# An efficient synthesis of aziridines from ephedrines 

Alejandro Cruz*, Itzia Irene Padilla-Martínez, Efrén V. García-Báez<br>Departamento de Ciencias Básicas de la Unidad Profesional Interdisciplinaria de Biotecnología del IPN, Av. Acueducto s/n Barrio la Laguna Ticomán, México, D.F. 07340, Mexico

## A R T I C L E I N F O

## Article history:

Received 23 March 2010
Accepted 10 May 2010
Available online 22 June 2010


#### Abstract

The reaction of chlorodeoxyephedrine hydrochlorides with one, two, and three molar equivalents of base was studied. Isochlorodeoxypseudoepherines were identified and assigned by ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR data as intermediate compounds in the formation of cis-aziridines. Erythro and threo ephedrinethylethers were isolated as new compounds and analyzed by spectroscopic data. In addition, the erythro isomer was studied by X-ray diffraction.


© 2010 Elsevier Ltd. All rights reserved.

## 1. Introduction

Ephedrines are very important substances in asymmetric synthesis; they are widely used as building blocks in the synthesis of heterocycles, as ligands for metallic or organometallic complexes and as reagents or catalytic agents in organic chemistry. ${ }^{1}$ Due to their relevance in several areas, we are currently developing synthetic methods to obtain heterocycles, ${ }^{2}$ which could be used as chiral inductors or catalysts in asymmetric synthesis.

The intermediates that we had been using for the synthesis of heterocycles derived from ephedrines or norephedrines 1 are the hydrochlorides of chlorodeoxypseudoephedrines and chlorodeoxynorpseudoephedrine 3. ${ }^{2 \mathrm{a}, \mathrm{b}, \mathrm{d}-\mathrm{f}}$ These hydrochlorides were obtained from the chlorination reaction of ephedrine or norephedrine 1 with thionyl chloride. The stereochemistry and functional group effects on the chlorination reaction mechanisms were revisited. ${ }^{3}$ Recently, we reported the synthesis of 2-imineheterocycles from chlorodeoxypseudoephedrines hydrochlorides $\mathbf{3}$ and heterocyanates ${ }^{2 f}$ to proceed through the cis-aziridinium 6, Scheme 1. This intermediate explains the retention of configuration in the heterocycle formed. In fact, this aziridinium intermediate has been proposed in other reactions carried out with retention of the $\mathrm{C}-1$ configuration. ${ }^{4}$

There are some procedures reported in the literature for the formation of aziridines from ephedrines. (1) From the sulfate esters of ephedrine and norephedrine, which are cyclized to a mixture of aziridines ( $45: 55$ cis/trans) by treatment with hot aqueous potassium hydroxide in $84 \%$ yield. ${ }^{5}$ (2) Pseudoephedrine was readily converted to the corresponding cis-aziridine in a $74 \%$ yield by using triphenylphosphine dibromide under mild conditions. In contrast, ephedrine gave only a polymeric material. ${ }^{6}$ (3) Pfister treated ephedrine with triphenylphosphine in the presence of diethylazodicarboxylate in ether or THF for 2 h with good yields of the trans-

[^0]aziridine (84\%). ${ }^{7}$ This procedure was extended to pseudoephedrine to form the cis-aziridine whereas norephedrine required three days to give the corresponding trans-aziridine. ${ }^{8}$ (4) The corresponding cis-aziridines were obtained in $65 \%$ yield from ephedrine ${ }^{9}$ and norephedrine ${ }^{10}$ by stereospecific cyclization of the corresponding chlorodeoxypseudoephedrine hydrochlorides 3 with NaOH 20\% aqueous solution. In this context, and in order to improve the yields of aziridines, we performed a detailed study of this last reaction by using bases such as $\mathrm{NaOH}, \mathrm{K}_{2} \mathrm{CO}_{3}, \mathrm{NH}_{3}$, and $\mathrm{Et}_{3} \mathrm{~N}$ in water, ethanol, and chloroform as solvents.

## 2. Results and discussion

### 2.1. Chlorination reaction of ephedrine hydrochlorides

To obtain the threo and erythro isomers of chlorodeoxyephedrines 3, 4 as starting materials for the synthesis of cis- and transaziridines, the stereoselective chlorination with $\mathrm{SOCl}_{2}$ was used. It is well known that the reaction of ephedrine or norephedrine hydrochlorides 1 with thionyl chloride at room temperature proceeds stereoselectively with inversion of the $\mathrm{C}-1$ configuration ( $\mathrm{S}_{\mathrm{N}} 2$ mechanism) to give the corresponding hydrochlorides of chlorodeoxypseudoephedrines 3, respectively, Scheme 1. However, the same reaction with the hydrochlorides of pseudoephedrines $\mathbf{2}$ gives a 60:40 mixture of threo/erythro chlorodeoxystereoisomers $\mathbf{3 / 4}$, respectively, ${ }^{3}$ Scheme 2 . In order to improve the stereoselectivity, we carried out the same chlorination reaction of pseudoephedrine stereoisomers 2 at $0^{\circ} \mathrm{C}$. Under these conditions, only the corresponding threo chlorodeoxystereoisomers 3 were stereoselectively obtained ( $\mathrm{S}_{\mathrm{N}} \mathrm{i}$ mechanism).

On the other hand, we found that the pure threo isomer $\mathbf{3}$ can be transformed to a 60:40 mixture of the threo/erythro stereoisomers when it is heated $\left(80-90^{\circ} \mathrm{C}\right)$ in DMSO- $d_{6}$ solution for five hours in the NMR tube. This transformation has also been observed when a 60:40 mixture of these hydrochlorides are acidified with HCl to obtain a $35: 65$ ratio. ${ }^{3}$


Scheme 1. Aziridinium 6 as intermediate to obtain 2-iminium heterazolidines.

Chlorodeoxyephedrine hydrochloride 4a was separated by fractional crystallization from a 60:40 mixture of threo/erythro chloro-deoxy-hydrochlorides $\mathbf{3 a} / \mathbf{4 a}$, in the last crop of crystals of an ethanolic solution. However, chlorodeoxynorephedrine $\mathbf{4 b}$ could not be separated from $\mathbf{3 b}$ by this procedure.


Scheme 2. Chlorodeoxyephedrine hydrochlorides from the chlorination reaction of pseudoephedrines 2.

### 2.2. Study of chlorodeoxyephedrines reaction with bases

It is known that the reaction of chlorodeoxypseudoephedrine hydrochlorides 3 with $20 \%$ aqueous NaOH affords the corresponding cis-aziridine 9 in $65 \%$ yield. ${ }^{10}$ In order to improve this result, we decided to carry out the same reaction but using ammonia, sodium hydroxide, potassium carbonate, or triethylamine in ethanol or chloroform with one, two, or three molar equivalents of the corresponding base to detect the intermediates: some results are summarized in Table 1.

Table 1
Proportion of products from the reaction of chlorodeoxypseudoephedrine 2at with bases

| Moles of base | Solvent | Reaction <br> time (h) | 1a/2a | 3a | 8a | 9a | 10a |
| :--- | :--- | :--- | ---: | ---: | ---: | ---: | ---: |
| $6 \mathrm{NH}_{3} / \mathrm{H}_{2} \mathrm{O}$ | EtOH $(96 \%)$ | 8 (reflux) | $30 / 10$ | 10 | 0 | 50 | 0 |
| 1 NaOH | EtOH (96\%) | 24 (stirring) | $10 / 0$ | 57 | 0 | 33 | 0 |
| $2 \mathrm{~K}_{2} \mathrm{CO}_{3}$ | EtOH | 72 (reflux) | 0 | 20 | 10 | 50 | 20 |
| $2{\text { o } 3 \mathrm{~K}_{2} \mathrm{CO}_{3}}^{\mathrm{CHCl}}$ | 72 (reflux) | 0 | 20 | 20 | 40 | 0 |  |
| $3 \mathrm{~K}_{2} \mathrm{CO}_{3}$ | EtOH | 72 (reflux) | 0 | 0 | 0 | 80 | 20 |

Compound 3a was reacted with an excess of aqueous ammonia (27\%) in refluxing ethanol for $8 \mathrm{~h} . \mathrm{NH}_{4} \mathrm{Cl}$ was filtered off, ethanol evaporated, and cis-aziridine $9 \mathbf{9}$ (50\%) was separated with chloroform from the ethanolic residue, and hydrochloride 3a (10\%) in a mixture with ephedrine 1a/pseudoephedrine 2a hydrochlorides ( $30 \% / 10 \%$ ) was identified in the solid residue as a result of partial hydrolysis of compound 3a because of the presence of water.

The hydrolyzing role of water was confirmed when chlorode-oxypseudo-hydrochlorides $\mathbf{3 a}$ or $\mathbf{3 b}$ were refluxed in water for 8 hours to obtain a stereoisomeric mixture of the corresponding ephedrines 1a/2a or norephedrines $\mathbf{1 b} / \mathbf{2 b}$ in a 60:40 proportion, respectively.

When hydrochloride 3a was reacted with one molar equivalent of NaOH in stirring ethanol for 24 h at room temperature, cis-aziridine $9 \mathbf{9}$ (33\%) and hydrochloride 3a (57\%), in a mixture with ephedrine 1a (10\%) as the hydrolysis product, were observed.

On the basis of these results, compound 3a was refluxed in anhydrous ethanol for 24 h in the presence of two molar equivalents of $\mathrm{K}_{2} \mathrm{CO}_{3}$ as base. Bicarbonate and KCl were filtered off, ethanol removed under vacuum, cis-ziridine 9a was extracted with chloroform and the ${ }^{1} \mathrm{H}$ NMR spectrum of the remaining solid showed a mixture of two compounds in a $2: 1$ proportion. The major compound was identified as the corresponding hydrochloride 3a. For the minor compound, the ${ }^{1} \mathrm{H}$ chemical shift of the methyne protons $\mathrm{H}-1$ (doublet) and $\mathrm{H}-2$ (doublet of quartet) appears at 4.09 and 4.83 ppm , respectively. The multiplicity of these signals is inter-changed in position compared with that of the major compound 3a. In addition, the same coupling constant values for $\mathrm{H}-1$ (doublet) were measured for both compounds (approx. 10 Hz ). On the other hand, the $\mathrm{C}-\mathrm{Me}$ absorption at 1.28 ppm in the minor compound is characteristic of a methyl group on a carbon bearing a chlorine atom. ${ }^{4 a}$ These results allowed us to identify the formation of the isochlorodeoxypseudoephedrine hydrochloride $8 \mathbf{a}$ as the minor compound, whose formation is explained by chloride opening on the C3 of the aziridinium intermediate 6a, Scheme 3. Under these conditions cis-aziridine 9a, hydrochloride 3a, and isohydrochloride $\mathbf{8 a}$ are formed through acid-base equilibria of aziridinium 6a with chlorodeoxypseudoephedrine $\mathbf{5 a}$ or isochlorodeoxypseudoephedrine 7a. In addition, a new solid precipitated from the chloroform solution, its NMR spectrum is in agreement with pseudoephedrinylthylether hydrochloride 10a, formed by the ethanolysis of the aziridinium intermediate 6a.

When the same reaction was carried out with chlorodeoxynorpseudoephedrine hydrochloride 3b, only cis-aziridine 9b was extracted with chloroform and the corresponding mixture of hydrochlorides $\mathbf{3 b}$ and isohydrochloride $\mathbf{8 b}$ in a $2: 1$ proportion was identified in the remaining solid. The corresponding norpseudoephedrinethyl ether 10b was not observed.

To avoid ethanolysis, chloroform was used in the reaction of chlorodeoxypseudo-hydrochlorides $\mathbf{3 a}$ or $\mathbf{3 b}$ with two or three molar equivalents of $\mathrm{K}_{2} \mathrm{CO}_{3}$. In both cases, the ${ }^{1} \mathrm{H}$ NMR spectra showed compounds $\mathbf{3 / 8}$ in a mixture with the corresponding cis-aziridine $\mathbf{9}$ in a $1: 1: 2$ proportion, respectively.

Finally, the best results were obtained when the reactions were carried out with three molar equivalents of the base in refluxing anhydrous ethanol by 72 h . From hydrochloride 3a, cis-aziridine 9a (80\%) in mixture with the free ether 10a (20\%) was obtained. From hydrochloride 3b, only cis-aziridine 9b was obtained in $96 \%$ yield. From a 60:40 mixture of threo/erythro chlorodeoxy-hydrochlorides $\mathbf{3 b} / \mathbf{4 b}$, a mixture of cis/trans-aziridines in the initial proportion was detected. When this mixture was kept for a month in a chloroform solution, only the cis isomer was observed by NMR.

The same results were observed when $\mathrm{Et}_{3} \mathrm{~N}$ was used instead of $\mathrm{Na}_{2} \mathrm{CO}_{3}$ using ethanol as solvent.

The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectral data of the corresponding cis-aziridines $\mathbf{9 a}$ and $\mathbf{9 b}$ showed the characteristic chemical shift reported in the literature. ${ }^{8,10}$ However, a Hetcor experiment was recorded to unequivocally assign the close signals, 47.7 to $\mathrm{N}-\mathrm{CH}_{3}$ and 47.5 ppm


Scheme 3. Intermediates involved to get cis-aziridines 9 from chlorodeoxypseudoephedrine hydrochlorides 3.
to C-2. It is interesting to note that $\mathrm{C}-2$ and $\mathrm{C}-3$ resonances are shifted to high frequencies by approximately 10 ppm when $\mathrm{N}-\mathrm{H}$ is changed by $N$-methyl group.

The attempts to isolate the corresponding aziridinium intermediates $\mathbf{6 a}$ or $\mathbf{6 b}$ from the corresponding reaction of cis-aziridines with HCl always led to the corresponding chlorodeoxypseudoderivatives $\mathbf{3 a}$ or $\mathbf{3 b}$, suggesting a fast hydrolysis in acid media. With the aim of synthesizing the trans-aziridine 9at, the chlorodeoxyephedrine 4a was reacted with three molar equivalents of $\mathrm{K}_{2} \mathrm{CO}_{3}$ in refluxing ethanol for 72 h . Under these conditions the erythro isomer of the ether 10a was isolated as the only product. Compound 10ae crystallized from ethanol and its X-ray diffraction structure was obtained, Figure 1. The molecular structure of 10ae showed C-methyl and phenyl groups syn positioned and C-methyl and N methyl groups in a gauche conformation. Intermolecular $\mathrm{NH} \cdots \mathrm{Cl}^{-}$ (2.21, 2.33 $\AA$ ) and intramolecular $\mathrm{Cl}^{-} \ldots \mathrm{HN}(2.34 \AA)$ and $\mathrm{NH} \cdots \mathrm{O}$ ( $2.48 \AA$ ) distances are in the range for hydrogen bonding interactions. ${ }^{3}$


Figure 1. Molecular structure of compound 10ae. Some selected bond lengths ( $\AA$ ) and bond/torsion angles ( ${ }^{\circ}$ ): O1A-C1A, 1.422(5); O1A-C6A, 1.439(6); N4A-C2A, 1.501(5); N4A-C5A, 1.499(7); C1A-C2A, 1.531(6); C1A-C8A, 1.506(6); O1A-C1AC2A, 106.7(3); O1A-C1A-C8A, 113.7(3); C2A-C1A-C8A, 111.8(4); N4A-C2A-C1A, 109.1(3); N4A-C2A-C3A, 109.6(4).

## 3. Conclusions

The chlorination reaction of pseudoephedrines $\mathbf{2 a}$ or $\mathbf{2 b}$ with $\mathrm{SOCl}_{2}$ at $0^{\circ} \mathrm{C}$ stereoselectively afforded chlorodeoxypseudoephedrines $\mathbf{3 a}$ or $\mathbf{3 b}$, respectively. However, when the same chlorination reactions were carried out at $25^{\circ} \mathrm{C}$, a $40: 60$ mixture of the erythro/ threo isomers were obtained by thermal isomerization.

The reaction of the hydrochlorides $\mathbf{3 a}$ and $\mathbf{3 b}$ with three molar equivalents of a mild base in anhydrous ethanol affords the corresponding cis-aziridine in $80 \%$ and $96 \%$ yields, respectively. Solvolysis is the main side reaction which lowers the aziridine yield. However, the ethanolysis byproduct 10at is easily separated from chloroform solutions. In the same conditions our attempts to obtain trans-aziridines from $\mathbf{4 a}$ lead to the novel compound 10ae, suggesting the fast ethanolysis of the incipiently formed trans-aziridine 9at. The molecular structure of 10ae was confirmed by Xray.

## 4. Experimental

### 4.1. General

Melting points were measured on an Electrothermal IA apparatus and are uncorrected. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were recorded on a Varian Mercury $300 \mathrm{MHz}\left({ }^{1} \mathrm{H}, 300.08 ;{ }^{13} \mathrm{C}, 75.46 \mathrm{MHz}\right.$ ). The spectra were measured with tetramethylsilane as internal reference following standard techniques. Crystallographic data (excluding structure factors) for the structures in this paper have been deposited with the Cambridge Crystallographic Data Centre as supplementary publication numbers CCDC: 10ae, (748350). X-ray diffraction cell refinement and data collection: CAD-4 EXPRESS; ${ }^{11}$ data reduction: JANA98; ${ }^{12}$ programs used to solve structure: shel-xs- $97 ;^{13}$ software used to prepare material for publication: WinGX. ${ }^{14}$

## 4.2. (1S,2S)-Chlorodeoxypseudoephedrine hydrochloride 3a

To (1S,2S)-(+)-pseudoephedrine hydrochloride 2a (1.0 g, $4.96 \mathrm{mmol})$ on ice-water bath, $\mathrm{SOCl}_{2}(1.43 \mathrm{~mL}, 19.8 \mathrm{mmol})$ was slowly added. After stirring for 5 h , excess of $\mathrm{SOCl}_{2}$ was removed under vacuum. The resulting white solid was washed with acetone and filtered ( $1.02 \mathrm{~g}, 94 \%$ ); mp $198-200^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}^{30}=+10.5\left(\mathrm{CH}_{3} \mathrm{OH}, c\right.$ $0.1),{ }^{1} \mathrm{H}$ NMR $\left[\delta, \mathrm{ppm}, \mathrm{DMSO}-d_{6}\right]: 9.45\left(\mathrm{br}, 2 \mathrm{H},{ }^{+} \mathrm{NH}_{2} \mathrm{CH}_{3}\right), 7.4(\mathrm{~m}$, $5 \mathrm{H}, \mathrm{Ph}), 5.45\left(\mathrm{~d}, 1 \mathrm{H},{ }^{3} \mathrm{~J}=9.4 \mathrm{~Hz}, \mathrm{C} 1-\mathrm{H}\right), 3.96(\mathrm{dq}, 1 \mathrm{H}, J=9.4$, $6.7 \mathrm{~Hz}, \mathrm{C} 2-\mathrm{H}), 2.60\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{N}-\mathrm{CH}_{3}\right), 1.03\left(\mathrm{~d}, 3 \mathrm{H},{ }^{3} \mathrm{~J}=6.7 \mathrm{~Hz}, \mathrm{C} 2-\right.$ $\mathrm{CH}_{3}$ ). ${ }^{13} \mathrm{C}$ NMR [ $\left.\delta, \mathrm{ppm}, \mathrm{DMSO}-d_{6}\right]: 137.92(\mathrm{Ci}), 129.98(\mathrm{Cp})$,
129.71 (Co), 129.71 (Cm), 62.98 (C1), 58.93 (C2), $29.84\left(\mathrm{~N}-\mathrm{CH}_{3}\right)$; $13.59\left(\mathrm{C} 2-\mathrm{CH}_{3}\right)$.

## 4.3. (1R,2R)-Chlorodeoxynorpseudoephedrine hydrochloride 3b

Synthesized as 3a, ( $1 R, 2 R$ )-(+)-norpseudoephedrine hydrochloride $\mathbf{2 b}(1.0 \mathrm{~g}, 5.33 \mathrm{mmol})$ to get $\mathbf{3 b}$ as a white solid ( $0.82 \mathrm{~g}, 74 \%$ ), $\mathrm{mp} 205-207{ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}^{33}=-10.4\left(c \quad 0.1, \mathrm{H}_{2} \mathrm{O}\right) ;{ }^{1} \mathrm{H}$ NMR $[\delta, \mathrm{ppm}$, DMSO- $d_{6}$ ]: 8.68 (br, $3 \mathrm{H},{ }^{+} \mathrm{NH}_{3}$ ), $7.45(\mathrm{~m}, 5 \mathrm{H}, \mathrm{Ph}), 5.26$ (d, 1 H , $\left.{ }^{3} J=9.7 \mathrm{~Hz}, \mathrm{C} 1-\mathrm{H}\right), 3.83(\mathrm{dq}, 1 \mathrm{H}, J=9.7,6.7 \mathrm{~Hz}, \mathrm{C} 2-\mathrm{H}), 1.03(\mathrm{~d}, 3 \mathrm{H}$, $\left.{ }^{3} \mathrm{~J}=6.7 \mathrm{~Hz}, \mathrm{C} 2-\mathrm{CH}_{3}\right) .{ }^{13} \mathrm{C}$ NMR [ $\delta, \mathrm{ppm}$, DMSO- $d_{6}$ ]: $138.08(\mathrm{Ci})$, 129.9 (Cp), 129.65 (Co), 128.51 (Cm), 65.0 (C1), 52.92 (C2), 16.91 $\mathrm{C} 2-\mathrm{CH}_{3}$; IR ( $\mathrm{KBr}, v_{\text {max }} / \mathrm{cm}^{-1}$ ): $3420\left(\mathrm{NH}_{3}\right), 3058,3014$ (Ar), 2996, 2974, $2958\left(\mathrm{CH}, \mathrm{CH}_{3}\right), 716,692(\mathrm{Cl})$; Elemental Anal. Calcd: C, 52.4461; H, 6.3570; N, 6.7956. Found: C, 53.1263; H, 6.4989; N, 7.5554.

## 4.4. (1R,2S)-Chlorodeoxyephedrine hydrochloride 4a

Synthesized as 3a, (1R,2S)-(+)-ephedrine hydrochloride 1a $(1.0 \mathrm{~g}, 4.96 \mathrm{mmol})$ at room temperature to get $0.96 \mathrm{~g}(88 \%)$ of a mixture of chlorodeoxy stereoisomers 4a/3a (40:60 erythro/threo). The erythro chlorodeoxy hydrochloride 4a was separated from the threo isomer 3a by a fractional crystallization from ethanol as a white solid ( 0.2 g ). ${ }^{1} \mathrm{H}$ NMR [ $\delta, \mathrm{ppm}$, DMSO- $\mathrm{d}_{6}$ ]: 9.45 (br, 2H, ${ }^{+} \mathrm{NH}_{2} \mathrm{Me}$ ), 7.35 (m, 5H, Ph), 5.93 (d, $1 \mathrm{H},{ }^{3} \mathrm{~J}=3.2 \mathrm{~Hz}, \mathrm{C} 1-\mathrm{H}$ ), 3.70 (dq, $1 \mathrm{H}, \mathrm{J}=3.2,6.4 \mathrm{~Hz}, \mathrm{C} 2-\mathrm{H}$ ), $2.60\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{N}-\mathrm{CH}_{3}\right), 1.13$ (d, 3 H , $\left.{ }^{3} J=6.4 \mathrm{~Hz}, \mathrm{C} 2-\mathrm{CH}_{3}\right) .{ }^{13} \mathrm{C}$ NMR $\left[\delta, \mathrm{ppm}\right.$, DMSO- $\left.d_{6}\right]: 137.15(\mathrm{Ci})$, 128.80 (Cp), 129.32 (Co), 128.04 (Cm), 63.45 (C1), 59.58 (C2), $31.19\left(\mathrm{~N}-\mathrm{CH}_{3}\right) ; 10.63\left(\mathrm{C} 2-\mathrm{CH}_{3}\right)$.

## 4.5. (1S,2R)-Chlorodeoxynorephedrine hydrochloride 4b

This compound was identified when the threo chlorodeoxy hydrochloride 3b in DMSO- $d_{6}$ solution is heated $\left(80-90^{\circ} \mathrm{C}\right)$ for five hours in the NMR tube to get a 60:40 mixture of the $\mathbf{3 b} / \mathbf{4 b}$ stereoisomers.
${ }^{1} \mathrm{H}$ NMR $\left[\delta, \mathrm{ppm}\right.$, DMSO- $\left.d_{6}\right]: 8.8\left(\mathrm{br}, 3 \mathrm{H},{ }^{+} \mathrm{NH}_{3}\right), 7.45(\mathrm{~m}, 5 \mathrm{H}, \mathrm{Ph})$, $5.65\left(\mathrm{~d}, 1 \mathrm{H},{ }^{3} J=4.4 \mathrm{~Hz}, \mathrm{C} 1-\mathrm{H}\right), 3.70(\mathrm{dq}, 1 \mathrm{H}, J=4.4,6.4 \mathrm{~Hz}, \mathrm{C} 2-\mathrm{H})$, $1.17\left(\mathrm{~d}, 3 \mathrm{H},{ }^{3} \mathrm{~J}=6.4 \mathrm{~Hz}, \mathrm{C} 2-\mathrm{CH}_{3}\right) .{ }^{13} \mathrm{C}$ NMR $\left[\delta, \mathrm{ppm}\right.$, DMSO- $\left.d_{6}\right]$ : 135.63 (Ci), 129.93 (Cp), 129.65 (Co), 128.51 (Cm), 64.76 (C1), 52.51 (C2), 13.72, (C2-CH3).
4.6.

The isochlorodeoxy-derivatives $\mathbf{8 a}$ and $\mathbf{8 b}$ were identified as intermediates in a solid mixture with the corresponding chlorode-oxy-derivatives $\mathbf{3 a}$ and $\mathbf{3 b}$ when the reactions of the corresponding chlorodeoxy-hydrochlorides $\mathbf{3 a}$ or $\mathbf{3 b}$ were reacted with two molar equivalents of $\mathrm{K}_{2} \mathrm{CO}_{3}$ in refluxing chloroform for 72 h .

### 4.6.1. (1R,2R)-Isochlorodeoxypseudoephedrine hydrochloride 8a

${ }^{1} \mathrm{H}$ NMR $\left[\delta, \mathrm{ppm}\right.$, DMSO- $d_{6}$ ]: $9.35\left(\mathrm{br}, 2 \mathrm{H},{ }^{+} \mathrm{NH}_{2} \mathrm{CH}_{3}\right), 7.5(\mathrm{~m}, 5 \mathrm{H}$, $\mathrm{Ph}), 4.76(\mathrm{dq}, 1 \mathrm{H}, 8.5,6.4 \mathrm{~Hz}, \mathrm{C} 2-\mathrm{H}), 4.49\left(\mathrm{~d}, 1 \mathrm{H},{ }^{3} \mathrm{~J}=8.5 \mathrm{~Hz}, \mathrm{C} 1-\mathrm{H}\right)$, $2.59\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{N}-\mathrm{CH}_{3}\right), 1.26\left(\mathrm{~d}, 3 \mathrm{H},{ }^{3} \mathrm{~J}=6.4 \mathrm{~Hz}, \mathrm{C} 2-\mathrm{CH}_{3}\right) .{ }^{13} \mathrm{C}$ NMR $[\delta$, ppm, DMSO- $d_{6}$ ]: 132.61 (Ci), 130.34 (Cp), 130.00 (Co), 129.83 $(\mathrm{Cm}), 68.45(\mathrm{C} 1), 58.07(\mathrm{C} 2), 32.08\left(\mathrm{~N}-\mathrm{CH}_{3}\right) ; 22.44\left(\mathrm{C} 2-\mathrm{CH}_{3}\right)$.

### 4.6.2. (1S,2S)-Isochlorodeoxynorpseudoephedrine hydrochloride 8b

${ }^{1} \mathrm{H}$ NMR $\left[\delta, \mathrm{ppm}\right.$, DMSO- $d_{6}$ ]: 7.65-7.40 (m, $\left.5 \mathrm{H}, \mathrm{Ph}\right), 4.63(\mathrm{dq}, 1 \mathrm{H}$, $J=9.7,6.6 \mathrm{~Hz}, \mathrm{C} 2-\mathrm{H}), 4.47\left(\mathrm{~d}, 1 \mathrm{H},{ }^{3} \mathrm{~J}=9.7 \mathrm{~Hz}, \mathrm{C} 1-\mathrm{H}\right), 1.26(\mathrm{~d}, 3 \mathrm{H}$, $\left.{ }^{3} \mathrm{~J}=6.6 \mathrm{~Hz}, \mathrm{C} 4-\mathrm{CH}_{3}\right) .{ }^{13} \mathrm{C}$ NMR [ $\delta$, ppm, DMSO- $\mathrm{d}_{6}$ ]: $137.29(\mathrm{Ci})$, 129.82 (Cp), 129.48 (Co), 127.96 (Cm), 60.91 (C1), 59.41 (C2), $22.35\left(\mathrm{C} 2-\mathrm{CH}_{3}\right)$.

## 4.7. cis-(2S,3R)-1,2-Dimethyl-3-phenylaziridine 9a

$(1 S, 2 S)$-Chlorodeoxypseudoephedrine hydrochloride $3 \mathbf{3 a}(1.0 \mathrm{~g}$, $4.54 \mathrm{mmol})$ and $\mathrm{K}_{2} \mathrm{CO}_{3}(1.88 \mathrm{~g}, 13.64 \mathrm{mmol})$ were dissolved in 5 mL of anhydrous ethanol and refluxed during 72 h , the resulted $\mathrm{KHCO}_{3}$ and KCl in suspension were filtered off and ethanol was evaporated. The resulting mixture was dissolved in $\mathrm{CHCl}_{3}$. From this solution compound 10a precipitated and was filtered off as a white solid ( 0.1 g ). Chloroform was eliminated to give the corresponding aziridine 9a as viscous liquid ( $0.53 \mathrm{~g}, 80 \%$ yield): $[\alpha]_{\mathrm{D}}^{20}=-131(c 0.8, \mathrm{EtOH}){ }^{1} \mathrm{H}$ NMR $\left[\delta, \mathrm{ppm}, \mathrm{CDCl}_{3}\right]: 7.25(\mathrm{~m}, 5 \mathrm{H}$, $\mathrm{Ph}), 2.50\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{N}-\mathrm{CH}_{3}\right), 2.44\left(\mathrm{~d}, 1 \mathrm{H},{ }^{3} \mathrm{~J}=6.7 \mathrm{~Hz}, \mathrm{C} 2-\mathrm{H}\right), 1.68(\mathrm{dq}$, $1 \mathrm{H}, J=6.7,5.9 \mathrm{~Hz}, \mathrm{C} 2-\mathrm{H}), 0.92$ (d, $\left.3 \mathrm{H},{ }^{3} \mathrm{~J}=5.9 \mathrm{~Hz}, \mathrm{C} 2-\mathrm{CH}_{3}\right) .{ }^{13} \mathrm{C}$ NMR [ $\delta, \mathrm{ppm}, \mathrm{CDCl}_{3}$ ]: 137.76 (Ci), 128.11 (Co), $127.96(\mathrm{Cm})$, $126.7(\mathrm{Cp}), 47.82(\mathrm{C} 2), 47.71(\mathrm{C} 3), 43.14\left(\mathrm{~N}-\mathrm{CH}_{3}\right) ; 12.85 \mathrm{C} 3-\mathrm{CH}_{3}$. $z / e ~(\%): 146$ (100), 147 (16), 148 (2).

### 4.8. Threo-(1S,2S)-ephedrinylethylether hydrochloride 10a

${ }^{1} \mathrm{H}$ NMR $\left[\delta, \mathrm{ppm}, \mathrm{CDCl}_{3}\right]: 7.3(\mathrm{~m}, 5 \mathrm{H}, \mathrm{Ph}), 4.40\left(\mathrm{~d}, 1 \mathrm{H},{ }^{3} \mathrm{~J}=9.7 \mathrm{~Hz}\right.$, C1-H), 3.31 (dq, $J=19.1,7.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{O}-\mathrm{CH}_{2}$ ), 3.17 (dq, $1 \mathrm{H}, J=9.7$, $6.7 \mathrm{~Hz}, \mathrm{C} 2-\mathrm{H}), 1.16\left(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right.$ ), $1.08(\mathrm{~d}, 3 \mathrm{H}$, $\left.{ }^{3} J=6.7 \mathrm{~Hz}, \mathrm{C} 2-\mathrm{CH}_{3}\right) .{ }^{13} \mathrm{C}$ NMR $\left[\delta, \mathrm{ppm}, \mathrm{CDCl}_{3}\right]: 137.80(\mathrm{Ci}), 129.0$ (Co), $128.99(\mathrm{Cm}), 127.82(\mathrm{Cp}), 82.65(\mathrm{C} 1), 64.71(\mathrm{C} 2), 60.59(0-$ $\left.\mathrm{CH}_{2}\right), 31.52\left(\mathrm{~N}-\mathrm{CH}_{3}\right), 15.36\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right), 13.72\left(\mathrm{C} 2-\mathrm{CH}_{3}\right) . z / e(\%): 58$ (100), 77 (9.6), 194 (18.4).

## 4.9. cis-(2R,3S)-2-Methyl-3-phenylaziridine 9b

Synthesized as 10a, ( $1 R, 2 R$ )-chlorodeoxynorpseudo-ephedrine hydrochloride $3 \mathbf{b} \quad(1.0 \mathrm{~g}, 4.85 \mathrm{mmol})$ and $\mathrm{K}_{2} \mathrm{CO}_{3} \quad(2.0 \mathrm{~g}$, $14.55 \mathrm{mmol})$, aziridine $\mathbf{9 b}$ precipitate as white solid $(0.62 \mathrm{~g}, 96 \%$ yield): $\mathrm{mp} 61^{\circ} \mathrm{C}$, (lit. $\left.{ }^{10} 68{ }^{\circ} \mathrm{C}\right) ;[\alpha]_{\mathrm{D}}^{20}=+69.1\left(c 4.43 \times 10^{-3}, \mathrm{CHCl}_{3}\right)$, $\left\{\right.$ lit. $\left.{ }^{10}[\alpha]_{\mathrm{D}}^{25}=-74(c 3, \mathrm{EtOH})\right\} ; \operatorname{IR}(\mathrm{KBr}) 3218,1600 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left[\delta, \mathrm{ppm}, \mathrm{CDCl}_{3}\right]: 7.26(\mathrm{~m}, 5 \mathrm{H}, \mathrm{Ph}), 3.18\left(\mathrm{~d}, 1 \mathrm{H},{ }^{3} \mathrm{~J}=6.4 \mathrm{~Hz}, \mathrm{C} 2-\mathrm{H}\right)$, $2.34\left(\mathrm{dq}, 1 \mathrm{H}, \mathrm{C} 2-\mathrm{H},{ }^{3} J=6.4,5.6 \mathrm{~Hz}\right), 0.88\left(\mathrm{~d}, 3 \mathrm{H},{ }^{3} \mathrm{~J}=5.6 \mathrm{~Hz}, \mathrm{C} 2-\right.$ $\left.\mathrm{CH}_{3}\right) .{ }^{13} \mathrm{C}$ NMR [ $\delta$, ppm, $\mathrm{CDCl}_{3}$ ]: $137.86(\mathrm{Ci}), 128.11(\mathrm{Co}), 128.02$ ( Cm ), 126.83 (Cp), 37.33 (C2), 32.39 (C3), $13.83 \mathrm{C}_{2}-\mathrm{CH}_{3} . z / e(\%)$ : 132 (100), 133 (12), 77 (19.25), 28 (53.2). IR ( $\mathrm{KBr}, v_{\text {max }} / \mathrm{cm}^{-1}$ ): 3308 (NH), 3060, 3026 (Ar), 2992, 2958, $2926\left(\mathrm{CH}, \mathrm{CH}_{3}\right.$ ); Elemental Anal. Calcd: C, 81.1600; H, 8.3239; N, 10.5161. Found: C, 81.0615; H, 8.3238; N, 11.1770.

### 4.10. Erythro-(1R,2S)-ephedrinylethylether 10ae

Sythesized as 10a, ( $1 R, 2 S$ )-chlorodeoxyephedrine hydrochloride 4a ( $0.2 \mathrm{~g}, 0.11 \mathrm{mmol}$ ) and $\mathrm{K}_{2} \mathrm{CO}_{3}(0.046 \mathrm{~g}, 0.33 \mathrm{mmol})$ to get ether 10ae as white solid ( $0.2 \mathrm{~g}, 96 \%$ yield): $\mathrm{mp}=185-186^{\circ} \mathrm{C}$; $[\alpha]_{\mathrm{D}}^{20}=-68.5\left(c 3.08 \times 10^{-3}, \mathrm{EtOH}\right){ }^{1} \mathrm{H}$ NMR $\left[\delta, \mathrm{ppm}, \mathrm{CDCl}_{3}\right]: 7.30$ ( $\mathrm{m}, 5 \mathrm{H}, \mathrm{Ph}$ ), $4.98\left(\mathrm{~d}, 1 \mathrm{H},{ }^{3} \mathrm{~J}=2.9 \mathrm{~Hz}, \mathrm{C} 1-\mathrm{H}\right), 3.51(\mathrm{dq}, J=7.0$, $\left.4.7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{O}-\mathrm{CH}_{2}\right), 3.27(\mathrm{dq}, 1 \mathrm{H}, J=2.9,6.7 \mathrm{~Hz}, \mathrm{C} 2-\mathrm{H}), 1.26(\mathrm{t}$, $\left.J=7.0 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 1.21\left(\mathrm{~d}, 3 \mathrm{H},{ }^{3} \mathrm{~J}=6.7 \mathrm{~Hz}, \mathrm{C} 2-\mathrm{CH}_{3}\right) .{ }^{13} \mathrm{C}$ NMR $\left[\delta, \mathrm{ppm}, \mathrm{CDCl}_{3}\right]: 137.82(\mathrm{Ci}), 128.86(\mathrm{Co}), 126.83(\mathrm{Cm}), 128.37$ $(\mathrm{Cp}), 79.78(\mathrm{C} 1), 65.41(\mathrm{C} 2), 59.77\left(\mathrm{O}-\mathrm{CH}_{2}\right), 30.75\left(\mathrm{~N}-\mathrm{CH}_{3}\right), 15.52$ $\left(\mathrm{CH}_{2}-\mathrm{CH}_{3}\right), 9.81\left(\mathrm{C} 2-\mathrm{CH}_{3}\right) . z / e(\%): 58(100), 77(11.2), 194(6.2)$.

### 4.10.1. Crystal data

Formula, $\mathrm{C}_{12} \mathrm{H}_{20} \mathrm{NOCl}$; formula weight, 229.74; crystal system, monoclinic; space group, P21 (No. 4); $a, b, c[\AA ̊], 14.1041(19)$, 7.1403(10), 14.642(2); $\alpha, \beta, \gamma\left[{ }^{\circ}\right], 90,113.044(2), 90 ; V\left[{ }^{3}\right]$ ], 1356.9(3); Z, 4; $D$ (calcd) [g/cm³], $1.125 ; \mathrm{Mu}(\mathrm{MoKa})$ [mm ], 0.260 ; $F(000), 496$; crystal size [mm], $0.35 \times 0.30 \times 0.20$.

### 4.10.2. Data collection

Temperature ( $K$ ), 293; radiation $[\AA ̊]$, MoKa 0.71073; Theta MinMax [Deg], 1.5-25.0; dataset: $-16: 16 ;-8: 8 ;-17: 17$; Tot., Uniq.

Data, $R$ (int), 13286, 4798, 0.070; Observed data [ $I>2.0$ sigma( $I$ )], 3086; refinement: Nref, Npar, 4798, 271; $R, w R 2, S: 0.0654$, 0.1320, 1.02; $w=1 /\left[s^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.0422 \mathrm{P})^{2}\right]$ where $P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$; Max. and Av. Shift/Error, 0.00, 0.00; Flack x, 0.10(10): Min. and Max. Resd. Dens. [e/Ang ${ }^{3}$ ], $-0.18,0.20$.

## Acknowledgment

Alejandro Cruz thanks Secretaría de Investigación y Posgrado del IPN, Grant SIP-20080690, for the financial support.

## References

1. (a) Kagan, H. B.. In Asymmetric Synthesis; Morrison, J. D., Ed.; Academic Press, 1985; Vol. 5, (b) Frump, J. A. Chem. Rev. 1971, 71, 485; (c) Mûller, D.; Umbricht, G.; Wever, B.; Pfaltz, A. Helv. Chim. Acta 1991, 74, 232; (d) Pfaltz, A. Acc. Chem. Res. 1993, 26, 339; (e) Ager, D. J.; Prakash, I.; Schaad, D. R. Chem. Rev. 1996, 96, 835-876; (f) Lin, P.; Hong-Bin, Y. Chem. Rev. 2001, 101, 757-824; (g) Andrus, M. B.; Meredith, E. L.; Simmons, B. L.; Sekhar, B. B. V. S.; Hicken, E. J. Org. Lett. 2002, 4, 3549-3552; (h) Thorey, C.; Bouquillon, S.; Helimi, A.; Henin, F.; Muzart, J. Eur. J. Org. Chem. 2002, 13, 2151-2159; (i) Smitrovich, J. H.; Boice, G. N.; Qu, C.; DiMichele, L.; Nelson, T. D.; Huffman, M. A.; Murry, J.; McNamara, J.; Reider, P. J. Org. Lett. 2002, 4, 1963-1966; (j) Chen, Y. C.; Li, X. Q.; Tu Yong, Q.; Deng, J.-G. Tetrahedron: Asymmetry 2003, 14, 2481-2485; (k) Rivero, M. R.; De la Rosa, J. C.; Carretero, J. C. J. Am. Chem. Soc. 2003, 125, 14992-14993; (1) Garcia Ruano, J. L.; Alemparte, C.; Teresa Aranda, M.; Zarzuelo, M. M. Org. Lett. 2003, 5, 75-78; (m) Guo, R.; Lough, A. J.; Morris, R. H.; Song, D. Organometallics 2004, 23, 5524 5529; (n) Krebs, A.; Ludwig, V.; Pfizer, J.; Duerner, G.; Goebel, M. W. Chem. Eur. J. 2004, 10, 544-553; (o) Mao, J.; Wan, B.; Wan, R.; Wu, F.; Lu, S. J. Org. Chem. 2004, 69, 9123-9127; (p) Sibi, M. P.; Stanley, L. M. Tetrahedron: Asymmetry 2004, 15, 3353, 3356; (q) Hitchcock, S. R.; Casper, D. M.; Vaughn, J. F.; Finefield, J. M.; Ferrence, G. M.; Esken, J. M. J. Org. Chem. 2004, 69, 714-718; (r) Hein, J. E.; Zimmerman, J.; Sibi, M. P.; Hultin, P. G. Org. Lett. 2005, 7, 2755-2758; (s) Rodriguez, M.; Vicario, J. L.; Badia, D.; Carrillo, L. Org. Biomol. Chem. 2005, 3, 2026-2030; (t) Cheung, F. K.; Hayes, A. M.; Hannedouche, J.; Yim, A. S. D.; Wills, M. J. Org. Chem. 2005, 70, 3188-3197; (u) Blay, G.; Fernández, I.; MarcoAleixandre, A.; Pedro, J. R. Tetrahedron: Asymmetry 2005, 16, 1207-1213; (v)

Mao, J.; Wan, B.; Wu, F.; Lu, S. Tetrahedron Lett. 2005, 46, 7341-7344; (w) Unaleroglu, C.; Aydin, A. E.; Demir, A. S. Tetrahedron: Asymmetry 2006, 17, 742749; (x) Reyes, E.; Vicario, J. L.; Carrillo, L.; Badia, D.; Iza, A.; Uria, U. Org. Lett. 2006, 8, 2535-2538; (y) Guille, S.; Cabello, S.; Kizirian, J.-C.; Alexakis, A. Tetrahedron: Asymmetry 2006, 17, 1045-1047; (z) Biswas, K.; Woodward, S. Tetrahedron: Asymmetry 2008, 19, 1702-1708; (aa) Parrot, R. W., II; Dore, D. D.; Chandrashekar, S. P.; Bentley, J. T.; Morgan, B. S.; Hitchcock, S. R. Tetrahedron: Asymmetry 2008, 19, 607-611.
2. (a) Cruz, A.; Flores-Parra, A.; Tlahuext, H.; Contreras, R. Tetrahedron: Asymmetry 1995, 6, 1933-1940; (b) Cruz, A.; Macías-Mendoza, D.; Barragán Rodríguez, E.; Tlahuext, H.; Nôth, H.; Contreras, R. Tetrahedron: Asymmetry 1998, 8, 39033911; (c) Cruz, A.; Geníz, E.; Contreras, R. Tetrahedron: Asymmetry 1998, 9, 3391-3396; (d) Cruz, A.; Vásquez-Badillo, A.; Ramos-García, I.; Contreras, R. Tetrahedron: Asymmetry 2001, 12, 711-717; Cruz, A.; Gayosso, M.; Contreras, R. Heteroatom Chem. 2001, 12, 586-593; (e) Cruz, A.; Contreras, R.; PadillaMartinez, I. I.; Juárez-Juárez, M. Tetrahedron: Asymmetry 2006, 17, 1499-1505; (f) Cruz, A.; Padilla-Martinez, I. I.; García-Báez, E. V.; Contreras, R. Tetrahedron: Asymmetry 2007, 18, 123-130.
3. Flores-Parra, A.; Suárez-Moreno, P.; Sánchez-Ruíz, S. A.; Tlahuextl, M.; JaenGaspar, J.; Tlahuext, H.; Salas Coronado, R.; Cruz, A.; Nôth, H.; Contreras, R. Tetrahedron: Asymmetry 1998, 9, 1661-1671.
4. (a) Dieter, R. K.; Deo, N.; Lagu, B.; Dieter, J. W. J. Org. Chem. 1992, 57, 16631671; (b) Poelert, M. A.; Hulshof, L. A.; Kellogg, R. M. Recl. Trav. Chim. Pays-Bas 1994, 113, 335-364; (c) De Sousa, S. E.; ÓBrien, P.; Poumellec, P. J. Chem. Soc., Perkin Trans. I 1998, 1483, 1492.
5. (a) Boris, S. J.; Beardsley, G. P. Tetrahedron Lett. 1966, 5113; (b) Boris, S. J. J. Org. Chem. 1962, 27, 3532.
6. Okada, I.; Ichimura, K.; Sudo, R. Bull. Soc. Chem. Jpn. 1970, 43, 1185.
7. Pfister, J. R. Synthesis 1984, 969.
8. Poelert, M. A.; Hof, R. P.; Peper, N. C. M. W.; Kellogg, R. M. Heterocycles 1994, 37, 461.
9. Almena, J.; Foubelo, F.; Yus, M. J. Org. Chem. 1994, 59, 3210.
10. Galindo, A.; Orea-F, L.; Gnecco, D.; Enríquez, R. G.; Toscano, R. F.; Reynolds, W. F. Tetrahedron: Asymmetry 1997, 8, 2877-2879.
11. Enraf-Nonius. CAD-4 EXPRESS. Version 5.1. Enraf-Nonius, Delft, The Netherlands, 1995.
12. Petricěk, V.; Dušek, M. Jana98. Institute of Physics, Czech Academy of Sciences, Cukravarnicka 10, 162 53, Prague, Czech Republic, 1998.
13. Sheldrick, G. M. shelxs97 and shelxl97. University of Göttingen: Germany, 1997.
14. Farrugia, L. J. J. Appl. Crystallogr. 1999, 32, 837-838.


[^0]:    * Corresponding author. Tel.: +15557296000/56323; fax: +15557296000/56325.

    E-mail addresses: alecruz@ipn.mx, alcralmx@hotmail.com (A. Cruz).

