C-1A), 77.8, 77.4 (C-3A, C-4A), 74.8 [CH₂(Bn)], 73.2 (C-2A), 72.8 (C-4B), 70.5 (C-5A), 68.9 (C-6B), 68.5 (C-3B), 67.5 [CH₂(Bn)], 66.4 (C-5B), 52.1 (C-2B), 37.9 [CH₂(Lev)], 29.6 [CH₃(Lev)], 28.2 [CH₂(Lev)] ppm. ¹H NMR [300 MHz, CDCl₃, for minor anomer (β)]: δ = 7.94 (m, 2 H, Ar), 7.58–7.07 (m, 18 H, Ar), 5.71 (dd, $J_{2,3} = 11.4$, $J_{3,4} = 3.6$ Hz, 1 H, 3B-H), 5.49–5.45 (m, 1 H, PhCH), 5.39 (d, $J_{1,2}$ = 8.4 Hz, 1 H, 1B-H), 5.21 [d, 1 H, CH₂(Bn)], 5.11-5.00 [m, 3 H, CH₂(Bn), 2A-H], 4.83 [d, 1 H, CH₂(Bn)], 4.72–4.66 (m, 2 H, 1A-H, 2B-H), 4.29–4.08 (m, 3 H, 4B-H, 4A-H, 6aB-H), 3.97-3.78 (m, 3 H, 3A-H, 5A-H, 6bB-H), 3.12 (s, 1 H, 5B-H), 2.68-2.37 [m, 4 H, CH₂(Lev)], 1.91 [s, 3 H, CH₃(Lev)] ppm. ¹³C NMR [75 MHz, CDCl₃, selected data for minor anomer (β)]: δ = 101.0 (PhCH), 97.8 (C-1B), 96.3 (C-1A), 79.9 (C-3A), 77.8 (C-4A), 75.4 (C-2A), 74.8 [CH₂(Bn)], 74.7 (C-5A), 73.2 (C-4B), 68.9 (C-6B), 68.3 (C-3B), 67.7 [CH₂(Bn)], 66.4 (C-5B), 52.0 (C-2B), 37.9 [CH₂(Lev)], 29.6 [CH₃(Lev)], 28.2 $[CH_2(Lev)]$ ppm. HRMS: calcd. for $C_{53}H_{45}Cl_4NO_{16}Na [M + Na]^+$ 1114.1390; found 1114.1425.

O-[Benzyl 2-*O*-Benzyl-3-*O*-benzyl-4-*O*-(4,6-*O*-benzylidene-2-deoxy-3-*O*-levulinoyl-2-tetrachlorophthalimido-β-D-galactopyranosyl)- α ,β-D-glucopyranosyluronate] Trichloroacetimidate (13): Trichloroacetonitrile (1.57 mL, 15.8 mmol) and K₂CO₃ (47 mg, 0.35 mmol) were added to 12 (345 mg, 315 µmol) in dry CH₂Cl₂ (8 mL) under an argon atmosphere. The mixture was stirred at room temperature for 15 h, then it was filtered and concentrated in vacuo to give 13 (370 mg, 95%) as an α/β mixture (75:100). TLC (toluene/acetone, 8:1): $R_{\rm f} = 0.40$. ¹H NMR [300 MHz, CDCl₃, for major anomer (β)]: δ = 8.53 (s, 1 H, NH), 7.91 (m, 2 H, Ar), 7.58–7.09 (m, 18 H, Ar), 6.00 (d, $J_{1,2}$ = 6.1 Hz, 1 H, 1A-H), 5.69 (dd, $J_{2,3}$ = 11.3, $J_{3,4}$ = 3.6 Hz, 1 H, 3B-H), 5.52–5.43 (m, 3 H, PhCH, 1B-H, 2A-H), 5.19–4.87 [m, 4 H, CH₂(Bn)], 4.70 (m, 1 H, 2B-H), 4.48 (dd, J_{3.4} = 8.0, $J_{4.5} = 9.8$ Hz, 1 H, 4A-H), 4.34–4.20 (m, 1 H, 4B-H), 4.16– 4.08 (m, 2 H, 5A-H, 6aB-H), 4.00 (dd, $J_{2,3} = 6.5$ Hz, 1 H, 3A-H), 3.84 (d, J_{6a,6b} = 11.5 Hz, 1 H, 6bB-H), 3.13 (s, 1 H, 5B-H), 2.69-2.32 [m, 4 H, CH₂(Lev)], 1.92 [s, 3 H, CH₃(Lev)] ppm. ¹³C NMR [75 MHz, CDCl₃, for major anomer (β)]: δ = 206.2 [CO(Lev)], 171.9, 167.4, 164.9, 164.2, 163.4 [CO(Lev, N-TCP, COOBn, Bz)], 160.8 (C=NH), 140.0, 139.8, 138.2, 137.7, 135.0 (Ar-C), 133.5 (Ar-CH), 129.9-126.4 (Ar-C, Ar-CH), 100.9 (PhCH), 98.2 (C-1B), 95.5 (C-1A), 90.5 (CCl₃), 80.5 (C-3A), 77.4 (C-4A), 74.4 (C-5A), 73.7 [CH₂(Bn)], 72.7 (C-4B), 71.4 (C-2A), 68.9 (C-6B), 68.5 (C-3B), 67.5 [CH₂(Bn)], 66.5 (C-5B), 52.0 (C-2B), 37.9 [CH₂(Lev)], 29.6 [CH₃(Lev)], 28.2 [CH₂(Lev)] ppm. ¹H NMR [300 MHz, CDCl₃, for minor anomer (α)]: δ = 8.50 (s, 1 H, NH), 7.91 (m, 2 H, Ar), 7.58– 7.09 (m, 18 H, Ar), 6.56 (d, $J_{1,2}$ = 3.6 Hz, 1 H, 1A-H), 5.70 (dd, J_{2,3} = 11.4, J_{3,4} = 3.8 Hz, 1 H, 3B-H), 5.52–5.43 (m, 2 H, PhCH, 1B-H), 5.34 (dd, $J_{2,3}$ = 9.3 Hz, 1 H, 2A-H), 5.21–4.82 [m, 4 H, CH₂(Bn)], 4.70 (m, 1 H, 2B-H), 4.34–4.08 (m, 5 H, 3A-H, 4A-H, 5A-H, 4B-H, 6aB-H), 3.80 (d, $J_{6a,6b}$ = 11.6 Hz, 1 H, 6bB-H), 3.11 (s, 1 H, 5B-H), 2.69-2.32 [m, 4 H, CH₂(Lev)], 1.92 [s, 3 H, CH₃(Lev)] ppm. ¹³C NMR [75 MHz, CDCl₃, selected data for minor anomer (a)]: δ = 160.4 (C=NH), 129.9–126.4 (Ar-C, Ar-CH), 100.9 (PhCH), 98.4 (C-1B), 93.4 (C-1A), 79.9, 77.9, 75.0 (C-3A, C-4A, C-5A), 73.5 [CH₂(Bn)], 72.7 (C-4B), 71.9 (C-2A), 68.9 (C-6B), 68.5 (C-3B), 67.6 [CH₂(Bn)], 66.4 (C-5B), 52.1 (C-2B) ppm. HRMS: calcd. for $C_{55}H_{45}Cl_7N_2O_{16}Na [M + Na]^+ 1257.0486$; found 1257.0470.

Benzyl [N-Benzyloxycarbonyl-5-aminopentyl 2-O-Benzoyl-3-Obenzyl-4-O-(4,6-O-benzylidene-2-deoxy-3-O-levulinoyl-2-tetrachlorophthalimido-B-D-galactopyranosyl)-B-D-glucopyranoside| Uronate (14): Donor 13 (184 mg, 0.15 mmol) and benzyl N-(5-hydroxypentyl) carbamate (107 mg, 0.45 mmol) were dissolved in dry CH₂Cl₂ (1 mL) in the presence of freshly activated 4 Å molecular sieves. The mixture was stirred for 45 min at room temperature, then TMSOTf (0.092 M solution in dry CH₂Cl₂; 162 µL) was added under an argon atmosphere. The mixture was stirred for 15 min, then it was neutralized with Et₃N and concentrated to dryness. The residue was purified by column chromatography (toluene/acetone, 10:1) to give 14 (130 mg, 67%). TLC (toluene/EtOAc, 3:1): $R_{\rm f}$ = 0.44. $[a]_{D}^{20} = -5$ (c = 1.0, CHCl₃). ¹H NMR (300 MHz, CDCl₃): δ = 7.92 (m, 2 H, Ar), 7.53 (m, 1 H, Ar), 7.48-7.02 (m, 22 H, Ar), 5.71 (dd, *J*_{2,3} = 11.5, *J*_{3,4} = 3.5 Hz, 1 H, 3B-H), 5.46 (s, 1 H, PhCH), 5.36 (d, J_{1,2} = 8.4 Hz, 1 H, 1B-H), 5.21 [m, 2 H, 2A-H, CH₂(Bn)], 5.05 [m, 3 H, $CH_2(Z)$, $CH_2(Bn)$], 4.94 [d, 1 H, $CH_2(Bn)$], 4.79 [d, 1 H, CH₂(Bn)], 4.68 (dd, 1 H, 2B-H), 4.55 (br. t, 1 H, NH), 4.44 (d, $J_{1,2}$ = 7.5 Hz, 1 H, 1A-H), 4.26 (br. d, 1 H, 4B-H), 4.24 (t, $J_{3,4}$ = $J_{4,5}$ = 9.5 Hz, 1 H, 4A-H), 4.13 (d, $J_{6a,6b}$ = 12.1 Hz, 1 H, 6aB-H), 3.88-3.80 (m, 3 H, 3A-H, 5A-H, 6bB-H), 3.70, 3.30 (2 m, 2 H, CH2-O), 3.10 (br. s, 1 H, 5B-H), 2.89 (m, 2 H, CH2-N), 2.69-2.32 [m, 4 H, CH₂(Lev)], 1.92 [s, 3 H, CH₃(Lev)], 1.49-1.06 [m, 6 H, $(CH_2)_3$] ppm. ¹³C NMR (75 MHz, CDCl₃): δ = 206.3 [CO(Lev)], 171.9, 167.7, 165.1, 164.2, 163.5 [CO(Lev, N-TCP, COOBn, Bz)], 156.4 [CO(Z)], 140.0, 139.8, 138.4, 137.7, 136.8 (Ar-C), 133.3 (Ar-CH), 129.9, 129.8, 129.4, 129.1, 128.7, 128.6, 128.5, 128.4, 128.2, 127.9, 127.4, 127.3, 126.4 (Ar-C, Ar-CH), 101.4 (C-1A), 100.9 (PhCH), 97.9 (C-1B), 80.4 (C-3A), 78.0 (C-4A), 74.7 (C-5A), 74.3 [CH₂(Bn)], 73.2 (C-2A), 72.7 (C-4B), 69.8 (CH₂-O), 68.9 (C-6B),

68.3 (C-3B), 67.5 [CH₂(Bn)], 66.6 [CH₂(Z)], 66.3 (C-5B), 52.1 (C-2B), 40.9 (CH₂-N), 37.9 [CH₂(Lev)], 29.6 (CH₂), 29.4 [CH₃(Lev)], 28.9 (CH₂), 28.1 [CH₂(Lev)], 23.1 (CH₂) ppm. HRMS: calcd. for $C_{66}H_{62}Cl_4N_2O_{18}Na$ [M + Na]⁺ 1333.2649; found 1333.2604.

Benzyl [N-Benzyloxycarbonyl-5-aminopentyl 2-O-Benzoyl-3-Obenzyl-4-O-(2-deoxy-3-O-levulinoyl-2-tetrachlorophthalimido-\beta-D-galactopyranosyl)- β -D-glucopyranoside] Uronate (17): TFA (100 μ L) was added to a solution of 14 (25 mg, 19 µmol) in CH₂Cl₂ (1 mL) at 0 °C. The solution was stirred for 2 h at 0 °C, then it was diluted with CH₂Cl₂, and washed with saturated NaHCO₃ aqueous solution and brine. The organic layer was dried (MgSO₄), filtered, and concentrated in vacuo. The residue was purified by column chromatography (toluene/acetone, 7:2) to give 17 (23 mg, 99%). TLC (toluene/acetone, 7:2): $R_{\rm f} = 0.14$. $[a]_{\rm D}^{20} = -12$ (c = 1.0, CHCl₃). ¹H NMR (300 MHz, CDCl₃): δ = 7.97 (m, 2 H, Ar), 7.55 (m, 1 H, Ar), 7.43–7.13 (m, 17 H, Ar), 5.59 (dd, $J_{2,3} = 11.3$, $J_{3,4} = 3.1$ Hz, 1 H, 3B-H), 5.28–5.13 [m, 4 H, 1B-H, 2A-H, CH₂(Bn)], 5.06 [m, 2 H, CH₂(Z)], 4.85 [d, 1 H, CH₂(Bn)], 4.66–4.55 [m, 3 H, CH₂(Bn), 2B-H, NH], 4.48 (d, $J_{1,2}$ = 7.4 Hz, 1 H, 1A-H), 4.25 (t, $J_{3,4}$ = $J_{4,5}$ = 9.3 Hz, 1 H, 4A-H), 4.13 (br. d, 1 H, 4B-H), 3.87 (d, 1 H, 5A-H), 3.82 (t, J_{2,3} = 8.9 Hz, 1 H, 3A-H), 3.73 (m, 1 H, CH₂-O), 3.62 (m, 2 H, 6aB-H, 6bB-H), 3.34 (m, 2 H, CH₂-O, 5B-H), 2.91 (m, 2 H, CH₂-N), 2.66, 2.40 [2 m, 4 H, CH₂(Lev)], 2.03 [s, 3 H, CH₃(Lev)], 1.49–1.11 [m, 6 H, (CH₂)₃] ppm. ¹³C NMR (75 MHz, $CDCl_3$): $\delta = 207.4 [CO(Lev)], 171.8, 167.6, 165.1, 164.1, 163.3$ [CO(Lev, N-TCP, COOBn, Bz)], 156.4 [CO(Z)], 140.0, 139.8, 137.9, 136.8, 135.1 (Ar-C), 133.4 (Ar-CH), 129.8, 129.7, 129.6, 128.7, 128.6, 128.5, 128.3, 128.2, 128.0, 127.6, 127.3 (Ar-C, Ar-CH), 101.4 (C-1A), 97.0 (C-1B), 79.3 (C-3A), 76.9 (C-4A), 74.9 (C-5A), 73.7 (C-5B), 73.5 [CH₂(Bn)], 72.5 (C-2A), 70.1 (C-3B), 69.7 (CH₂-O), 67.4 [CH₂(Bn)], 67.2 (C-4B), 66.5 [CH₂(Z)], 62.7 (C-6B), 51.7 (C-2B), 40.8 (CH2-N), 38.0 [CH2(Lev)], 29.5 [CH2, CH3(Lev)], 28.8 (CH₂), 28.1 [CH₂(Lev)], 22.9 (CH₂) ppm. HRMS: calcd. for C₅₉H₅₈Cl₄N₂O₁₈Na [M + Na]⁺ 1245.2336; found 1245.2332.

Benzyl [N-Benzyloxycarbonyl-5-aminopentyl 2-O-Benzoyl-3-Obenzyl-4-O-(2-deoxy-3-O-levulinoyl-4,6-di-O-sulfo-2-tetrachlorophthalimido-B-D-galactopyranosyl)-B-D-glucopyranoside] Uronate (18): Compound 17 (13 mg, 11 µmol) and sulfur trioxide-trimethylamine complex (15 mg, 0.11 mmol) were dissolved in dry DMF (1.0 mL), and the mixture was heated at 100 °C for 40 min using microwave irradiation (28 W average power). The reaction vessel was cooled, and Et₃N (150 µL), MeOH (1 mL), and CH₂Cl₂ (1 mL) were added. The solution was loaded onto a Sephadex LH-20 chromatography column, which was eluted with CH₂Cl₂/MeOH (1:1) to give 18 as its triethylammonium salt (14 mg, 83%). TLC (CH₂Cl₂/MeOH, 9:2): $R_{\rm f} = 0.40$. ¹H NMR (300 MHz, CD₃OD): δ = 7.98 (m, 2 H, Ar), 7.60 (m, 1 H, Ar), 7.50-7.05 (m, 17 H, Ar), 5.77 (dd, $J_{2,3}$ = 11.6, $J_{3,4}$ = 3.3 Hz, 1 H, 3B-H), 5.35 (d, $J_{1,2}$ = 8.3 Hz, 1 H, 1B-H), 5.29 [d, 1 H, CH₂(Bn)], 5.17 [d, 1 H, CH₂(Bn)], 5.06 (t, $J_{1,2}$ = 8.0, $J_{2,3}$ = 8.7 Hz, 1 H, 2A-H), 5.02 [m, 2 H, CH₂(Z)], 4.96 [d, 1 H, CH₂(Bn)], 4.86 (br. d, 1 H, 4B-H), 4.68 (d, 1 H, 1A-H), 4.56 [m, 2 H, CH₂(Bn), 2B-H], 4.45 (dd, $J_{5,6a} = 3.4$, $J_{6a,6b} =$ 11.9 Hz, 1 H, 6aB-H), 4.22 (m, 2 H, 6bB-H, 4A-H), 4.11 (m, 2 H, 5A-H, 5B-H), 4.00 (t, $J_{3,4}$ = 9.2 Hz, 1 H, 3A-H), 3.69 (m, 1 H, CH2-O), 3.42 (m, 1 H, CH2-O), 3.19 (q, 12 H, Et3NH+), 2.82 [m, 3 H, CH₂-N, CH₂(Lev)], 2.60 [dt, 1 H, CH₂(Lev)], 2.39 [m, 2 H, CH2(Lev)], 1.92 [s, 3 H, CH3(Lev)], 1.44-1.08 [m, 24 H, (CH2)3, Et₃NH⁺] ppm. ¹³C NMR (75 MHz, CD₃OD, Significant data from HSQC experiment): $\delta = 102.2$ (C-1A), 97.8 (C-1B), 79.8 (C-3A), 77.8 (C-4A), 74.9 (C-5A), 74.5 (C-5B), 74.2 [CH₂(Bn)], 73.7 (C-2A), 72.7 (C-4B), 70.6 (CH2-O), 68.5 (C-3B), 68.4 (C-6B), 68.1 [CH₂(Bn)], 66.9 [CH₂(Z)], 52.9 (C-2B), 47.4 (Et₃NH⁺), 41.3 (CH₂-N), 38.1 [CH₂(Lev)], 29.8 (CH₂), 29.6 (CH₂), 29.1 [CH₃(Lev)], 28.8

 $\label{eq:charge} \begin{array}{l} [CH_2(Lev)], \ 23.5 \ (CH_2), \ 8.7 \ (Et_3NH^+) \ ppm. \ MS \ (ESI): \ calcd. \ for \\ C_{59}H_{56}Cl_4N_2O_{24}S_2Na \ [M \ + \ Na]^- \ 1403.1; \ found \ 1402.7. \ HRMS: \\ calcd. \ for \ C_{59}H_{56}Cl_4N_2O_{24}S_2 \ [M]^{2-} \ 690.0715; \ found \ 690.0709. \end{array}$

N-Benzyloxycarbonyl-5-aminopentyl 4-O-(2-Acetamido-2-deoxy-4,6-di-O-sulfo-β-D-galactopyranosyl)-3-O-benzyl-β-D-glucopyranosiduronic Acid (21): H₂O₂ (30%; 0.52 mL) and an aqueous solution of LiOH (0.7 M; 0.32 mL) were added at -5 °C to a solution of 18 (21 mg, 13 µmol) in THF (1.4 mL). The mixture was stirred for 20 h at room temperature, then MeOH (1.4 mL) and NaOH (4 $\ensuremath{\mathsf{M}}$ aq.; 0.33 mL) were added. The mixture was stirred for 24 h at room temperature, then it was neutralized with Amberlite IR-120 (H⁺) resin, filtered, and concentrated. The residue was dissolved in CH₂Cl₂/MeOH/Et₃N (1.0 mL/1.0 mL/0.1 mL) and purified by Sephadex LH-20 chromatography (CH₂Cl₂/MeOH, 1:1) to give compound 19 as its triethylammonium salt (16 mg, 86%). TLC (EtOAc/ pyridine/H₂O/AcOH, 9:5:3:1): $R_f = 0.27$. ¹H NMR (300 MHz, CD₃OD): δ = 7.59–7.19 (m, 10 H, Ar), 5.06 [m, 3 H, CH₂(Z), CH₂(Bn)], 4.79 (br. d, 1 H, 4B-H), 4.72 [d, 1 H, CH₂(Bn)], 4.62 (d, $J_{1,2}$ = 8.3 Hz, 1 H, 1B-H), 4.45 (dd, $J_{5,6a}$ = 3.9, $J_{6a,6b}$ = 11.8 Hz, 1 H, 6aB-H), 4.41 (d, $J_{1,2}$ = 8.0 Hz, 1 H, 1A-H), 4.22 (m, 2 H, 2B-H, 6bB-H), 4.06 (br. t, 1 H, 4A-H), 3.96 (m, 1 H, 5B-H), 3.86 (m, 1 H, CH₂-O), 3.77 (dd, *J*_{2,3} = 10.8, *J*_{3,4} = 2.9 Hz, 1 H, 3B-H), 3.58 (m, 3 H, CH₂-O, 3A-H, 5A-H), 3.37 (t, J_{2.3} = 8.0 Hz, 1 H, 2A-H), 3.19 (q, 24 H, Et_3NH^+), 3.11 (m, 2 H, CH_2 -N), 1.66–1.38 [3 m, 6 H, (CH₂)₃], 1.29 (t, 36 H, Et₃NH⁺) ppm. ¹³C NMR (75 MHz, CD₃OD, Significant data from HSQC experiment): $\delta = 129.5$, 128.9, 128.7, 128.3 (Ar-CH), 104.0 (C-1A), 100.8 (C-1B), 83.7 (C-3A), 78.9 (C-4A), 76.8 (C-4B), 75.4 [CH₂(Bn)], 74.5 (C-5B), 74.0 (C-2A), 72.8 (C-3B), 70.5 (CH₂-O), 68.6 (C-6B), 67.0 [CH₂(Z)], 55.3 (C-2B), 47.6 (Et₃NH⁺), 41.3 (CH₂-N), 30.1, 30.0, 23.8 $[(CH_2)_3]$, 8.9 (Et₃NH⁺) ppm. MS (ESI): calcd. for $C_{40}H_{43}Cl_4N_2O_{22}S_2 [M + 3H]^- 1107.1$; found 1106.7.

Ethylene diamine (76 µL, 1.1 mmol) was added to a solution of **19** (16 mg, 11 µmol) in dry DMF (1.3 mL) under an argon atmosphere, and the reaction mixture was subjected to microwave irradiation for 90 min at 100 °C. The reaction vessel was cooled under a stream of nitrogen, and the mixture was concentrated to dryness. The residue was purified by Sephadex LH-20 chromatography (CH₂Cl₂/MeOH, 1:1) to give **20**. TLC (EtOAc/pyridine/H₂O/AcOH, 9:5:3:1): $R_{\rm f} = 0.38$. MS (ESI): calcd. for C₃₂H₄₂N₂O₁₉S₂ [M + H]²⁻ 411.1; found 410.8.

Triethylamine (0.18 M solution in dry MeOH; 207 µL) and acetic anhydride (5 µL, 0.05 mmol) were added to a cooled solution of 20 (11 µmol) in dry MeOH (2.3 mL). The mixture was stirred for 2 h at 0 °C, then additional triethylamine (0.18 M solution in dry MeOH; 207 µL) and acetic anhydride (5 µL, 0.05 mmol) were added, and the reaction mixture was stirred for 1 h at room temperature. The mixture was purified by Sephadex LH-20 chromatography (CH₂Cl₂/MeOH, 1:1). The residue was converted into the sodium salt by elution from a column of Dowex 50WX4-Na⁺ with MeOH/H₂O, 9:1 to give 21 (7.9 mg, 75% from 19). TLC (EtOAc/ pyridine/H₂O/AcOH, 9:5:3:1): $R_{\rm f} = 0.28$. ¹H NMR (500 MHz, CD₃OD): δ = 7.54–7.19 (m, 10 H, Ar), 5.04 [m, 3 H, CH₂(Z), CH₂(Bn)], 4.78 (br. s, 1 H, 4B-H), 4.68 [m, 2 H, CH₂(Bn), 1B-H], 4.38 (dd, $J_{5,6a}$ = 5.0, $J_{6a,6b}$ = 11.3 Hz, 1 H, 6aB-H), 4.28 (d, $J_{1,2}$ = 7.3 Hz, 1 H, 1A-H), 4.16 (dd, $J_{5,6b}$ = 6.3 Hz, 1 H, 6bB-H), 4.05 (t, $J_{1,2} = J_{2,3} = 9.5$ Hz, 1 H, 2B-H), 3.99 (t, $J_{3,4} = J_{4,5} = 9.1$ Hz, 1 H, 4A-H), 3.96 (m, 1 H, 5B-H), 3.86 (m, 1 H, CH2-O), 3.66 (m, 2 H, 5A-H, 3B-H), 3.52 (m, 1 H, CH₂-O), 3.44 (br. t, 1 H, 3A-H), 3.38 (br. t, 1 H, 2A-H), 3.11 (t, 2 H, CH₂-N), 2.04 (s, 3 H, NAc), 1.62, 1.51, 1.40 [3 m, 6 H, (CH₂)₃] ppm. ¹³C NMR (125.5 MHz, CD₃OD, Significant data from HSQC experiment): $\delta = 104.1$ (C-1A), 101.5

 $\begin{array}{l} ({\rm C-1B}), \ 83.8 \ ({\rm C-3A}), \ 79.8 \ ({\rm C-4A}), \ 78.0 \ ({\rm C-5A}), \ 76.8 \ ({\rm C-4B}), \ 75.6 \\ [{\rm CH}_2({\rm Bn})], \ 74.0 \ ({\rm C-5B}, \ {\rm C-2A}), \ 73.5 \ ({\rm C-3B}), \ 70.4 \ ({\rm CH}_2-{\rm O}), \ 67.8 \ ({\rm C-6B}), \ 67.0 \ [{\rm CH}_2({\rm Z})], \ 54.4 \ ({\rm C-2B}), \ 41.5 \ ({\rm CH}_2-{\rm N}), \ 30.4, \ 30.0, \ 23.8 \\ [({\rm CH}_2)_3], \ 23.0 \ ({\rm NAc}) \ {\rm pm}. \ {\rm MS} \ ({\rm ESI}): \ {\rm calcd.} \ {\rm for} \ {\rm C}_{34}{\rm H}_{44}{\rm N}_2{\rm O}_{20}{\rm S}_2 \ [{\rm M} \\ + \ {\rm H}]^{2-} \ 432.1; \ {\rm found} \ 431.8. \ {\rm HRMS}: \ {\rm calcd.} \ {\rm for} \ {\rm C}_{34}{\rm H}_{44}{\rm N}_2{\rm O}_{20}{\rm S}_2 \ [{\rm M} \\ + \ {\rm H}]^{2-} \ 432.0969; \ {\rm found} \ 432.0956. \end{array}$

5-Aminopentyl 4-O-(2-Acetamido-2-deoxy-4,6-di-O-sulfo-β-D-galactopyranosyl)-B-D-glucopyranosiduronic Acid (15): A solution of 21 (7.9 mg, 8.5 μ mol, as sodium salt) in H₂O/MeOH (2.7 mL/ 0.3 mL) was hydrogenated in the presence of Pd(OH)₂. After 24 h, the suspension was filtered through Celite, and the filtrate was concentrated. The residue was purified by Sephadex G-10 chromatography (H₂O/MeOH, 9:1) to give 15 as its sodium salt after lyophilization (6.0 mg, quantitative; 53% over six steps from 14, 90% average yield per step). ¹H NMR (500 MHz, D_2O): δ = 4.72 (br. d, $J_{3,4} = 2.1$ Hz, 1 H, 4B-H), 4.58 (d, $J_{1,2} = 7.6$ Hz, 1 H, 1B-H), 4.47 (d, $J_{1,2}$ = 8.1 Hz, 1 H, 1A-H), 4.32 (dd, $J_{5,6a}$ = 3.3, $J_{6a,6b}$ = 11.3 Hz, 1 H, 6aB-H), 4.25 (dd, $J_{5.6b}$ = 8.7 Hz, 1 H, 6bB-H), 4.12 (dd, 1 H, 5B-H), 3.94–3.87 (m, 3 H, 2B-H, 3B-H, CH₂-O), 3.77 (m, 3 H, 4A-H, 5A-H, CH₂-O), 3.62 (t, $J_{2,3} = J_{3,4} = 9.2$ Hz, 1 H, 3A-H), 3.35 (t, 1 H, 2A-H), 3.00 (t, 2 H, CH₂-N), 2.05 (s, 3 H, NAc), 1.67, 1.46 [2 m, 6 H, (CH₂)₃] ppm. ¹³C NMR (125.5 MHz, D₂O, Significant data from HSQC experiment): $\delta = 102.8$ (C-1A), 102.2 (C-1B), 82.3 (C-4A), 77.2 (C-5A), 76.0 (C-4B), 74.9 (C-3A), 73.1 (C-2A), 72.9 (C-5B), 70.6 (CH₂-O), 70.5 (C-3B), 68.3 (C-6B), 53.0 (C-2B), 39.9 (CH₂-N), 28.6, 26.8 (CH₂, CH₂), 23.1 (NAc), 22.5 (CH₂) ppm. MS (ESI): calcd. for $C_{19}H_{33}N_2O_{18}S_2$ [M + 2H]⁻ 641.1; found 640.8. HRMS: calcd. for $C_{19}H_{33}N_2O_{18}S_2$ [M + 2H]⁻ 641.1188; found 641.1170.

Benzyl [N-Benzyloxycarbonyl-5-aminopentyl 2-O-Benzoyl-3-Obenzyl-4-O-(2-deoxy-3-O-levulinoyl-6-O-sulfo-2-tetrachlorophthalimido-β-D-galactopyranosyl)-β-D-glucopyranoside] Uronate (22): Compound 17 (27 mg, 22 µmol) and sulfur trioxide-trimethylamine complex (6.2 mg, 44 µmol) were dissolved in dry DMF (3.0 mL), and the mixture was heated at 50 °C for 30 min using microwave irradiation (15 W average power). The reaction vessel was cooled, and Et₃N (150 µL), MeOH (1 mL), and CH₂Cl₂ (1 mL) were added. The solution was purified by Sephadex LH-20 chromatography (CH₂Cl₂/MeOH, 1:1) and silica gel column chromatography (CH₂Cl₂/MeOH, 12:1 + 1% Et₃N) to give 22 as its triethylammonium salt (26 mg, 84%). TLC (CH₂Cl₂/MeOH, 10:1): $R_{\rm f} = 0.41$. ¹H NMR (300 MHz, CD₃OD): $\delta = 7.97$ (m, 2 H, Ar), 7.60 (m, 1 H, Ar), 7.47 (m, 2 H, Ar), 7.39–7.26 (m, 10 H, Ar), 7.13–7.03 (m, 5 H, Ar), 5.66 (dd, $J_{2,3} = 11.4$, $J_{3,4} = 3.2$ Hz, 1 H, 3B-H), 5.42 (d, J_{1,2} = 8.5 Hz, 1 H, 1B-H), 5.30 [d, 1 H, CH₂(Bn)], 5.14 [d, 1 H, CH₂(Bn)], 5.08 (t, $J_{1,2}$ = 7.8, $J_{2,3}$ = 8.6 Hz, 1 H, 2A-H), 5.02 [m, 2 H, CH₂(Z)], 4.89 [d, 1 H, CH₂(Bn)], 4.68 (d, 1 H, 1A-H), 4.59 (dd, 1 H, 2B-H), 4.55 [d, 1 H, CH₂(Bn)], 4.23-4.08 (m, 5 H, 4A-H, 4B-H, 5A-H, 6aB-H, 6bB-H), 3.99 (t, 1 H, 3A-H), 3.81 (br. t, 1 H, 5B-H), 3.69 (m, 1 H, CH₂-O), 3.40 (m, 1 H, CH₂-O), 3.18 (q, 6 H, Et₃NH⁺), 2.82 (m, 2 H, CH₂-N), 2.65 [m, 2 H, CH2(Lev)], 2.38 [m, 2 H, CH2(Lev)], 1.89 [s, 3 H, CH3(Lev)], 1.44-1.10 [m, 15 H, (CH₂)₃, Et₃NH⁺] ppm. ¹³C NMR (75 MHz, CD₃OD, Significant data from HSQC experiment): $\delta = 134.4$, 130.6, 129.4, 129.2, 129.0, 128.6, 128.5 (Ar-CH), 102.2 (C-1A), 97.9 (C-1B), 79.8 (C-3A), 77.7 (C-4A, C-5A), 75.3 (C-4B), 73.8 [C-5B, CH₂(Bn)], 73.7 (C-2A), 70.8 (C-3B), 70.6 (CH₂-O), 68.1 [CH₂(Bn)], 67.1 [CH₂(Z)], 66.2 (C-6B), 53.1 (C-2B), 47.7 (Et₃NH⁺), 41.2 (CH₂-N), 38.2 [CH₂(Lev)], 30.3 (CH₂), 29.9 (CH₂), 29.1 [CH₃(Lev)], 28.7 [CH₂(Lev)], 23.8 (CH₂), 9.0 (Et₃NH⁺) ppm. MS (ESI): calcd. for C₅₉H₅₇Cl₄N₂O₂₁S [M]⁻ 1301.2; found 1301.0. HRMS: calcd. for $C_{59}H_{57}Cl_4N_2O_{21}S\ [M]^-$ 1301.1934; found 1301.2029.

N-Benzyloxycarbonyl-5-aminopentyl 4-O-(2-Acetamido-2-deoxy-6-O-sulfo-β-D-galactopyranosyl)-3-O-benzyl-β-D-glucopyranosiduronic Acid (25): H_2O_2 (30%; 0.73 mL) and an aqueous solution of LiOH (0.7 m; 0.45 mL) were added at -5 °C to a solution of 22 (26 mg, 18 µmol) in THF (2.0 mL). The mixture was stirred for 20 h at room temperature, then MeOH (2.0 mL) and NaOH (4 M aq.; 0.46 mL) were added. The mixture was stirred for 24 h at room temperature, then the reaction mixture was neutralized with Amberlite IR-120 (H⁺) resin, filtered, and concentrated. The residue was dissolved in CH₂Cl₂/MeOH/Et₃N (1.0 mL/1.0 mL/0.1 mL) and purified by Sephadex LH-20 chromatography (CH₂Cl₂/MeOH, 1:1) to give compound 23 as its triethylammonium salt (22 mg, 89%). TLC (EtOAc/pyridine/H₂O/AcOH, 9:5:3:1): $R_f = 0.34$. ¹H NMR $(300 \text{ MHz}, \text{CD}_3\text{OD})$: $\delta = 7.54 \text{ (m, 2 H, Ar)}, 7.35-7.20 \text{ (m, 8 H, })$ Ar), 5.06 [m, 2 H, CH₂(Z)], 5.04 [d, 1 H, CH₂(Bn)], 4.72 [d, 1 H, CH₂(Bn)], 4.68 (d, J_{1,2} = 8.8 Hz, 1 H, 1B-H), 4.36 (d, J_{1,2} = 7.6 Hz, 1 H, 1A-H), 4.29 (dd, $J_{5,6a}$ = 7.4, $J_{6a,6b}$ = 10.5 Hz, 1 H, 6aB-H), 4.23 (br. t, 1 H, 2B-H), 4.15 (dd, *J*_{5,6b} = 5.8 Hz, 1 H, 6bB-H), 4.07 (t, $J_{3,4} = J_{4,5} = 8.4$ Hz, 1 H, 4A-H), 3.99–3.94 (m, 2 H, 4B-H, 5A-H), 3.85 (m, 1 H, CH₂-O), 3.76 (m, 1 H, 5B-H), 3.67 (m, 1 H, 3B-H), 3.54 (m, 2 H, CH₂-O, 3A-H), 3.38 (t, $J_{2,3}$ = 8.0 Hz, 1 H, 2A-H), 3.18 (q, 18 H, Et₃NH⁺), 3.11 (m, 2 H, CH₂-N), 1.66–1.35 [3 m, 6 H, (CH₂)₃], 1.29 (t, 27 H, Et₃NH⁺) ppm. ¹³C NMR (75 MHz, CD₃OD, Significant data from HSQC experiment): $\delta = 129.4$, 128.9, 128.4 (Ar-CH), 103.9 (C-1A), 100.7 (C-1B), 83.8 (C-3A), 78.7 (C-4A), 77.0 (C-5A), 75.4 [CH2(Bn)], 74.6 (C-5B), 74.2 (C-2A), 74.0 (C-3B), 70.6 (CH2-O), 68.5 (C-4B), 67.1 [CH2(Z)], 66.7 (C-6B), 55.0 (C-2B), 47.4 (Et₃NH⁺), 41.5 (CH₂-N), 30.3, 30.1, 23.8 [(CH₂)₃], 8.9 (Et₃NH⁺) ppm. MS (ESI): calcd. for C₄₀H₄₂Cl₄KN₂O₁₉S [M + H + K]⁻ 1065.0; found 1065.0.

Ethylene diamine (111 µL, 1.65 mmol) was added to a solution of **23** (22 mg, 16 µmol) in dry DMF (1.0 mL) under an argon atmosphere, and the reaction mixture was subjected to microwave irradiation for 90 min at 100 °C. The reaction vessel was cooled, and the mixture was concentrated to dryness. The residue was purified by Sephadex LH-20 chromatography (CH₂Cl₂/MeOH, 1:1) to give **24**. TLC (EtOAc/pyridine/H₂O/AcOH, 12:5:3:1): $R_{\rm f} = 0.23$. MS (ESI): calcd. for C₃₂H₄₃N₂O₁₆S [M + H]⁻ 743.2; found 743.2.

Triethylamine (0.36 M solution in dry MeOH; 150 µL) and acetic anhydride (7.8 µL, 83 µmol) were added to a cooled solution of 24 (16 µmol) in dry MeOH (1.5 mL). The mixture was stirred for 3 h at room temperature, then additional Et₃N (0.2 mL) was added, and the reaction mixture was purified by Sephadex LH-20 chromatography (CH₂Cl₂/MeOH, 1:1). The residue was converted into the sodium salt by elution from a column of Dowex 50WX4-Na⁺ with MeOH/H₂O, 9:1 to give 25 (12 mg, 88% over two steps from 23). TLC (EtOAc/pyridine/H₂O/AcOH, 12:5:3:1, two elutions): $R_{\rm f} = 0.41$. ¹H NMR (400 MHz, CD₃OD): $\delta = 7.50-7.20$ (m, 10 H, Ar), 5.06 [s, 2 H, CH₂(Z)], 5.02 [d, 1 H, CH₂(Bn)], 4.69 [d, 1 H, CH₂(Bn)], 4.62 (d, $J_{1,2}$ = 8.3 Hz, 1 H, 1B-H), 4.28 (d, $J_{1,2}$ = 6.9 Hz, 1 H, 1A-H), 4.25 (dd, $J_{5,6a}$ = 8.2, $J_{6a,6b}$ = 10.2 Hz, 1 H, 6aB-H), 4.10 (dd, J_{5.6b} = 5.4 Hz, 1 H, 6bB-H), 4.03–3.93 (m, 2 H, 2B-H, 4A-H), 3.91 (br. s, 1 H, 4B-H), 3.86 (m, 1 H, CH2-O), 3.74-3.65 (m, 2 H, 5B-H, 5A-H), 3.52 (m, 2 H, 3B-H, CH2-O), 3.44 (t, $J_{2,3} = J_{3,4} = 8.9$ Hz, 1 H, 3A-H), 3.39 (t, 1 H, 2A-H), 3.11 (t, 2 H, CH2-N), 2.06 (s, 3 H, NAc), 1.62, 1.51, 1.41 [3 m, 6 H, (CH2)3] ppm. ¹³C NMR (100 MHz, CD₃OD, Significant data from HSQC experiment): δ = 128.9–128.1 (Ar-CH), 103.9 (C-1A), 101.2 (C-1B), 83.8 (C-3A), 79.7 (C-4A), 77.7 (C-5A), 75.2 [CH₂(Bn)], 74.5 (C-3B), 73.9 (C-2A), 73.8 (C-5B), 70.2 (CH₂-O), 68.2 (C-4B), 66.9 [CH₂(Z)], 66.2 (C-6B), 54.4 (C-2B), 41.3 (CH₂-N), 30.1, 29.8, 23.6 $[(CH_2)_3]$, 22.6 (NAc) ppm. MS (ESI): calcd. for $C_{34}H_{45}N_2O_{17}S$ [M

+ H]⁻ 785.2; found 785.1. HRMS: calcd. for $C_{34}H_{44}N_2O_{17}S \ [M]^{2-}$ 392.1185; found 392.1180.

5-Aminopentyl 4-O-(2-Acetamido-2-deoxy-6-O-sulfo-B-D-galactopyranosyl)-β-D-glucopyranosiduronic Acid (16): A solution of 25 (10 mg, 12 µmol, as sodium salt) in H₂O/MeOH (3.6 mL/0.4 mL) was hydrogenated in the presence of Pd(OH)2. After 24 h, the suspension was filtered through Celite, and the filtrate was concentrated. The residue was purified by Sephadex G-10 chromatography $(H_2O/MeOH, 9:1)$ to give 16 as its sodium salt after lyophilization (7.4 mg, quantitative; 66% over five steps from 17, 92% average yield per step). ¹H NMR (500 MHz, D₂O): δ = 4.53 (d, J_{1,2} = 8.5 Hz, 1 H, 1B-H), 4.48 (d, $J_{1,2}$ = 8.1 Hz, 1 H, 1A-H), 4.25 (m, 2 H, 6aB-H, 6bB-H), 4.00 (m, 2 H, 4B-H, 5B-H), 3.92 (m, 2 H, 2B-H, CH₂-O), 3.74 (m, 4 H, 3B-H, 4A-H, 5A-H, CH₂-O), 3.63 (t, J_{2.3} $= J_{3,4} = 8.7$ Hz, 1 H, 3A-H), 3.36 (t, 1 H, 2A-H), 3.00 (t, 2 H, CH2-N), 2.06 (s, 3 H, NAc), 1.68, 1.47 [2 m, 6 H, (CH2)3] ppm. ¹³C NMR (125.5 MHz, D₂O, Significant data from HSQC experiment): $\delta = 102.7$ (C-1A), 102.0 (C-1B), 81.6 (C-4A), 77.1 (C-5A), 74.6 (C-3A), 73.2 (C-5B), 73.1 (C-2A), 71.2 (C-3B), 70.6 (CH₂-O), 67.9 (C-4B), 67.6 (C-6B), 52.5 (C-2B), 39.8 (CH₂-N), 28.5, 26.9 (CH₂, CH₂), 23.0 (NAc), 22.4 (CH₂) ppm. MS (ESI): calcd. for $C_{19}H_{33}N_2O_{15}S [M + H]^-$ 561.1613; found 561.0. HRMS: calcd. for $C_{19}H_{33}N_2O_{15}S [M + H]^- 561.1619$; found 561.1599.

4-Methoxyphenyl 3-*O*-(Benzyl 2-*O*-Benzoyl-3-*O*-benzyl-4-*O*-levulinoyl-β-D-glucopyranosyluronate)-2-deoxy-4,6-di-*O*-levulinoyl-2-trifluoroacetamido-β-D-galactopyranoside (29): An excess of (HF)_n· Py (5.5 mL) was added to a solution of **28** (1.23 g, 1.14 mmol) in dry THF (25 mL) at 0 °C under an argon atmosphere. After 24 h at 0 °C, the mixture was diluted with CH₂Cl₂ and washed with H₂O and saturated NaHCO₃ solution until neutral pH. The organic layer was dried (MgSO₄), filtered, and concentrated in vacuo to give the corresponding diol, which was used in the next step without further purification [TLC (toluene/EtOAc, 1:4): $R_f = 0.46$].

LevOH (2.32 mL, 22.8 mmol) was added to a solution of 1,3-dicyclohexylcarbodiimide (2.35 g, 11.4 mmol) in CH_2Cl_2 (20 mL) at 0 °C. The mixture was stirred for 5 min at room temperature, then the mixture was cooled, filtered, and concentrated to give levulinic anhydride quantitatively (Lev₂O, 11.4 mmol).

A solution of the diol (1.14 mmol) in dry pyridine (30 mL) was added to a flask containing Lev₂O (11.4 mmol) and DMAP (140 mg, 1.14 mmol) under an argon atmosphere. The mixture was stirred for 5 h at room temperature, then the reaction mixture was diluted with CH₂Cl₂ and washed with HCl (1 M aq.), saturated aqueous NaHCO₃, and H₂O. The organic layers were dried (MgSO₄), filtered, and concentrated in vacuo. The residue was purified by column chromatography (toluene/EtOAc, 2:1) to give **29** (950 mg, 83%). TLC (toluene/EtOAc, 2:1): $R_{\rm f} = 0.37$. $[a]_{\rm D}^{20} =$ +20 (c = 1.0, CHCl₃). ¹H NMR (500 MHz, CDCl₃): $\delta = 7.94$ (m, 2 H, Ar), 7.59 (m, 1 H, Ar), 7.44 (m, 2 H, Ar), 7.39-7.30 (m, 5 H, Ar), 7.13-7.07 (m, 5 H, Ar), 6.89 (m, 2 H, Ar), 6.77 (m, 2 H, Ar), 6.69 (br. s, 1 H, NH), 5.47 (d, J_{3,4} = 2.6 Hz, 1 H, 4A-H), 5.32 [pt (pseudotriplet), 1 H, 4B-H], 5.28 (pt, 1 H, 2B-H), 5.19-5.11 [m, 3 H, 1A-H and CH₂(Bn)], 4.79 (d, J_{1,2} = 7.5 Hz, 1 H, 1B-H), 4.61-4.52 [m, 3 H, 3A-H and CH₂(Bn)], 4.15-4.09 (m, 2 H, 2 6A-H), 4.07 (d, $J_{4.5} = 9.6$ Hz, 1 H, 5B-H), 3.89–3.80 (m, 3 H, 5A-H, 3B-H and 2A-H), 3.75 (s, 3 H, OCH₃), 2.80-2.20 [m, 12 H, 3 OC-O(CH₂)₂], 2.15 (s, 3 H, COCH₃), 2.14 (s, 3 H, COCH₃), 2.10 (s, 3 H, COCH₃) ppm. ¹³C NMR (125 MHz, CDCl₃): δ = 206.84 [CO(Lev)], 206.81 [CO(Lev)], 206.1 [CO(Lev)], 172.3 (CO), 171.5 (CO), 171.2 (CO), 166.9 (CO), 165.0 (CO), 157.6 (q, J_{C,F} = 38.7 Hz, COCF₃), 155.9 (Ar), 151.0 (Ar), 137.4–114.3 (Ar-C and Ar-CH), 115.5 (q, *J*_{C,F} = 289.0 Hz, CO*C*F₃), 100.1 (C-1B), 98.9 (C-1A), 79.2 (C-3B), 74.2 [CH₂(Bn)], 73.2 (C-3A), 72.8 (C-5B), 72.6 (C-2B), 71.6 (C-5A), 70.8 (C-4B), 68.7 (C-4A), 67.9 [CH₂(Bn)], 62.3 (C-6A), 55.7 (OCH₃), 54.6 (C-2A), 38.2 [OCO(CH₂)₂], 38.0 [OCO(CH₂)₂], 37.7 [OCO(CH₂)₂], 29.9 (COCH₃), 29.8 (2 COCH₃), 28.0 [OC-O(CH₂)₂], 27.9 [OCO(CH₂)₂], 27.8 [OCO(CH₂)₂] ppm. HRMS: calcd. for $C_{57}H_{60}F_3NNaO_{20}$ [M + Na]⁺ 1158.3558; found 1158.3596.

3-O-(Benzyl 2-O-Benzoyl-3-O-benzyl-4-O-levulinoyl-B-D-glucopyranosyluronate)-2-deoxy-4,6-di-O-levulinoyl-2-trifluoroacetamidoα,β-D-galactopyranose (30): CAN (0.44 M solution in H₂O; 7.6 mL) was added to a solution of 29 (950 mg, 0.84 mmol) in CH₂Cl₂/ MeCN (1:2; 22.8 mL), and the mixture was stirred vigorously for 1 h at room temperature. It was then diluted with EtOAc, and washed with H₂O, saturated aqueous NaHCO₃, and H₂O. The organic phase was dried (MgSO₄), filtered, and concentrated to dryness. The residue was purified by column chromatography (toluene/ acetone, 3:1) to give **30** (695 mg, 81%) as a mixture of α/β anomers. TLC (toluene/acetone, 3:2): $R_f = 0.44$ and 0.31. ¹H NMR (500 MHz, CDCl₃, data for α anomer): δ = 7.94 (m, 2 H, Ar), 7.57 (m, 1 H, Ar), 7.44-7.32 (m, 7 H, Ar), 7.15-7.05 (m, 5 H, Ar), 6.69 (d, $J_{2,NH} = 8.7$ Hz, 1 H, N*H*), 5.39 (d, $J_{3,4} = 2.3$ Hz, 1 H, 4A-H), 5.31–5.25 (m, 3 H, 1A-H, 2B-H and 4B-H), 5.19–5.11 [2 d, J_{gem} = 11.9 Hz, 2 H, CH₂(Bn)], 4.81 (d, J_{1.2} = 7.7 Hz, 1 H, 1B-H), 4.55 [2 d, $J_{\text{gem}} = 11.6 \text{ Hz}$, 2 H, CH₂(Bn)], 4.40–4.32 (m, 2 H, 2A-H and 5A-H), 4.27–4.20 (m, 2 H, 6aA-H and 3A-H), 4.05 (d, $J_{4,5}$ = 9.7 Hz, 1 H, 5B-H), 3.94 (dd, $J_{5,6b} = 8.8$, $J_{6a,6b} = 11.4$ Hz, 1 H, 6bA-H), 3.82 (pt, 1 H, 3B-H), 2.84–2.21 [m, 12 H, 3 OCO(CH₂)₂], 2.16 (s, 3 H, COCH₃), 2.10 (s, 3 H, COCH₃), 2.09 (s, 3 H, COCH₃) ppm. ¹³C NMR (125 MHz, CDCl₃, data for α anomer): δ = 208.8 [CO(Lev)], 206.9 [CO(Lev)], 206.0 [CO(Lev)], 172.2 (CO), 171.8 (CO), 171.2 (CO), 166.8 (CO), 165.0 (CO), 157.1 (q, COCF₃), 137.3-127.8 (Ar-C and Ar-CH), 115.7 (q, COCF₃), 99.6 (C-1B), 91.4 (C-1A), 79.3 (C-3B), 74.2 [CH₂(Bn)], 73.0 (C-5B), 72.2 (C-2B), 72.0 (C-3A), 71.0 (C-4B),68.9 (C-4A), 68.0 [CH₂(Bn)], 67.0 (C-5A), 63.0 (C-6A), 50.1 (C-2A), 38.5 [OCO(CH₂)₂], 38.1 [OCO(CH₂)₂], 37.7 [OCO(CH₂)₂], 30.0 (COCH₃), 29.9 (COCH₃), 29.8 (COCH₃), 28.3 [OCO(CH₂)₂], 28.0 [OCO(CH₂)₂], 27.7 [OCO(CH₂)₂] ppm. HRMS: calcd. for $C_{50}H_{54}NO_{19}NaF_3$ [M + Na]⁺ 1052.3140; found 1052.3175.

O-[3-O-(Benzyl 2-O-Benzoyl-3-O-benzyl-4-O-levulinoyl-β-D-glucopyranosyluronate)-2-deoxy-4,6-di-O-levulinoyl-2-trifluoroacetamidoα,β-D-galactopyranosyl] Trichloroacetimidate (31): Compound 30 (120 mg, 0.11 mmol) was dissolved in dry CH₂Cl₂ (3 mL), and Cl₃CCN (234 µL, 2.3 mmol) and DBU (0.066 м solution in CH₂Cl₂; 261 µL) were added. The mixture was stirred at room temperature for 5 h, then it was concentrated in vacuo. Flash chromatography on silica gel (toluene/acetone, 5:1 + 1% Et₃N) gave 31 (95 mg, 70%) as an α/β mixture. TLC (toluene/acetone, 3:2): $R_{\rm f} = 0.65$ and 0.48. ¹H NMR (500 MHz, CDCl₃, data for α anomer): $\delta = 8.71$ [s, 1 H, NH(TCA)], 7.96 (m, 2 H, Ar), 7.59 (m, 1 H, Ar), 7.44 (m, 2 H, Ar), 7.37 (m, 5 H, Ar), 7.13–7.05 (m, 5 H, Ar), 7.00 [br. d, $J_{\rm NH,2}$ = 7.3 Hz, 1 H, NH(TFA)], 6.54 (d, $J_{1,2}$ = 3.4 Hz, 1 H, 1 H, 1A-H), 5.55 (br. d, 1 H, 4A-H), 5.35 (pt, 1 H, 2B-H), 5.23 (pt, 1 H, 4B-H), 5.18–5.06 [2 d, $J_{gem} = 12.1$ Hz, 2 H, CH₂(Bn)], 4.93 (d, J_{1,2} = 7.9 Hz, 1 H, 1B-H), 4.62–4.51 [m, 3 H, 2A-H and CH₂(Bn)], 4.35 (dd, J_{3,4} = 2.9, J_{2,3} = 11.0 Hz, 1 H, 3A-H), 4.28 (m, 1 H, 5A-H), 4.12–4.04 (m, 3 H, 5B-H and 2 6A-H), 3.85 (pt, 1 H, 3B-H), 2.74–2.16 [m, 12 H, 3 OCO(CH₂)₂], 2.14 (s, 3 H, COCH₃), 2.10 (s, 3 H, COCH₃), 2.03 (s, 3 H, COCH₃) ppm.

4-Methoxyphenyl *O*-(Benzyl 2-*O*-Benzoyl-3-*O*-benzyl-4-*O*-levulinoyl- β -D-glucopyranosyluronate)-(1 \rightarrow 3)-*O*-(2-deoxy-4,6-di-*O*-levulinoyl-2-trifluoroacetamido- β -D-galactopyranosyl)-(1 \rightarrow 4)-*O*-(benzyl 2-

O-Benzoyl-3-*O*-benzyl- β -D-glucopyranosyluronate)-(1 \rightarrow 3)-2-deoxy-4,6-O-di-tert-butylsilylene-2-trifluoroacetamido-β-D-galactopyranoside (33): Donor 31 (143 mg, 0.12 mmol) and acceptor 32 (67 mg, 0.07 mmol) were coevaporated with toluene, concentrated in vacuo and dissolved in dry CH2Cl2 (3 mL) in the presence of freshly activated 4 Å molecular sieves. The mixture was stirred for 10 min at 0 °C, then TMSOTf (0.09 м solution in dry CH₂Cl₂; 264 µL) was added under an argon atmosphere. The mixture was stirred for 30 min at 0 °C, then it was neutralized with Et₃N, filtered, and concentrated to dryness. The residue was purified by column chromatography (toluene/acetone, 5:1) to give 33 (97 mg, 71%). TLC (toluene/EtOAc, 2:1): $R_{\rm f} = 0.34$. $[a]_{\rm D}^{20} = +11$ (c = 1.0, CHCl₃). ¹H NMR (500 MHz, CDCl₃): δ = 7.96 (m, 2 H, Ar), 7.91 (m, 2 H, Ar), 7.57 (m, 2 H, Ar), 7.46-7.29 (m, 14 H, Ar), 7.15-7.08 (m, 10 H, Ar), 6.90 (m, 2 H, Ar), 6.84 (d, $J_{2,\rm NH}$ = 6.9 Hz, 1 H, NH), 6.78 (m, 2 H, Ar), 6.52 (d, $J_{2,\rm NH}$ = 8.7 Hz, 1 H, NH), 5.37-5.33 (m, 2 H, 1A-H and 4D-H), 5.27-5.15 [m, 8 H, 1B-H, 2B-H, 4C-H, 2D-H and 2 CH₂(Bn)], 4.78 [d, $J_{gem} = 11.1$ Hz, 1 H, CH₂(Bn)], 4.73 (d, J_{1,2} = 7.4 Hz, 1 H, 1D-H), 4.61–4.52 [m, 3 H, 4A-H and CH₂(Bn)], 4.46 [d, J_{gem} = 11.1 Hz, 1 H, CH₂(Bn)], 4.33 $(dd, J_{2,3} = 11.1, J_{3,4} = 1.9 \text{ Hz}, 1 \text{ H}, 3\text{A-H}), 4.15-4.08 \text{ (m, 3 H, 1C-}$ H, 5D-H and 6A-H), 4.05-4.02 (m, 2 H, 4B-H and 6A-H), 3.96-3.81 (m, 6 H, 2A-H, 2C-H, 2 6C-H 5B-H and 3D-H), 3.75 (s, 3 H, OCH₃), 3.69 (m, 1 H, 3C-H), 3.63 (m, 1 H, 3B-H), 3.34 (m, 2 H, 5A-H and 5C-H), 2.75-2.21 [m, 12 H, 3 OCO(CH₂)₂], 2.18 (s, 3 H, COCH₃), 2.11 (s, 3 H, COCH₃), 2.07 (s, 3 H, COCH₃), 1.04 [s, 9 H, C(CH₃)₃], 0.99 [s, 9 H, C(CH₃)₃] ppm. ¹³C NMR (125 MHz, CDCl₃): $\delta = 207.1$ [CO(Lev)], 206.6 [CO(Lev)], 206.0 [CO(Lev)], 172.2 (CO), 171.4 (CO), 171.2 (CO), 168.6-164.9 (4 CO), 157.6 (2 q, 2 COCF₃), 156.0-114.5 (Ar-C and Ar-CH), 117.9 (2 q, 2 COCF₃), 100.2 (C-1B), 99.8, 99.7 (C-1C and C-1D), 99.3 (C-1A), 80.1 (C-3B), 79.2 (C-3D), 77.8 (C-4B), 75.4 (C-3A), 75.1 [CH₂(Bn)], 74.3, 74.2, 74.1, 73.2, 73.0 [C-3C, C-5B, CH₂(Bn), C-4A, C-5D], 72.5, 72.4 [2 C: C-2B or C-4C or C-2D or CH2(Bn)], 71.4, 71.1 (C-5A and C-5C), 70.9 (C-4D), 68.2, 68.1, 67.9 [3 C: CH₂(Bn) or C-2B or C-4C or C-2D], 67.0 (C-6A), 61.5 (C-6C), 55.7 (OCH₃), 54.0, 53.0 (C-2A and C-2C), 38.1 [OCO(CH₂)₂], 38.0 [OCO(CH₂)₂], 37.7 [OCO(CH₂)₂], 29.9 (COCH₃), 29.8 (COCH₃), 29.7 (COCH₃), 28.1 [OCO(CH₂)₂], 27.9 [OCO(CH₂)₂], 27.7 [OCO(CH₂)₂], 27.6, 27.5, 27.5 [C(CH₃)₃], 23.3, 20.8 [C(CH₃)₃] ppm. HRMS: calcd. for $C_{100}H_{110}N_2O_{32}F_6NaSi [M + Na]^+ 2015.6607$; found 2015.6607.

4-Methoxyphenyl O-(3-O-Benzyl-2,4-di-O-sulfo-β-D-glucopyranosyluronic Acid)- $(1\rightarrow 3)$ -O-(2-acetamido-2-deoxy-4,6-di-O-sulfo- β -Dgalactopyranosyl)- $(1\rightarrow 4)$ -O-(3-O-benzyl-2-O-sulfo- β -D-glucopyranosyluronic Acid)-(1→3)-2-acetamido-2-deoxy-4,6-di-O-sulfo-β-D-ga**lactopyranoside (37):** An excess of $(HF)_n \cdot Py$ (102 µL, 3.8 mmol) was added at 0 °C under an argon atmosphere to a solution of 33 (39 mg, 0.02 mmol) in dry THF (1.0 mL). After 24 h at 0 °C, the mixture was diluted with CH2Cl2, and then washed with H2O and saturated NaHCO₃ solution until it reached neutral pH. The organic layer was dried (MgSO₄), filtered, and concentrated in vacuo. The residue was purified by column chromatography (toluene/ EtOAc, 2:3) to give 34 (27 mg, 75%). TLC (toluene/EtOAc, 1:2): $R_{\rm f} = 0.36$. ¹H NMR (400 MHz, CDCl₃): $\delta = 7.96$ (m, 2 H, Ar), 7.86 (m, 2 H, Ar), 7.56 (m, 2 H, Ar), 7.46-7.33 (m, 14 H, Ar), 7.13-7.06 (m, 10 H, Ar), 6.86 (m, 2 H, Ar), 6.74 (m, 2 H, Ar), 5.34-5.11 [m, 9 H, 4D-H, 2D-H, 1A-H, H2B, 4C-H and CH₂(Bn)], 4.75 [m, 3 H, 1B-H, 1D-H and CH₂(Bn)], 4.60-4.49 [m, 4 H, 1C-H and CH₂(Bn)], 4.38 (br. s, 1 H, 3A-H), 4.15 (br. s, 1 H, 4B-H), 4.08-3.97 (m, 4 H, 4A-H, 5D-H, 5B-H and 3C-H), 3.90 (m, 3 H, 2C-H and 2 6A-H or 6C-H), 3.82 (m, 3 H, 2A-H, 3D-H and 6A-H or 6C-H), 3.72 (m, 4 H, 3B-H and OCH₃), 3.56 (m, 3 H, 5A-H, 5C-H and 6A-H or 6C-H), 2.74–2.17 [m, 12 H, 3 OCO(CH₂)₂],

2.12 (s, 3 H, COCH₃), 2.10 (s, 3 H, COCH₃), 2.06 (s, 3 H, COCH₃) ppm. ¹³C NMR (100 MHz, CDCl₃, selected data from HSQC experiment): δ = 100.1 (C-1B), 99.7 (C-1D), 99.6 (C-1C), 98.7 (C-1A), 79.3 (C-3B), 79.1 (C-3D), 77.5 (C-3A), 77.3 (C-4B), 74.5 [CH₂(Bn]], 74.1 [CH₂(Bn]], 74.1 (C-5B or C-5D), 74.0 (C-5A or C-5C), 73.9 (C-3C), 72.7 (C-5B or C-5D), 72.4 (C-2B, C-4C), 71.0 (C-5A or C-5C), 70.7 (C-4D), 68.3 (C-4A), 68.0 [C-2D, 2 CH₂(Bn]], 62.6 (C-6A or C-6C), 61.7 (C-6A or C-6C), 55.7 (COCH₃), 54.1 (C-2A), 53.2 (C-2C) ppm. HRMS: calcd. for C₉₂H₉₄F₆N₂Na₂O₃₂ [M + 2Na]²⁺ 949.2739; found 949.2735.

 H_2O_2 (30%; 0.26 mL) and a solution of LiOH (0.7 m; 0.16 mL) were added at -5 °C to a solution of **34** (12 mg, 6.5 µmol) in THF (1.0 mL). The mixture was stirred for 24 h at room temperature, then MeOH (1 mL) and a solution of NaOH (4 m; 0.33 mL) were added. The mixture was stirred for 3 d at room temperature, then it was neutralized with Amberlite IR-120 (H⁺) resin, filtered, and concentrated to give **35**. MS (ESI): calcd. for $C_{45}H_{56}N_2NaO_{22}$ [M + Na]⁻ 999.3; found 999.4.

Et₃N (12 µL, 85 µmol) and Ac₂O (12 µL, 129 µmol) were added to a cooled (0 °C) solution of 35 (6.5 µmol) in dry MeOH (2.0 mL). The mixture was stirred for 3 h at room temperature, then triethylamine (0.3 mL) was added, and the mixture was coevaporated with toluene and methanol. The residue was purified by Sephadex LH-20 chromatography (MeOH/CH₂Cl₂, 1:1) to give 36 as its triethylammonium salt. The sodium salt of 36 (6.2 mg, 90%) was obtained by treatment with Amberlite IR-120 (H⁺) resin in MeOH (pH ca. 3), followed by filtration, treatment with NaOH (0.04 M; pH ca. 7), and concentration. ¹H NMR (500 MHz, [D₄]methanol, data for sodium salt): δ = 7.58 (m, 2 H, Ar), 7.44 (m, 2 H, Ar), 7.34-7.20 (m, 6 H, Ar), 6.98 (m, 2 H, Ar), 6.82 (m, 2 H, Ar), 5.05 [d, J_{gem} = 10.3 Hz, 1 H, CH₂(Bn)], 4.93 (d, $J_{1,2}$ = 8.5 Hz, 1 H, 1A-H), 4.88 [m, 2 H, CH₂(Bn)], 4.72 [d, J_{gem} = 10.3 Hz, 1 H, CH₂(Bn)], 4.62 (d, J_{1,2} = 8.5 Hz, 1 H, 1C-H), 4.43 (m, 2 H, 1B-H and 1D-H), 4.27 (dd, J_{1.2} = 8.5, J_{2.3} = 10.7 Hz, 1 H, 2A-H), 4.19–4.12 (m, 3 H, 2C-H, 4C-H and 4A-H), 3.96 (m, 1 H, 4B-H), 3.86-3.76 (m, 4 H, 3A-H and 3 6A-H or 6C-H), 3.74 (s, 3 H, OCH₃), 3.72-3.56 (m, 6 H, 5B-H, 6A-H or 6C-H, 3C-H, 5A-H or 5C-H, 4D-H, and 5D-H), 3.51 (m, 1 H, 5A-H or 5C-H), 3.46 (m, 2 H, 2B-H and 3B-H), 3.41 (m, 2 H, 2D-H and 3D-H), 2.05 (s, 3 H, NHCOCH₃), 2.05 (s, 3 H, NHCOCH₃) ppm. ¹³C NMR (100 MHz, [D₄]methanol, selected data from HSQC experiment): $\delta = 128.5 - 113.7$ (Ar), 104.2 (C-1B and C-1D), 100.6 (C-1A), 100.0 (C-1C), 84.1 (C-3D), 82.6 (C-3C), 82.5 (C-3B), 80.6 (C-3A), 77.6 (C-4B), 76.4 (C-5B), 75.8 (C-5A or C-5C), 75.2 (2 C: C-4D or C-5D or C-5A or C-5C), 75.0 [CH₂(Bn)], 74.0 [CH₂(Bn)], 73.0 (C-2D), 72.7 (C-2B), 72.0 (C-4D or C-5D or C-5A or C-5C), 67.6 (C-4A and C-4C), 61.1 (C-6A and C-6C), 54.4 (COCH₃), 51.5 (C-2C), 51.2 (C-2A), 22.1 (NHCOCH₃), 21.6 (NHCOCH₃) ppm. HRMS: calcd. for $C_{49}H_{60}N_2O_{24}$ [M]²⁻ 530.1773; found 530.1775.

Compound **36** (6 mg, 5.4 µmol) and sulfur trioxide–trimethylamine complex (26 mg, 0.19 mmol) were dissolved in dry DMF (1.5 mL), and the mixture was heated at 100 °C for 2 h using microwave irradiation (20 W average power). The reaction vessel was cooled, and Et₃N (150 µL) and MeOH (1 mL) were added. The solution was loaded onto a Sephadex LH-20 chromatography column, which was eluted with MeOH to give **37** as its triethylammonium salt. The residue was converted into the sodium salt by elution from a column of Dowex 50WX4-Na⁺ with MeOH/H₂O, 9:1 (5 mg, 56%). ¹H NMR (500 MHz, D₂O, 40 °C, data for sodium salt): δ = 7.62 (m, 2 H, Ar), 7.50–7.36 (m, 8 H, Ar), 7.12 (m, 2 H, Ar), 7.00 (m, 2 H, Ar), 5.31 (d, J_{1,2} = 8.5 Hz, 1 H, 1A-H), 4.96 (m, 2 H, 4A-H and 4C-H), 4.93–4.85 [m, 4 H, 1B-H or 1D-H, 4D-H and

CH₂(Bn)], 4.80–4.71 [m, 4 H, 1C-H, 1D-H or 1B-H, and CH₂(Bn)], 4.41 (m, 2 H, 2B-H and 2D-H), 4.36-4.23 (m, 5 H, 3D-H or 5D-H, 3A-H and 3 6A-H or 6C-H), 4.20 (m, 2 H, 3D-H or 5D-H, and 5A-H or 5C-H), 4.15 (m, 2 H, 4B-H and 3C-H), 4.10 (m, 1 H, 6A-H or 6C-H), 3.99 (m, 2 H, 2C-H and 2A-H), 3.93 (m, 1 H, 5A-H or 5C-H), 3.88 (pt, 1 H, 3B-H), 3.83 (s, 3 H, OCH₃), 3.81 (m, 1 H, 5B-H), 2.09 (NHCOCH₃), 2.08 (NHCOCH₃) ppm. ¹³C NMR (125 MHz, D₂O, 40 °C, selected data from HSQC experiment): δ = 130.6-116.4 (Ar), 103.8 (C-1D or C-1B), 102.4 (C-1B or C-1D), 101.6 (C-1A), 101.4 (C-1C), 81.6 (C-3B), 80.0 (C-2B and 2D), 80.0 (C-5A or C-5C or C-3D or C-5D) 79.5 (C-3D or C-5D), 78.7 (C-5B), 78.6 (C-3C and C-4B), 77.9 (C-3A), 77.2 (C-4D), 76.9 (C-4A and C-4C), 75.1 [CH₂(Bn)], 74.2 [CH₂(Bn)], 74.1 (C-5A or C-5C or C-3D or C-5D), 73.4 (C-5A or C-5C), 69.3 (C-6A or C-6C), 68.6 (C-6A or C-6C), 57.2 (OCH₃), 53.9 (C-2A and C-2C), 23.9 (2 NHCOCH₃) ppm.

4-Methoxyphenyl O-(2,4-Di-O-sulfo-β-D-glucopyranosyluronic Acid)-(1→3)-O-(2-acetamido-2-deoxy-4,6-di-O-sulfo-β-D-galactopyranosyl)- $(1\rightarrow 4)$ -O-(2-O-sulfo- β -D-glucopyranosyluronic Acid)-(1→3)-2-acetamido-2-deoxy-4,6-di-O-sulfo-β-D-galactopyranoside (38): A solution of 37 (4.0 mg, 2.5 μ mol, sodium salt) in H₂O/ MeOH (3.6 mL/0.4 mL) was hydrogenated at 1.5 bar pressure in the presence of $Pd(OH)_2$ (12 mg). After 24 h, the suspension was filtered through Celite, and the filtrate was concentrated to give 38 after lyophilization (3.4 mg, 97%). ¹H NMR (500 MHz, D₂O, data for sodium salt): δ = 7.10 (m, 2 H, Ar), 6.99 (m, 2 H, Ar), 5.22 (d, J_{1,2} = 8.5 Hz, 1 H, 1A-H), 4.95 (d, J_{3,4} = 2.6 Hz, 1 H, 4A-H), 4.93 (d, J_{3,4} = 2.4 Hz, 1 H, 4C-H), 4.77 (m, 2 H, 1C-H and 1D-H), 4.71 (d, $J_{1,2}$ = 7.9 Hz, 1 H, 1B-H), 4.51 (pt, 1 H, 4D-H), 4.36–4.31 (m, 2 H, 2 6A-H or 6C-H), 4.28-4.21 (m, 6 H, 2 6A-H or 6C-H, 5A-H or 5C-H, 2D-H, 3A-H, and 2B-H), 4.16-4.08 (m, 3 H, 3C-H, 5A-H or 5C-H, and 2A-H), 4.03 (pt, 1 H, 3D-H), 3.98 (d, J_{45} = 8.5 Hz, 1 H, 5D-H), 3.93 (m, 2 H, 4B-H and 2C-H), 3.85-3.81 (m, 4 H, 3B-H and OCH₃), 3.72 (d, $J_{4.5} = 9.6$ Hz, 1 H, 5B-H), 2.07 (NHCOCH₃), 2.06 (NHCOCH₃) ppm. ¹³C NMR (125 MHz, D₂O, selected data from HSQC experiment): δ = 119.6 (Ar), 116.2 (Ar), 103.8 (C-1B), 102.9 (C-1D), 102.6 (C-1C), 101.7 (C-1A), 81.5 (C-4B), 80.7 (C-2B and C-2D), 79.0 (C-4D), 77.9 (C-3A), 77.8 (C-5B), 77.5 (C-3C and C-5D), 77.0 (C-4A and C-4C), 74.4 (C-3B), 74.2 (C-3D), 73.9 (C-5A or C-5C), 73.5 (C-5A or C-5C), 69.0 (C-6A or C-6C), 68.7 (C-6A or C-6C), 56.8 (OCH₃), 53.3 (C-2A), 23.7 (2 NHCOCH₃) ppm. MS (ESI): calcd. for $C_{35}H_{41}N_2O_{45}S_7Na_7$ [M + 7Na]^{2–} 796.9; found 796.7.

4-Methoxyphenyl 3-*O*-(Methyl 3-*O*-Benzyl-2,4-di-*O*-pivaloyl-α-Lidopyranosyluronate)-2-deoxy-4,6-*O*-di-*tert*-butylsilylene-2-trifluoroacetamido-β-D-galactopyranoside (40): Compound 39 (427 mg, 0.428 mmol) was dissolved in CH₂Cl₂ (8.5 mL), and hydrazine monohydrate (0.5 M solution in pyridine/AcOH, 3:2; 3.42 mL) was added. The mixture was stirred at room temperature for 3 h, the reaction mixture was quenched with acetone (5.0 mL). The mixture was diluted with CH₂Cl₂ and washed with HCl (1 M aq.), saturated aqueous NaHCO₃, and H₂O. The organic layer was dried (MgSO₄), filtered, and concentrated in vacuo to give the corresponding diol, which was used in the next step without further purification [TLC (toluene/EtOAc, 1:2): $R_f = 0.20$].

This diol was dissolved in pyridine (9 mL). Pivaloyl chloride (2.5 mL) and DMAP (21 mg, 0.17 mmol) were added, and the solution was stirred at room temperature. After 45 h, the mixture was diluted with CH_2Cl_2 , washed with HCl (1 M aq.), saturated aqueous NaHCO₃, and H₂O, dried (MgSO₄), filtered, and concentrated in vacuo. The residue was purified by flash column chromatography (toluene/EtOAc, 6:1) to give **40** (363 mg, 87% over two steps). TLC

(toluene/EtOAc, 4:1): $R_{\rm f} = 0.40$. $[a]_{\rm D}^{20} = -19$ (c = 1.0, CHCl₃). ¹H NMR (400 MHz, CDCl₃): δ = 7.39–7.26 (m, 5 H, Ar), 6.94 (m, 2 H, Ar), 6.79 (m, 2 H, Ar), 6.66 (d, $J_{2.\text{NH}}$ = 7.2 Hz, 1 H, NH), 5.31 (d, $J_{1,2}$ = 8.4 Hz, 1 H, 1A-H), 5.29 (m, 1 H, 4B-H), 5.15 (d, $J_{4,5}$ = 2.0 Hz, 1 H, 5B-H), 5.04 (br. s, 1 H, 1B-H), 4.86 (m, 1 H, 2B-H), 4.79 [2 d, 2 H, CH₂(Bn)], 4.53 (d, $J_{3,4}$ = 2.8 Hz, 1 H, 4A-H), 4.39 (dd, $J_{2,3} = 11.0$ Hz, 1 H, 3A-H), 4.20 (m, 2 H, 6aA-H, 6bA-H), 3.98 (dt, 1 H, 2A-H), 3.76 [s, 3 H, Me(OMP) or COOMe], 3.74 [m, 4 H, 3B-H, Me(OMP) or COOMe], 3.47 (br. s, 1 H, 5A-H), 1.19, 1.17, 1.08, 0.97 [4 s, 36 H, C(CH₃)₃] ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 177.9, 177.6 [CO(Piv)], 169.1 (COOMe), 157.9 (q, $J_{C,F}$ = 37.2 Hz, COCF₃), 156.0, 151.2, 137.9 (Ar C), 128.5, 127.7, 127.5, 120.0 (Ar-CH), 115.6 (q, J_{C,F} = 288.4 Hz, COCF₃), 114.6 (Ar-CH), 101.4 (C-1B), 99.2 (C-1A), 78.8 (C-3A), 74.0 (C-3B), 72.7 (C-4A), 72.5 [CH₂(Bn)], 71.3 (C-5A), 67.7 (C-4B), 67.5 (C-2B), 67.0 (C-6A), 66.9 (C-5B), 55.7 [COOMe or Me(OMP)], 54.1 (C-2A), 52.4 [COOMe or Me(OMP)], 39.1, 38.8 [C(CH₃)₃, Piv], 27.8, 27.4, 27.3, 27.1 [C(CH₃)₃], 23.3, 21.0 [C(CH₃)₃] ppm. HRMS: calcd. for $C_{47}H_{66}F_3NO_{15}SiNa [M + Na]^+$ 992.4052; found 992.4087.

4-Methoxyphenyl 3-*O*-(Methyl 3-*O*-Benzyl-2,4-di-*O*-pivaloyl-α-Lidopyranosyluronate)-2-deoxy-4,6-di-*O*-levulinoyl-2-trifluoroacetamido-β-D-galactopyranoside (41): An excess of (HF)_n·Py (1.85 mL, 71.1 mmol) was added to a solution of **40** (363 mg, 0.374 mmol) in dry THF (8.0 mL) at 0 °C under an argon atmosphere. After 24 h at 0 °C, the mixture was diluted with CH₂Cl₂ and washed with H₂O and saturated aq. NaHCO₃ until it reached neutral pH. The organic layers were dried (MgSO₄), filtered, and concentrated in vacuo to give the corresponding diol (290 mg), which was used for the next step without further purification [TLC (toluene/EtOAc, 1:6): $R_f = 0.45$].

LevOH (0.72 mL, 7.0 mmol) was added at 0 °C to a solution of 1,3-dicyclohexylcarbodiimide (721 mg, 3.5 mmol) in CH_2Cl_2 (6 mL). The mixture was stirred for 5 min at room temperature, then it was cooled, filtered, and concentrated to give levulinic anhydride quantitatively (Lev₂O, 3.5 mmol).

A solution of the diol (290 mg) in dry pyridine (10 mL) was added to a flask containing Lev₂O (3.5 mmol) and DMAP (44 mg, 0.35 mmol) under an argon atmosphere. The mixture was stirred for 26 h at room temperature, then it was diluted with CH₂Cl₂ and washed with HCl (1 M aqueous), saturated aqueous NaHCO₃, and brine. The organic layers were dried (MgSO₄), filtered, and concentrated in vacuo. To complete the reaction, this residue was redissolved in dry pyridine (10 mL), and this solution was added to a flask containing additional Lev₂O (3.5 mmol) and DMAP (44 mg, 0.35 mmol) under an argon atmosphere. The mixture was stirred for 26 h at room temperature, then it was diluted with CH₂Cl₂ and washed with HCl (1 M aq.), saturated aqueous NaHCO₃, and brine. The organic layers were dried (MgSO₄), filtered, and concentrated in vacuo. The residue was purified by column chromatography (toluene/EtOAc, 2:1) to give 41 (311 mg, 81%). TLC (toluene/EtOAc, 1:1): $R_{\rm f} = 0.30$. ¹H NMR (300 MHz, CDCl₃): $\delta = 7.36-7.26$ (m, 5 H, Ar), 6.95 (m, 2 H, Ar), 6.79 (m, 3 H, NH, Ar), 5.41 (d, $J_{3,4}$ = 3.2 Hz, 1 H, 4A-H), 5.26 (m, 2 H, 4B-H, 1A-H), 4.98 (br. s, 1 H, 1B-H), 4.86 (d, $J_{4.5}$ = 2.4 Hz, 1 H, 5B-H), 4.83 (br. t, 1 H, 2B-H), 4.71 [m, 2 H, CH₂(Bn)], 4.50 (dd, $J_{2,3} = 10.9$, $J_{3,4} = 3.3$ Hz, 1 H, 3A-H), 4.16 (dd, J_{5.6a} = 7.4, J_{6a.6b} = 11.4 Hz, 1 H, 6aA-H), 4.09 (dd, J_{5,6a} = 5.8 Hz, 1 H, 6bA-H), 3.98 (m, 1 H, 2A-H), 3.93 (br. t, 1 H, 5A-H), 3.76 [s, 6 H, Me(OMP), COOMe], 3.69 (br. t, 1 H, 3B-H), 2.72–2.23 [m, 8 H, CH₂(Lev)], 2.16, 2.08 [2 s, 6 H, CH₃(Lev)], 1.18, 1.14 [2 s, 18 H, CH₃(Piv)] ppm. ¹³C NMR (75 MHz, CDCl₃): δ = 206.8, 206.3 [CO(Lev)], 177.8, 177.5, 172.2, 172.1 [CO(Lev, Piv)], 168.9 (COOMe), 158.0 (q, $J_{C,F} = 37.3 \text{ Hz}$, COCF₃), 155.9, 151.1, 137.6 (Ar-C), 128.0, 127.9, 119.0 (Ar-CH), 115.7 (q, $J_{C,F}$ = 288.2 Hz, COCF₃), 114.7 (Ar-CH), 100.9 (C-1B), 99.2 (C-1A), 75.4 (C-3A), 74.4 (C-3B), 72.6 [CH₂(Bn)], 71.4 (C-5A), 68.6 (C-4A), 68.0 (C-2B), 67.8 (C-4B), 67.1 (C-5B), 61.9 (C-6A), 55.7 [COOMe or Me(OMP]], 54.7 (C-2A), 52.4 [COOMe or Me(OMP]], 39.0, 38.7 [C(CH₃)₃ (Piv)], 38.0, 37.9 [CH₂(Lev)], 29.9, 29.7 [CH₃(Lev)], 27.9, 27.8 [CH₂(Lev)], 27.2, 27.0 [C(CH₃)₃ (Piv)] ppm. HRMS: calcd. for C₄₉H₆₂F₃NO₁₉Na [M + Na]⁺ 1048.3766; found 1048.3790.

3-O-(Methyl 3-O-Benzyl-2,4-di-O-pivaloyl-a-L-idopyranosyluronate)-2-deoxy-4,6-di-O-levulinoyl-2-trifluoroacetamido-α,β-D-galactopyranose (42): CAN (0.63 M solution in H₂O; 1.6 mL) was added to a solution of 41 (346 mg, 0.337 mmol) in CH₂Cl₂/MeCN (1:2; 15 mL). The mixture was stirred for 1 h 30 min at room temperature, then it was diluted with EtOAc, and washed with H₂O, saturated aqueous NaHCO₃, and H₂O. The organic phase was dried (MgSO₄), filtered, and concentrated to dryness. The residue was purified by column chromatography (toluene/acetone, 7:2) to give 42 (218 mg, 70%) as a mixture of α/β anomers. TLC (toluene/acetone, 7:2): $R_f = 0.20$ and 0.11. ¹H NMR (300 MHz, CDCl₃) (data for α anomer): δ = 7.40–7.26 (m, 5 H, Ar), 6.65 (d, $J_{2,\text{NH}}$ = 9.5 Hz, 1 H, NH), 5.35 (m, 2 H, 4A-H, 1A-H), 5.20 (br. t, 1 H, 4B-H), 5.02 (br. s, 1 H, 1B-H), 4.80 (d, $J_{4.5}$ = 2.4 Hz, 1 H, 5B-H), 4.76 (m, 1 H, 2B-H), 4.74–4.62 [2 d, 2 H, CH₂(Bn)], 4.53 (dt, J_{1,2} = 3.5, J_{2,3} = 10.6 Hz, 1 H, 2A-H), 4.34 (dd, $J_{5,6a}$ = 3.7, $J_{5,6b}$ = 8.8 Hz, 1 H, 5A-H), 4.22 (dd, $J_{6a,6b}$ = 11.5 Hz, 1 H, 6aA-H), 4.10 (dd, $J_{3,4}$ = 3.1 Hz, 1 H, 3A-H), 3.95 (dd, 1 H, 6bA-H), 3.77 (s, 3 H, COOMe), 3.70 (br. t, 1 H, 3B-H), 2.82–2.26 [m, 8 H, CH₂(Lev)], 2.19, 2.05 [2 s, 6 H, CH₃(Lev)], 1.18, 1.15 [2 s, 18 H, (CH₃)₃ (Piv)] ppm. ¹³C NMR (75 MHz, CDCl₃, data for α anomer): δ = 208.5, 206.7 [CO(Lev)], 177.8, 177.6, 172.3 [CO(Lev, Piv)], 169.0 (COOMe), 157.7 (q, J_{C,F} = 37.2 Hz, COCF₃), 137.5 (Ar-C), 128.5, 128.1, 128.0 (Ar-CH), 115.9 (q, $J_{C,F} = 288.0 \text{ Hz}$, COCF₃), 101.1 (C-1B), 91.7 (C-1A), 75.5 (C-3A), 73.7 (C-3B), 72.4 [CH₂(Bn)], 69.4 (C-4A), 67.9 (C-4B), 67.5 (C-2B), 67.0 (C-5B), 66.9 (C-5A), 62.7 (C-6A), 52.4 (COOMe), 50.2 (C-2A), 39.0, 38.7 [C(CH₃)₃ (Piv)], 38.3, 37.9 [CH₂(Lev)], 29.9, 29.7 [CH₃(Lev)], 28.1, 27.7 [CH₂(Lev)], 27.2, 27.1 [C(CH₃)₃ (Piv)] ppm. HRMS: calcd. for C₄₂H₅₆F₃NO₁₈Na [M + Na]⁺ 942.3347; found 942.3311.

O-[3-O-(Methyl 3-O-Benzyl-2,4-di-O-pivaloyl-α-L-idopyranosyluronate)-2-deoxy-4,6-di-O-levulinoyl-2-trifluoroacetamido-α,β-D-galactopyranosyl] Trichloroacetimidate (43): Trichloroacetonitrile (162 μL, 1.6 mmol) and catalytic DBU (0.084 M solution in dry CH₂Cl₂; 80 µL) were added to a solution of 42 (60 mg, 65 µmol) in dry CH₂Cl₂ (1.3 mL). The mixture was stirred for 10 h at room temperature, then it was concentrated to dryness. The residue was purified by flash chromatography (toluene/acetone, 5:1 + 1% Et₃N) to give 43 (54 mg, 78%) as a mixture of α/β anomers. TLC (toluene/ acetone, 3:1): $R_f = 0.45$ (for α anomer). ¹H NMR (400 MHz, CDCl₃, data for α anomer): δ = 8.81 [s, 1 H, NH(TCA)], 7.35–7.26 (m, 5 H, Ar), 6.78 [d, $J_{2,NH}$ = 8.5 Hz, 1 H, NH(TFA)], 6.47 (d, $J_{1,2}$ = 3.5 Hz, 1 H, 1A-H), 5.52 (br. d, 1 H, 4A-H), 5.24 (br. t, 1 H, 4B-H), 5.11 (br. s, 1 H, 1B-H), 4.85 (d, $J_{4,5} = 2.6$ Hz, 1 H, 5B-H), 4.75–4.67 [m, 4 H, 2B-H, 2A-H, $CH_2(Bn)$], 4.29 (t, $J_{5,6a} = J_{5,6b} =$ 6.5 Hz, 1 H, 5A-H), 4.23 (dd, $J_{2,3} = 11.0$, $J_{3,4} = 3.1$ Hz, 1 H, 3A-H), 4.08 (m, 2 H, 6aA-H, 6bA-H), 3.77 (s, 3 H, COOMe), 3.72 (br. t, 1 H, 3B-H), 2.71-2.17 [m, 8 H, CH2(Lev)], 2.16, 2.08 [2 s, 6 H, CH₃(Lev)], 1.18, 1.14 [2 s, 18 H, (CH₃)₃(Piv)] ppm. ¹³C NMR (100 MHz, CDCl₃, data for α anomer): δ = 206.5, 206.1 [CO(Lev)], 178.0, 177.7, 172.2, 172.0 [CO(Lev, Piv)], 168.9 (COOMe), 160.3 (C=NH), 157.9 (q, J_{C,F} = 37.9 Hz, COCF₃), 137.3 (Ar-C), 128.6, 128.1, 128.0 (Ar-CH), 115.7 (q, $J_{C,F} = 289.0 \text{ Hz}$, COCF₃), 101.3 (C-1B), 94.8 (C-1A), 90.7 (CCl₃), 75.2 (C-3A), 73.9 (C-3B), 72.7

4-Methoxyphenyl O-(Methyl 3-O-Benzyl-2,4-di-O-pivaloyl-a-L-idopyranosyluronate)-(1->3)-O-(2-deoxy-4,6-di-O-levulinoyl-2-trifluoroacetamido-β-D-galactopyranosyl)-(1→4)-O-(benzyl 2-O-Benzoyl-3-O-benzyl-β-D-glucopyranosyluronate)-(1→3)-2-deoxy-4,6-O $di\mbox{-}tert\mbox{-}butyl silylene-2\mbox{-}trifluoroacetamido\mbox{-}\beta\mbox{-}D\mbox{-}galactopyranoside$ (44): Donor 43 (168 mg, 0.158 mmol) and acceptor 32 (103 mg, 0.105 mmol) were dissolved in dry CH₂Cl₂ (3.0 mL) in the presence of freshly activated 4 Å molecular sieves. The mixture was stirred for 30 min at 0 °C, then TMSOTf (0.092 M solution in dry CH₂Cl₂; 343 µL) was added under an argon atmosphere. The mixture was stirred for 30 min at 0 °C, then it was neutralized with Et₃N, filtered, and concentrated to dryness. The residue was purified by column chromatography (toluene/acetone, 7:1) to give 44 (106 mg, 53%). TLC (toluene/acetone, 3:1): $R_{\rm f} = 0.55$. $[a]_{\rm D}^{20} = -2$ (c = 1.0, CHCl₃). ¹H NMR (400 MHz, CDCl₃): δ = 7.92 (d, 2 H, Ar), 7.56 (t, 1 H, Ar), 7.49-7.22 (m, 12 H, Ar), 7.07 (m, 5 H, Ar), 6.95 (d, $J_{2.\text{NH}} = 6.5 \text{ Hz}, 1 \text{ H}, \text{NH}$), 6.90 (m, 2 H, Ar), 6.78 (m, 2 H, Ar), 6.68 (d, $J_{2.NH}$ = 8.9 Hz, 1 H, NH), 5.37 (d, $J_{1.2}$ = 8.2 Hz, 1 H, 1A-H), 5.30 (d, $J_{1,2}$ = 7.9 Hz, 1 H, 1B-H), 5.28 [m, 2 H, CH₂(Bn)], 5.24 (m, 1 H, 4D-H), 5.21 (t, 1 H, 2B-H), 5.17 (d, J_{3.4} = 3.1 Hz, 1 H, 4C-H), 4.95 (br. s, 1 H, 1D-H), 4.91 (d, $J_{4.5} = 2.2$ Hz, 1 H, 5D-H), 4.84 [d, 1 H, CH₂(Bn)], 4.77 (br. s, 1 H, 2D-H), 4.72–4.66 [2 d, 2 H, CH₂(Bn)], 4.57 (br. s, 1 H, 4A-H), 4.51 [d, 1 H, CH₂(Bn)], 4.36 (br. d, $J_{2,3} = 11.3$ Hz, 1 H, 3A-H), 4.24 (d, $J_{1,2} = 8.5$ Hz, 1 H, 1C-H), 4.17-3.98 (m, 4 H, 2C-H, 6aA-H, 4B-H, 6bA-H), 3.97-3.93 (m, 2 H, 2A-H, 5B-H), 3.87 (m, 2 H, 6aC-H, 6bC-H), 3.78, 3.75 [2 s, 6 H, Me(OMP), COOMe], 3.68 (m, 2 H, 3B-H, 3D-H), 3.57 (dd, $J_{2,3} = 10.5$ Hz, 1 H, 3C-H), 3.45 (t, $J_{5,6a} = J_{5,6b} = 6.5$ Hz, 1 H, 5C-H), 3.32 (m, 1 H, 5A-H), 2.68 [m, 2 H, $CH_2(Lev)$], 2.48–2.16 [m, 8 H, CH₂(Lev), CH₃(Lev) (2.17)], 2.10-2.04 [m, 1 H, CH₂(Lev)], 1.96 [s, 3 H, CH₃(Lev)], 1.20, 1.18, 1.05, 1.01 [4 s, 36 H, C(CH₃)₃] ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 206.9, 206.1 [CO(Lev)], 177.9, 177.3, 172.2, 172.0, 169.1, 168.9, 165.1 [CO(Lev), CO(Piv), CO(Bz), COOBn, COOMe], 158.2 (q, $J_{C,F} = 37.1$ Hz, COCF₃), 157.7 (q, J_{C,F} = 36.8 Hz, COCF₃), 156.0, 151.1, 137.8, 137.6, 134.6 (Ar-C), 133.4, 129.9, 129.7, 129.5, 129.4, 129.3, 128.5, 128.2, 128.0, 127.7, 120.3 (Ar-C, Ar-CH), 116.0 (q, $J_{C,F}$ = 288.3 Hz, COCF₃), 115.5 (q, *J*_{C,F} = 288.6 Hz, CO*C*F₃), 114.6 (Ar-CH), 100.4 (C-1D), 100.2, 100.1 (C-1B, C-1C), 99.3 (C-1A), 80.2 (C-3B), 78.3 (C-4B), 76.5 (C-3C), 75.3 [CH₂(Bn)], 75.2 (C-3A), 74.2 (C-3D), 74.1 (C-5B), 73.4 (C-4A), 72.5 [CH₂(Bn)], 72.4 (C-2B), 71.4 (C-5A), 71.2 (C-5C), 68.5 [CH₂(Bn)], 68.1 (C-4C), 67.8 (C-4D, C-2D), 67.6 (C-6A), 67.0 (C-5D), 61.4 (C-6C), 55.7 [COOMe or Me(OMP)], 54.1 (C-2A), 53.3 (C-2C), 52.4 [COOMe or Me(OMP)], 39.1, 38.7 [C(CH₃)₃ (Piv)], 38.0, 37.8 [CH₂(Lev)], 29.9, 29.6 [CH₃(Lev)], 28.0, 27.7 [CH₂(Lev)], 27.6, 27.3, 27.1 [C(CH₃)₃], 23.4, 20.8 [C(CH₃)₃ (DBSi)] ppm. HRMS: calcd. for $C_{92}H_{112}F_6N_2O_{31}SiNa [M + Na]^+$ 1905.6820; found 1905.6755.

4-Methoxyphenyl *O*-(Methyl 3-*O*-Benzyl-2,4-di-*O*-pivaloyl- α -L-idopyranosyluronate)-(1 \rightarrow 3)-*O*-(2-deoxy-2-trifluoroacetamido- β -D-galactopyranosyl)-(1 \rightarrow 4)-*O*-(benzyl 2-*O*-Benzoyl-3-*O*-benzyl- β -Dglucopyranosyluronate)-(1 \rightarrow 3)-2-deoxy-4,6-*O*-di-*tert*-butylsilylene-2-trifluoroacetamido- β -D-galactopyranoside (45): Compound 44 (105 mg, 0.056 mmol) was dissolved in CH₂Cl₂ (1.5 mL), and hydrazine monohydrate (0.5 M solution in pyridine/AcOH, 3:2; 0.45 mL) was added. The mixture was stirred at room temperature for 3 h, then it was quenched with acetone (0.7 mL). The mixture was diluted with CH₂Cl₂ and washed with HCl (1 M aq.), saturated aqueous NaHCO₃, and H_2O . The organic layer was dried (MgSO₄), filtered, and concentrated in vacuo. The residue was purified by flash column chromatography (toluene/EtOAc, 6:1) to give 45 (82 mg, 87%). TLC (toluene/EtOAc, 3:2): $R_{\rm f} = 0.32$. $[a]_{\rm D}^{20} = -7$ (c = 1.0, CHCl₃). ¹H NMR (400 MHz, CDCl₃): δ = 7.97 (d, 2 H, Ar), 7.57 (t, 1 H, Ar), 7.46-7.33 (m, 12 H, Ar), 7.13 (m, 5 H, Ar), 6.91 (m, 2 H, Ar), 6.80 (m, 3 H, Ar, NH), 6.52 (d, $J_{2.NH}$ = 8.4 Hz, 1 H, NH), 5.38 (d, J_{1.2} = 8.3 Hz, 1 H, 1A-H), 5.30–5.20 [m, 5 H, 1B-H, 2B-H, CH₂(Bn), 4D-H], 5.08 (br. d, 1 H, 1D-H), 4.94 (d, $J_{4,5}$ = 2.7 Hz, 1 H, 5D-H), 4.86 [d, 1 H, CH₂(Bn)], 4.85 (br. d, 1 H, 2D-H), 4.79–4.68 [2 d, 2 H, CH₂(Bn)], 4.58 (br. s, 1 H, 4A-H), 4.54 [d, 1 H, CH₂(Bn)], 4.38 (br. d, $J_{2,3}$ = 11.1 Hz, 1 H, 3A-H), 4.27 (d, $J_{1,2} = 8.5$ Hz, 1 H, 1C-H), 4.24 (m, 1 H, 2C-H), 4.11 (d, $J_{6a,6b} =$ 12.3 Hz, 1 H, 6aA-H), 4.05 (t, $J_{3,4} = J_{4,5} = 9.5$ Hz, 1 H, 4B-H), 3.99 (m, 1 H, 6bA-H), 3.98-3.91 (m, 3 H, 5B-H, 2A-H, 4C-H), 3.76-3.75 [2 s, 6 H, COOMe, Me(OMP)], 3.70 (m, 2 H, 3D-H, 3B-H), 3.56-3.45 (m, 3 H, 6aC-H, 6bC-H, 3C-H), 3.32 (m, 1 H, 5A-H), 3.12 (m, 1 H, 5C-H), 1.20, 1.18, 1.06, 1.02 [4 s, 36 H, C(CH₃)₃] ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 177.6, 177.4, 169.0, 168.7, 165.1 [CO(Piv), CO(Bz), COOBn, COOMe], 157.9 (q, $J_{C,F}$ = 36.9 Hz, COCF₃), 157.7 (q, $J_{C,F}$ = 36.7 Hz, COCF₃), 156.0, 151.1, 137.7, 137.2, 134.7 (Ar-C), 133.5, 129.9, 129.5, 129.4, 129.2, 129.1, 128.6, 128.5, 128.3, 128.1, 128.0, 127.8, 120.3 (Ar-C, Ar-CH), 116.0 (q, *J*_{C,F} = 288.3 Hz, CO*C*F₃), 115.5 (q, *J*_{C,F} = 288.3 Hz, COCF3), 114.6 (Ar-CH), 100.4 (C-1B), 100.2 (C-1C), 99.6 (C-1D), 99.3 (C-1A), 80.6 (C-3B), 79.0 (C-3C), 78.0 (C-4B), 75.8 [CH₂(Bn)], 75.5 (C-3A), 74.6 (C-5C), 74.1 (C-5B), 73.7 (C-3D), 73.3 (C-4A), 72.6 (C-2B), 72.4 [CH₂(Bn)], 71.4 (C-5A), 68.3 [CH₂(Bn), C-4C], 68.2 (C-2D), 67.8 (C-5D), 67.0 (C-4D, C-6A), 62.3 (C-6C), 55.7 [COOMe or Me(OMP)], 54.1 (C-2A), 52.5 [COOMe or Me(OMP)], 52.3 (C-2C), 39.1, 38.8 [C(CH₃)₃ (Piv)], 27.6, 27.3, 27.1 [C(CH₃)₃], 23.4, 20.8 $[C(CH_3)_3 (DBSi)]$ ppm. HRMS: calcd. for $C_{82}H_{100}F_6N_2O_{27}SiNa [M + Na]^+ 1709.6085; found 1709.6031.$

4-Methoxyphenyl O-(Methyl 3-O-Benzyl-2,4-di-O-pivaloyl-α-L-idopyranosyluronate)- $(1 \rightarrow 3)$ -O-(2-deoxy-2-trifluoroacetamido- β -D-galactopyranosyl)-(1→4)-O-(benzyl 2-O-Benzoyl-3-O-benzyl-β-Dglucopyranosyluronate)- $(1\rightarrow 3)$ -2-deoxy-2-trifluoroacetamido- β -D-ga**lactopyranoside (46):** An excess of $(HF)_n \cdot Py$ (223 µL, 8.6 mmol) was added to a solution of 45 (75 mg, 0.044 mmol) in dry THF (4.0 mL) at 0 °C under an argon atmosphere. After 24 h at 0 °C, the mixture was diluted with CH₂Cl₂, and then washed with H₂O and saturated NaHCO₃ solution until it reached neutral pH. The organic layers were dried (MgSO₄), filtered, and concentrated in vacuo to give 46 (67 mg, 97%). TLC (toluene/EtOAc, 1:2): $R_f =$ 0.20. $[a]_{D}^{20} = -3$ (c = 1.0, CHCl₃). ¹H NMR (400 MHz, CDCl₃): δ = 7.85 (d, 2 H, Ar), 7.56 (t, 1 H, Ar), 7.44–7.26 (m, 13 H, Ar, NH), 7.10-7.03 (m, 5 H, Ar), 6.83 (m, 2 H, Ar), 6.72 (m, 2 H, Ar), 6.64 (m, 1 H, NH), 5.37 (m, 1 H, 1A-H), 5.29 (m, 1 H, 2B-H), 5.22 [m, 3 H, 4D-H, CH₂(Bn)], 5.06 (br. d, 1 H, 1D-H), 4.93 (d, $J_{4,5}$ = 2.8 Hz, 1 H, 5D-H), 4.87 [d, 1 H, CH₂(Bn)], 4.84 (m, 1 H, 2D-H), 4.81 (d, $J_{1,2} = 7.4$ Hz, 1 H, 1B-H), 4.77–4.56 [3 d, 3 H, CH₂(Bn)], 4.48 (m, 2 H, 1C-H, 3A-H), 4.31 (t, $J_{3,4} = J_{4,5} = 8.8$ Hz, 1 H, 4B-H), 4.16 (m, 1 H, 2C-H), 4.14 (br. s, 1 H, 4A-H), 4.06 (br. d, 1 H, 5B-H), 3.93 (br. d, J_{3.4} = 2.6 Hz, 1 H, 4C-H), 3.88 (m, 1 H, 2A-H), 3.83-3.70 [m, 9 H, 6aA-H, 3B-H, 3D-H, Me(OMP), COOMe], 3.59 (m, 4 H, 6bA-H, 6aC-H, 3C-H, 5A-H), 3.48 (dd, $J_{5.6b} = 2.8$, $J_{6a,6b} = 12.1$ Hz, 1 H, 6bC-H), 3.26 (m, 1 H, 5C-H), 2.29 (m, 4 H, OH), 1.19, 1.18 [2 s, 18 H, C(CH₃)₃] ppm. ¹³C NMR (100 MHz, CDCl₃, selected data from HSQC experiment): $\delta = 133.7$, 130.2, 129.7-127.6, 119.1, 114.7 (Ar-CH), 101.7 (C-1B), 100.1 (C-1C), 99.6 (C-1D), 98.7 (C-1A), 80.5 (C-3B), 78.8 (C-3C), 78.6 (C-3A), 77.4 (C-4B), 75.9 [CH₂(Bn)], 75.2 (C-5C), 74.5 (C-5A), 74.2 (C-5B), 74.1 (C-3D), 72.8 (C-2B), 72.7 [CH₂(Bn)], 68.8 [CH₂(Bn)], 68.6

(C-4A, C-4C, C-2D), 68.0 (C-5D), 67.6 (C-4D), 62.7 (C-6C), 62.5 (C-6A), 55.9 [COOMe or Me(OMP)], 54.5 (C-2A), 52.8 [C-2C, CO-OMe or Me(OMP)], 27.5 [C(CH_3)₃] ppm. HRMS: calcd. for C₇₄H₈₄F₆N₂O₂₇Na [M + Na]⁺ 1569.5063; found 1569.5101.

4-Methoxyphenyl O-(Methyl 3-O-Benzyl-2,4-di-O-pivaloyl-α-L-idopyranosyluronate)-(1→3)-O-(2-deoxy-4,6-di-O-sulfo-2-trifluoroacetamido-β-D-galactopyranosyl)-(1→4)-O-(benzyl 2-O-Benzoyl-3-Obenzyl-β-D-glucopyranosyluronate)-(1→3)-2-deoxy-4,6-di-O-sulfo-2trifluoroacetamido-β-D-galactopyranoside (47): Compound 46 (16 mg, 10 µmol) and sulfur trioxide-trimethylamine complex (58 mg, 0.41 mmol) were dissolved in dry DMF (1.5 mL), and the mixture was heated at 100 °C for 30 min using microwave irradiation (23 W average power). The reaction vessel was cooled, and Et₃N (300 µL), MeOH (1 mL), and CH₂Cl₂ (1 mL) were added. The solution was loaded onto a Sephadex LH-20 chromatography column, which was eluted with CH₂Cl₂/MeOH (1:1) to give 47 as its triethylammonium salt (23 mg, quantitative). TLC (EtOAc/Py/ $H_2O/AcOH 12:5:3:1$): $R_f = 0.14$. ¹H NMR (500 MHz, CD₃OD/ $CDCl_3$, 7:1): δ = 7.94 (d, 2 H, Ar), 7.62 (t, 1 H, Ar), 7.54–7.05 (m, 17 H, Ar), 6.97 (d, 2 H, Ar), 6.82 (d, 2 H, Ar), 5.68 (d, J_{45} = 2.7 Hz, 1 H, 5D-H), 5.43 [d, J = 11.8 Hz, 1 H, CH₂(Bn)], 5.34 (dd, 1 H, 4D-H), 5.26–5.22 [m, 2 H, 2B-H, CH₂(Bn)], 5.05 (d, J_{1,2} = 2.4 Hz, 1 H, 1D-H), 5.02-4.97 [m, 2 H, 2D-H, CH₂(Bn)], 4.90 (d, *J*_{1,2} = 7.8 Hz, 1 H, 1B-H), 4.85–4.80 (m, 3 H, 1A-H, 4A-H, 4C-H), 4.76 (d, J_{1,2} = 8.4 Hz, 1 H, 1C-H), 4.70 [m, 2 H, CH₂(Bn)], 4.52-4.43 [m, 3 H, CH₂(Bn), 2 6A-H or 6C-H], 4.40-4.35 (m, 2 H, 4B-H, 6A-H or 6C-H), 4.33-4.25 (m, 2 H, 6A-H or 6C-H, 2C-H), 4.20–4.08 (m, 3 H, 2A-H, 3A-H, 5B-H), 4.01 (dd, $J_{2,3} = 11.0$, $J_{3,4}$ = 3.0 Hz, 1 H, 3C-H), 3.97-3.94 (m, 2 H, 5A-H, 5C-H), 3.85 (dd, 1 H, 3B-H), 3.78-3.74 [2 s, 6 H, Me(OMP), COOMe], 3.61 (dd, 1 H, 3D-H), 3.16 (q, 24 H, Et₃NH⁺), 1.28 (t, 36 H, Et₃NH⁺), 1.18, 1.14 [2 s, 18 H, C(CH₃)₃] ppm. ¹³C NMR (125 MHz, CD₃OD/ CDCl₃, 7:1, selected data from HSQC experiment): $\delta = 128.3 - 114.1$ (Ar-CH), 101.6 (C-1B), 101.1 (C-1D), 100.7 (C-1C), 99.3 (C-1A), 79.9 (C-3B), 76.9 (C-3A), 75.8 (C-4B), 75.4-75.1 (C-4A, C-4C, C-3C), 74.9 (C-3D), 74.6–74.5 [C-5B, CH₂(Bn)], 73.4 (C-5A, C-5C), 72.6 (C-2B), 71.4 [CH₂(Bn)], 69.2 (C-4D), 68.8 (C-2D), 68.0-67.5 [CH₂(Bn), C-6C, C-6A, C-5D], 54.6 [COOMe or Me(OMP)], 53.0 (C-2A), 51.8 (C-2C), 51.5 [COOMe or Me(OMP)], 26.3 [C(CH₃)₃] ppm. MS (ESI): calcd. for $C_{74}H_{81}F_6N_2O_{39}S_4Na \ [M + Na + H]^{2-1}$ 943.2; found 943.3.

4-Methoxyphenyl *O*-(3-*O*-Benzyl-α-L-idopyranosyluronic Acid)-(1 \rightarrow 3)-*O*-(2-acetamido-2-deoxy-4,6-di-*O*-sulfo-β-D-galactopyranosyl)-(1 \rightarrow 4)-*O*-(3-*O*-benzyl-β-D-glucopyranosyluronic Acid)-(1 \rightarrow 3)-2acetamido-2-deoxy-4,6-di-*O*-sulfo-β-D-galactopyranoside (49): H₂O₂ (30%; 0.19 mL) and an aqueous solution of LiOH (0.7 w; 0.12 mL) were added at 0 °C to a solution of 47 (11 mg, 4.8 µmol) in THF (0.5 mL). The mixture was stirred for 24 h at room temperature, then MeOH (1.0 mL), H₂O (0.3 mL), and NaOH (4 m aq.; 0.24 mL) were added. The mixture was stirred for 72 h at room temperature, then it was neutralized with Amberlite IR-120 (H⁺) resin, filtered, and concentrated to give 48 {MS (ESI): calcd. for C₄₅H₅₄N₂O₃₄S₄Na₂: 670.0; found 669.9 [M + 2Na + 2H]²⁻}.

Triethylamine (9 μ L, 64 μ mol) and acetic anhydride (9 μ L, 97 μ mol) were added to a cooled (0 °C) solution of **48** in dry MeOH (1.5 mL). The mixture was stirred for 2 h at room temp., then Et₃N (200 μ L) was added, and the mixture was concentrated to dryness. The residue was purified by Sephadex LH-20 chromatography (MeOH) to give **49**.

This compound was then dissolved in H_2O (2 mL), and Amberlite IR-120 H⁺ resin was added (pH = 3.3). The mixture was filtered, treated with NaOH (0.04 M aq.; pH = 7.5) and lyophilized. The

white solid was then eluted through a column of Dowex 50WX4- Na^+ (H₂O/MeOH, 9:1) to give **49** as its sodium salt (6 mg, 86%) after lyophilization. TLC (EtOAc/pyridine/H₂O/AcOH, 6:5:3:1): $R_{\rm f}$ = 0.17. ¹H NMR (500 MHz, D_2O): δ = 7.57–7.36 (m, 10 H, Ar), 7.09 (d, 2 H, Ar), 6.97 (d, 2 H, Ar), 5.03 (d, $J_{1,2}$ = 8.5 Hz, 1 H, 1A-H), 4.96 [d, J = 10.5 Hz, 1 H, CH₂(Bn)], 4.85 (d, J_{3,4} = 2.5 Hz, 1 H, 4A-H), 4.84-4.77 [m, 6 H, CH₂(Bn), 5D-H (4.83), 1D-H (4.80), 4C-H (4.76)], 4.70 (d, $J_{1,2}$ = 8.0 Hz, 1 H, 1C-H), 4.55 (d, $J_{1,2} = 7.5$ Hz, 1 H, 1B-H), 4.35–4.29 (m, 2 H, 2A-H, 6A-H or 6C-H), 4.26–4.19 (m, 3 H, 5A-H or 5C-H, 2 6A-H or 6C-H), 4.16 (dd, 1 H, 3A-H), 4.14–4.04 (m, 4 H, 6A-H or 6C-H, 4D-H, 2C-H, 4B-H), 3.99 (m, 1 H, 5A-H or 5C-H), 3.95 (m, 1 H, 3C-H), 3.81 [s, 3 H, Me(OMP)], 3.76 (d, $J_{4.5}$ = 9.5 Hz, 1 H, 5B-H), 3.67–3.53 (m, 4 H, 2D-H, 3B-H, 2B-H, 3D-H), 2.04, 2.03 (2 s, 6 H, NHAc) ppm. ¹³C NMR (125 MHz, D₂O, selected data from HSQC experiment): $\delta = 130.1 - 116.1$ (Ar-CH), 105.3 (C-1D), 104.9 (C-1B), 101.6 (C-1A), 101.3 (C-1C), 82.9 (C-3D), 82.4 (C-3B), 78.4 (C-4B), 77.8 (C-5B), 77.6 (C-4C, C-3C), 76.9 (C-4A), 75.9 (C-3A), 74.7, 74.4 [CH₂(Bn)], 73.8–73.4 (C-5A, C-5C, C-4D), 72.6 (C-2B), 71.8 (C-2D), 68.9, 68.5 (C-6A, C-6C), 56.8 [Me(OMP)], 52.9, 52.6 (C-2A, C-2C), 23.6 (NAc) ppm. MS (ESI): calcd. for C₄₉H₅₈N₂O₃₆S₄Na₃ $[M + 3Na + 2H]^{-}$ 1447.1; found 1447.0.

4-Methoxyphenyl O-(α -L-Idopyranosyluronic Acid)-($1 \rightarrow 3$)-O-(2acetamido-2-deoxy-4,6-di-O-sulfo-β-D-galactopyranosyl)-(1→4)-O-(β-D-glucopyranosyluronic Acid)-(1→3)-2-acetamido-2-deoxy-4,6-di-O-sulfo-β-D-galactopyranoside (50): A solution of 49 (5.8 mg, 3.8 µmol, sodium salt) in H₂O/MeOH (4.5 mL/0.5 mL) was hydrogenated in the presence of Pd(OH)₂ (12 mg). After 24 h, the suspension was filtered through Celite, concentrated, and lyophilized to give 50 as its sodium salt (5.1 mg, quantitative). ¹H NMR $(500 \text{ MHz}, \text{ D}_2\text{O})$: $\delta = 7.09 \text{ (d, 2 H, Ar)}$, 6.98 (d, 2 H, Ar), 5.02 (d, $J_{1,2} = 8.5$ Hz, 1 H, 1A-H), 4.85 (d, $J_{3,4} = 2.6$ Hz, 1 H, 4A-H), 4.83 (d, $J_{1,2}$ = 4.5 Hz, 1 H, 1D-H), 4.76 (d, 1 H, 4C-H), 4.67 (d, $J_{1,2}$ = 8.1 Hz, 1 H, 1C-H), 4.63 (d, $J_{4,5}$ = 3.6 Hz, 1 H, 5D-H), 4.53 (d, J_{1,2} = 7.8 Hz, 1 H, 1B-H), 4.34–4.21 [m, 6 H, 2A-H (4.31), 2 6A-H, 2 6C-H, 5A-H or 5C-H (4.23)], 4.17-4.15 (m, 2 H, 5A-H or 5C-H, 3A-H), 4.09-4.02 (m, 2 H, 2C-H, 3C-H), 3.93 (dd, 1 H, 4D-H), 3.81 [s, 3 H, Me(OMP)], 3.78 (dd, 1 H, 4B-H), 3.69 (d, $J_{4,5}$ = 9.7 Hz, 1 H, 5B-H), 3.63–3.59 (m, 2 H, 3B-H, 3D-H), 3.49 (dd, J_{2.3} = 7.5 Hz, 1 H, 2D-H), 3.44 (dd, 1 H, 2B-H), 2.05, 2.03 (2 s, 6 H, NHAc) ppm. ¹³C NMR (125 MHz, D₂O, selected data from HSQC experiment): $\delta = 119.6-116.2$ (Ar), 104.7 (C-1B), 104.1 (C-1D), 102.6 (C-1C), 101.8 (C-1A), 83.4 (C-4B), 77.8 (C-5B), 77.0 (C-4C, C-4A), 76.5 (C-3C), 76.0 (C-3A), 75.0 (C-3B or C-3D), 73.7, 73.5 (C-5A, C-5C), 73.4 (C-3B or C-3D), 73.1 (C-2B), 72.7 (C-4D), 72.3 (C-5D), 71.4 (C-2D), 68.9-68.8 (C-6A, C-6C), 56.9 [Me(OMP)], 52.7 (C-2A, C-2C), 23.5 (NAc) ppm. MS (ESI): calcd. for $C_{35}H_{46}N_2O_{36}S_4Na_3$ [M + 3Na + 2H]⁻ 1267.0; found 1266.9.

Fluorescence Polarization Assay: Fluorescence polarization measurements were performed in 384-well microplates (black polystyrene, nontreated, Corning) using a TRIAD multimode reader (Dynex). The fluorescent probe (a fluorescent heparin-like hexasaccharide) and inhibitors were dissolved in PBS buffer (phosphatebuffered saline; 10 mM, pH 7.4). Recombinant human FGF-2 (Peprotech) was dissolved in PBS buffer (10 mM, pH 7.4) containing BSA (bovine serum albumin; 1%). For the inhibition assay, probe solution (10 μ L) and protein (20 μ L) at fixed concentration (40 nM and 145 nM, respectively) were mixed with inhibitor solution (10 μ L; 100 μ M). The total sample volume in each well was 40 μ L. Therefore, all measurements were done in PBS + 0.5% BSA, and the final concentrations of inhibitor, fluorescent probe and FGF-2 in each well were 25 μ M, 10 nM, and 73 nM, respectively. After stirring for 5 min in the dark, fluorescence polarization was recorded.

Two control wells were included in the study. The first one contained only the fluorescent probe; the second one contained FGF-2 and the probe, without any inhibitor. Blank wells contained FGF-2 solution ($20 \ \mu$ L) and PBS buffer ($20 \ \mu$ L), and their measurements were subtracted from all values. All samples were measured in triplicate.

Supporting Information (see footnote on the first page of this article): Copies of the NMR spectra of new compounds.

Acknowledgments

The authors thank the Spanish Ministry of Economy and Competitiveness (grants CTQ2009-07168 and CTQ2012-32605), the Spanish National Research Council (CSIC) (grant 201180E021) and the European Union (FEDER support) for financial support.

- K. Sugahara, T. Mikami, T. Uyama, S. Mizuguchi, K. Nomura, H. Kitagawa, *Curr. Opin. Struct. Biol.* 2003, 13, 612– 620.
- [2] K. Sugahara, T. Mikami, Curr. Opin. Struct. Biol. 2007, 17, 536–545.
- [3] K. Singh, A. G. Gittis, P. Nguyen, D. C. Gowda, L. H. Miller, D. N. Garboczi, *Nat. Struct. Mol. Biol.* 2008, 15, 932–938.
- [4] C. I. Gama, L. C. Hsieh-Wilson, Curr. Opin. Chem. Biol. 2005, 9, 609–619.
- [5] S. S. Deepa, Y. Umehara, S. Higashiyama, N. Itoh, K. Sugahara, J. Biol. Chem. 2002, 277, 43707–43716.
- [6] H. Kawashima, K. Atarashi, M. Hirose, J. Hirose, S. Yamada, K. Sugahara, M. Miyasaka, J. Biol. Chem. 2002, 277, 12921– 12930.
- [7] C. I. Gama, S. E. Tully, N. Sotogaku, P. M. Clark, M. Rawat, N. Vaidehi, W. A. Goddard, A. Nishi, L. C. Hsieh-Wilson, *Nat. Chem. Biol.* 2006, *2*, 467–473.
- [8] J. G. Beeson, K. T. Andrews, M. Boyle, M. F. Duffy, E. K. Choong, T. J. Byrne, J. M. Chesson, A. M. Lawson, W. Chai, *J. Biol. Chem.* 2007, 282, 22426–22436.
- [9] S. E. Tully, R. Mabon, C. I. Gama, S. M. Tsai, X. W. Liu, L. C. Hsieh-Wilson, J. Am. Chem. Soc. 2004, 126, 7736–7737.
- [10] C. Lopin, J. C. Jacquinet, Angew. Chem. Int. Ed. 2006, 45, 2574–2578; Angew. Chem. 2006, 118, 2636–2640.
- [11] M. Rawat, C. I. Gama, J. B. Matson, L. C. Hsieh-Wilson, J. Am. Chem. Soc. 2008, 130, 2959–2961.
- [12] J. Tamura, Y. Nakada, K. Taniguchi, M. Yamane, *Carbohydr. Res.* 2008, 343, 39–47.
- [13] A. Vibert, C. Lopin-Bon, J. C. Jacquinet, Chem. Eur. J. 2009, 15, 9561–9578.
- [14] J. C. Jacquinet, C. Lopin-Bon, A. Vibert, Chem. Eur. J. 2009, 15, 9579–9595.
- [15] A. Vibert, C. Lopin-Bon, J. C. Jacquinet, *Eur. J. Org. Chem.* 2011, 4183–4204.
- [16] G. Despras, C. Bernard, A. Perrot, L. Cattiaux, A. Prochiantz, H. Lortat-Jacob, J. M. Mallet, *Chem. Eur. J.* 2013, 19, 530–539.
- [17] J. Tamura, H. Tanaka, A. Nakamura, N. Takeda, *Tetrahedron Lett.* 2013, 54, 3940–3943.
- [18] S. Eller, M. Collot, J. Yin, H. S. Hahm, P. H. Seeberger, Angew. Chem. Int. Ed. 2013, 52, 5858–5861.
- [19] E. Bedini, C. De Castro, M. De Rosa, A. Di Nola, A. Iadonisi, O. F. Restaino, C. Schiraldi, M. Parrilli, *Angew. Chem. Int. Ed.* **2011**, *50*, 6160–6163; *Angew. Chem.* **2011**, *123*, 6284–6287.
- [20] A. F. G. Bongat, A. V. Demchenko, *Carbohydr. Res.* 2007, 342, 374–406.
- [21] a) E. Bedini, M. Parrilli, *Carbohydr. Res.* 2012, 356, 75–85; b)
 N. A. Karst, R. J. Linhardt, *Curr. Med. Chem.* 2003, 10, 1993–2031; c) A. Vibert, J. C. Jacquinet, C. Lopin-Bon, *J. Carbohydr. Chem.* 2011, 30, 393–414.

- [22] X. W. Lu, M. N. Kamat, L. J. Huang, X. F. Huang, J. Org. Chem. 2009, 74, 7608–7617.
- [23] G. Macchione, J. L. de Paz, P. M. Nieto, unpublished results.
- [24] P. Chassagne, L. Raibaut, C. Guerreiro, L. A. Mulard, *Tetrahe*dron 2013, 69, 10337–10350.
- [25] A. Vibert, C. Lopin-Bon, J. C. Jacquinet, *Tetrahedron Lett.* 2010, 51, 1867–1869.
- [26] H. Gold, S. Munneke, J. Dinkelaar, H. S. Overkleeft, J. M. F. G. Aerts, J. D. C. Codee, G. A. van der Marel, *Carbohydr. Res.* 2011, 346, 1467–1478.
- [27] M. Guillemineau, F.-I. Auzanneau, J. Org. Chem. 2012, 77, 8864–8878.
- [28] J. S. Debenham, R. Madsen, C. Roberts, B. Fraser-Reid, J. Am. Chem. Soc. 1995, 117, 3302–3303.
- [29] J. C. Castro-Palomino, R. R. Schmidt, *Tetrahedron Lett.* 1995, 36, 5343–5346.
- [30] M. L. Wolfrom, H. B. Bhat, J. Org. Chem. 1967, 32, 1821-1823.
- [31] M. L. Wolfrom, P. J. Conigliaro, *Carbohydr. Res.* **1969**, *11*, 63–76.
- [32] D. J. Silva, H. M. Wang, N. M. Allanson, R. K. Jain, M. J. Sofia, J. Org. Chem. 1999, 64, 5926–5929.
- [33] L. Lay, L. Manzoni, R. R. Schmidt, Carbohydr. Res. 1998, 310, 157–171.
- [34] J. S. Debenham, R. Rodebaugh, B. Fraser-Reid, J. Org. Chem. 1997, 62, 4591–4600.
- [35] A. F. G. Bongat, M. N. Kamat, A. V. Demchenko, J. Org. Chem. 2007, 72, 1480–1483.
- [36] H. Weiss, C. Unverzagt, Angew. Chem. Int. Ed. 2003, 42, 4261– 4263; Angew. Chem. 2003, 115, 4389–4392.
- [37] S. E. Tully, M. Rawat, L. C. Hsieh-Wilson, J. Am. Chem. Soc. 2006, 128, 7740–7741.
- [38] J. Tamura, N. Tsutsumishita-Nakai, Y. Nakao, M. Kawano, S. Kato, N. Takeda, S. Nadanaka, H. Kitagawa, *Bioorg. Med. Chem. Lett.* 2012, 22, 1371–1374.
- [39] T. M. Wrodnigg, I. Lundt, A. E. Stutz, J. Carbohydr. Chem. 2006, 25, 33–41.
- [40] U. Ellervik, G. Magnusson, J. Org. Chem. 1998, 63, 9314-9322.
- [41] M. Mar Kayser, J. L. de Paz, P. M. Nieto, *Eur. J. Org. Chem.* 2010, 2138–2147.
- [42] K. Ait-Mohand, C. Lopin-Bon, J. C. Jacquinet, *Carbohydr. Res.* 2012, 353, 33–48.
- [43] S. Maza, M. Mar Kayser, G. Macchione, J. Lopez-Prados, J. Angulo, J. L. de Paz, P. M. Nieto, Org. Biomol. Chem. 2013, 11, 3510–3525.
- [44] S. Maza, J. L. de Paz, P. M. Nieto, *Tetrahedron Lett.* 2011, 52, 441–443.
- [45] T. Yamada, S. Kinjyo, J. Yoshida, S. Yamago, Chem. Lett. 2005, 34, 1556–1557.
- [46] N. Khiar, R. Navas, I. Fernandez, *Tetrahedron Lett.* 2012, 53, 395–398.
- [47] S. Maza, G. Macchione, R. Ojeda, J. Lopez-Prados, J. Angulo, J. L. de Paz, P. M. Nieto, *Org. Biomol. Chem.* 2012, *10*, 2146– 2163.
- [48] X. F. Bao, S. Nishimura, T. Mikami, S. Yamada, N. Itoh, K. Sugahara, J. Biol. Chem. 2004, 279, 9765–9776.
- [49] C. D. Nandini, T. Mikami, M. Ohta, N. Itoh, F. Akiyama-Nambu, K. Sugahara, J. Biol. Chem. 2004, 279, 50799–50809.
- [50] S. Faham, R. E. Hileman, J. R. Fromm, R. J. Linhardt, D. C. Rees, *Science* 1996, 271, 1116–1120.
- [51] L. Pellegrini, Curr. Opin. Struct. Biol. 2001, 11, 629-634.
- [52] S. Cochran, C. P. Li, J. K. Fairweather, W. C. Kett, D. R. Coombe, V. Ferro, J. Med. Chem. 2003, 46, 4601–4608.
- [53] K. D. Johnstone, T. Karoli, L. Liu, K. Dredge, E. Copeman, C. P. Li, K. Davis, E. Hammond, I. Bytheway, E. Kostewicz, F. C. K. Chiu, D. M. Shackleford, S. A. Charman, W. N. Charman, J. Harenberg, T. J. Gonda, V. Ferro, J. Med. Chem. 2010, 53, 1686–1699.

Received: March 7, 2014 Published Online: May 19, 2014