This article was downloaded by: ["Queen's University Libraries, Kingston"] On: 05 July 2013, At: 06:54 Publisher: Taylor & Francis Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Synthetic Communications: An International Journal for Rapid Communication of Synthetic Organic Chemistry

Publication details, including instructions for authors and subscription information: <u>http://www.tandfonline.com/loi/lsyc20</u>

Reagent-Controlled Asymmetric lodolactonization Using Cinchona Alkaloids as Chiral Sources

Mang Wang ^a , Lian Xun Gao ^a , Wei Yue ^a & Wen Peng Mai ^a

^a Lab 2, Changchun Institute of Applied Chemistry, Chinese Academy of Science, Changchun, 130022, P.R. China Published online: 21 Aug 2006.

To cite this article: Mang Wang , Lian Xun Gao , Wei Yue & Wen Peng Mai (2004) Reagent-Controlled Asymmetric Iodolactonization Using Cinchona Alkaloids as Chiral Sources, Synthetic Communications: An International Journal for Rapid Communication of Synthetic Organic Chemistry, 34:6, 1023-1032, DOI: <u>10.1081/SCC-120028633</u>

To link to this article: http://dx.doi.org/10.1081/SCC-120028633

PLEASE SCROLL DOWN FOR ARTICLE

Taylor & Francis makes every effort to ensure the accuracy of all the information (the "Content") contained in the publications on our platform. However, Taylor & Francis, our agents, and our licensors make no representations or warranties whatsoever as to the accuracy, completeness, or suitability for any purpose of the Content. Any opinions and views expressed in this publication are the opinions and views of the authors, and are not the views of or endorsed by Taylor & Francis. The accuracy of the Content should not be relied upon and should be independently verified with primary sources of information. Taylor and Francis shall not be liable for any losses, actions, claims, proceedings, demands, costs, expenses, damages, and other liabilities whatsoever or howsoever caused arising directly or indirectly in connection with, in relation to or arising out of the use of the Content.

This article may be used for research, teaching, and private study purposes. Any substantial or systematic reproduction, redistribution, reselling, loan, sub-licensing, systematic supply, or distribution in any form to anyone is expressly forbidden. Terms & Conditions of access and use can be found at http://www.tandfonline.com/page/terms-and-conditions

SYNTHETIC COMMUNICATIONS[®] Vol. 34, No. 6, pp. 1023–1032, 2004

Reagent-Controlled Asymmetric Iodolactonization Using Cinchona Alkaloids as Chiral Sources

Mang Wang, Lian Xun Gao,* Wei Yue, and Wen Peng Mai

Lab 2, Changchun Institute of Applied Chemistry, Chinese Academy of Science, Changchun, P.R. China

ABSTRACT

A novel method for reagent-controlled asymmetric iodolactonization of 5-aryl-4-pentenoic acids is reported. This work uses carboxylate ion pairs combined with cinchona alkaloids as chiral sources of carboxylate anion for the first time leading to a mixture of two regio-isomeric iodolactones with moderate enantioselectivity (exo-18.5% ee, endo-35.0% ee) under mild reaction conditions.

Halolactonization of unsaturated acids is a powerful process in synthetic organic chemistry for regio- and stereoselective functionalization of double bonds.^[1] Much recent work has centered on asymmetric halolactonization in

1023

DOI: 10.1081/SCC-120028633 Copyright © 2004 by Marcel Dekker, Inc. 0039-7911 (Print); 1532-2432 (Online) www.dekker.com

^{*}Correspondence: Lian Xun Gao, Lab 2, Changchun Institute of Applied Chemistry, Chinese Academy of Science, Changchun, 130022, P.R. China; E-mail: lxgao@ ciac.jl.cn.

ORDER		REPRINTS
-------	--	----------

which the one or two new stereo centers are generated and a high degree of chiral induction can be achieved depending on the structure of the substrate.^[2] Although this type of substrate-controlled asymmetric induction in this cyclization was well described and applied in the synthesis of natural products,^[3] the investigation on reagent-controlled asymmetric halolactonization remained poorly explored. To the best of our knowledge, there are only four examples of reagent-controlled stereoselective halolactonization to date^[4,5] and the stereochemistry of this lactonization reaction can be controlled by chiral carboxylate anion^[4] and chiral positive halogen ion.^[5] In this context, we have developed a new protocol for reagent-controlled asymmetric iodolactonization using cinchona alkaloid-carboxylate ion pairs as chiral sources of carboxylate anion. Here the new experimental results are reported.

As a probe, 5-phenyl-4-pentenoic acid 1a was treated with iodine and saturated aqueous sodium hydrogen carbonate in CH₂Cl₂ (Sch. 1). An expected competition between the exo mode and the endo mode of cyclization for the formation of lactone was observed.^[1a,1c,1d] In fact, a mixture of γ - and δ -lactone was obtained with the ratio of 20: 80. The major product is the endoproduct δ -lactone **3a** (IR 1723 cm⁻¹) due to the electronic factors from the phenyl group at the 5-position of 1a. This product is not separable from the mixture with its isomer γ -lactone **2a** (IR 1760 cm⁻¹) by chromatography in our experiment. Interestingly, when cinchonidine 4a was introduced as alkali instead of NaHCO₃, the yield ratio of the reaction products 2a: 3a was reversed with detectable enantioselectivity. In this case, the endo-product 3a is not dominant product perhaps resulting from the steric repulsion between the phenyl group and the larger carboxylate ion pair combined with cinchonidine when the carbon at the 5-position is being attacked by the carboxylate anion. The above initial result prompted us to pursue the enantioselective iodolactonization using cinchona alkaloids as chiral sources.

The solvent effect on the selectivity of this reaction was first investigated. Among the solvent tested (Table 1), it was observed that methylene chloride gave the relatively better stereoselectivity for the formation of lactone **2a** and **3a**. Another promising solvent was chloroform, leading to an ee of 8.0% for **2a** and 17.5% for **3a**. Comparatively, when ether, tetrahydrofuran, acetonitrile or

Scheme 1.

Marcel Dekker, Inc.

270 Madison Avenue, New York, New York 10016

Table 1. Effect of solvent on the stereoselectivity of iodolactonization of **1a** using **4a** as alkali.^a

1025

Solvent	Reaction time (h)	% Yields $2a + 3a^b$	2a : 3 a ^c	$\%$ ee $2a^{d}$	% ee 3a ^d	% Recovery 4a
Et ₂ O	96	80	92:8	5.5	15.0	84
THF	45	83	83:17	2.5	4.5	87
CH ₃ CN	70	89	85:15	7.0	3.5	99
$C_6 H_6^e$	95	80	92:8	9.0	0	80
CH_2Cl_2	16	100	68:32	8.0	21.5	87
CHCl ₃	18	90	75:25	8.0	17.5	86

^a**1a** (1 mmol), **4a** (1.1 mmol), I_2 (1.5 mmol), $0^{\circ}C$.

^bIsolated yield.

^cDetermined by ¹HNMR.

^dDetermined by ¹HNMR with R-(-)-2,2,2-trifloro-1-(9-anthryl) ethanol. The absolute configuration of major enantiomer was not determined.

^eAt room temperature (about 15° C).

benzene were selected as solvent, the iodolactonization need to suffer longer reaction process with lower selectivity. Further optimization of the reaction conditions was then examined by investigating temperature effects. It was found that the temperature $(-78^{\circ}C, -20^{\circ}C, 0^{\circ}C \text{ and r.t.})$ had only limited influence on the stereoselectivity of this cyclization. Since higher temperature, such as $30^{\circ}C$ or higher, is disadvantageous to the stability of iodolactones, $0^{\circ}C$ was chosen as the preferred reaction temperature for iodolactonization.

Several other commercially available cinchona alkaloids were investigated as chiral alkali (Figure 1). From the results described in Table 2, it is found that cinchonidine **4a** and quinine **4d** result in better selectivity than others. Whereas, O-substituted alkaloids **4e** and **4f** do not lead to higher selectivity. In all cases, recoveries of **4** are excellent. Compared with other cinchona alkaloids, when **4b** and **4c** as chiral alkali, the iodolactonization generated the reverse rotation in major enantiomer of products **2a** and **3a**. But the absolute configurations of major enantiomer of **2a** and **3a** were not determined.

Iodolactonization of a number of 5-substituted-4-pentenoic acids (5substituent-4-pentenoic acids 1a-1e and 1g were prepared stereoselectively from 1-substituent-propylen-1-ol and triethyl orthoacetete via a Claisen rearrangement followed by basic cleavage of the ethyl ester. About general procedure for Claisen rearrangement, see: Ref.^[6]) was then performed successfully (Sch. 2) using **4a** and **4d** as chiral alkali in CH₂Cl₂ at 0°C and the results are summarized in Table 3. Obviously, aromatic substituent at the

ORDER	ି	REPRINTS
	\equiv]

Table 2. Results of the steroselective iodolactonization of 1a using different 4 as alkali.^a

Alkali 4	Reaction time (h)	% Yields $2a + 3a^{b}$	2a : 3a ^c	$\%$ ee $2a^d$	% ee 3a ^d	% Recovery 4
4a	16	100	68:32	8.0	21.5	87
4b	18	93	75:25	6.0	16.0	90
4c	22	96	84:16	2.5	16.0	82
4d	22	100	76:24	9.5	28.0	82
4e	36	83	66:34	8.5	3.0	98
4f	24	80	82:18	7.0	3.5	93

^a1a (1 mmol), 4 (1.1 mmol), CH₂Cl₂, I₂ (1.5 mmol), 0°C.

^bIsolated yield.

1026

^cDetermined by ¹HNMR.

^dDetermined by ¹HNMR with R-(-)-2,2,2-trifloro-1-(9-anthryl) ethanol. The absolute configuration of major enantiomer was not determined.

Þ

ORDER		REPRINTS
-------	--	----------

1027

5-position of the acids 1 (1a-1e) is necessary to have the proper selectivity. Unsaturated carboxylic acids (1f and 1g) with hydrogen or an aliphatic substituent at the 5-position only lead to racemic γ -lactones. Table 3 shows that the substrate with strong electron-donating aryl at the 5-position leads to an increase in the ratio of the endo-product to the exo-product during cyclization (entries 4 and 11). Unfortunately, when an aryl with strong electron-withdrawing substituent was introduced to form 5-aryl-4-pentenoic acid, such as pyridinyl, no lactone was detected after five days under the similar reaction conditions. Besides the recovery of the substrate, the reaction

Entry	Acid 1	Alkali 4	Reaction time (h)	% Yields $2+3^{b}$	2:3 ^c	% ee 2 ^d	% ee 3 ^d	% Recovery 4
1	1 a	4a	12	100	68:32	8.0	21.5	87
2	1b	4a	8	95	38:62	8.5	32.0	95
3	1c	4a	12	100	65:35	18.5	25.5	93
4	1d	4a	24	33	0:100	_	35.0	93
5	1e	4a	23	89	86:14	5.5	25.0	90
6	1f	4a	7	88	100:0	0	_	96
7	1g	4a	8	86	100:0	0	_	98
8	1a	4d	22	100	76:24	9.5	28.0	82
9	1b	4d	14	93	57:43	10.0	32.0	84
10	1c	4d	16	95	74:26	15.0	31.5	90
11	1d	4d	47	25	0:100	-	32.0	92
12	1e	4d	30	86	83:17	11.5	34.0	91
13	1f	4d	10	90	100:0	0	_	94
14	1g	4d	12	89	100:0	0	_	90

Table 3. Substituted carboxylic acids **1** in iodolactonization reaction.^a

^a**1** (1 mmol), **4** (1.1 mmol), CH₂Cl₂, I₂ (1.5 mmol), 0°C.

^bIsolated yield.

^cDetermined by ¹HNMR.

^dDetermined by ¹HNMR with R-(-)-2,2,2-trifloro-1-(9-anthryl) ethanol. The absolute configuration of major enantiomer was not determined.

Marcel Dekker, Inc.

270 Madison Avenue, New York, New York 10016

	REPRINTS
--	----------

resulted in complex mixtures which could not identified by ¹H NMR. From the results described in Table 3, it is clear that the ee values of **3** are higher than those of their isomer **2** in all cases. It can be rationally explained that the aryl substituent located at the 5-position can maximize the asymmetric face of the endo-mode cyclization by the steric repulsion with the chiral carboxylate ion pair formed with cinchona.

In conclusion, we have developed a new protocol for reagent-controlled asymmetric iodolactonization. This method uses carboxylate ion pair combined with commercially available cinchona alkaloids as chiral sources of carboxylate anion for the first time leading to a mixture of iodolactonized products with moderate enantioselectivity. Further studies to optimize this reaction are in progress.

EXPERIMENTAL SECTION

IR spectra (KBr) were measured using a Bio-Rad FTS135 spectrometer. The ¹H NMR spectra were determined on Bruker spectrometer (300, 400 or 600 MHz) in CDCl₃ with TMS as internal standard. Mass spectra were recorded on LCQ spectrometer. Elemental analyses were obtained on a VarioEL analyser. Unless otherwise noted materials were obtained from commercially available sources and used without further purification.

General Procedure for Iodolactonization of Acids 1

To a solution of acid 1a-1g (1 mmol) in CH₂Cl₂ (10 mL) was added 4a-4f (1.1 mmol). After stirring for 10 min, iodine (1.5 mmol) was added to this rapidly stirred reaction mixture at 0°C. The flask was protected from light and stirred for 7–47 h at 0°C. The reaction mixture was diluted with CH₂Cl₂ (100 mL) and then quenched with saturated aqueous Na₂S₂O₃. The organic layer was separated and washed with saturated aqueous NaHCO₃ (2 × 60 mL), 2N HCl (2 × 60 mL) and brine (1 × 60 mL), dried over anhydrous MgSO₄, filtered, and evaporated to afford a mixture of two regio-isomeric products (25–100%). The reaction products need to be stored at -20° C protected from light. The ratio of two isomers was determined by ¹HNMR. The enantiomeric excess was also confirmed by ¹HNMR (600 MHz) spectrum of a mixture of endo- and exo-lactones with R-(-)-2,2,2-trifloro-1-(9-anthryl)ethanol.

The aqueous acidic washes were made basic with NaOH and extracted with CH_2Cl_2 . The organic layer was dried over $MgSO_4$, filtered, and evaporated to give recovered 4 (82–98%) as a white solid.

1028

5-(Iodo-phenyl-methyl)-dihydrofuran-2-one 2a. ¹H NMR (400 MHz, CDCl₃): $\delta = 2.12-2.20$ (m, 1H), 2.53–2.65 (m, 3H), 4.86–4.92 (m, 1H, CHO), 5.12 (d, J = 8.0 Hz, 1H, CHI), 7.27–7.34 (m, 3H), 7.41 (d, J = 7.6 Hz, 2H). IR (KBr): 3029, 2940, 1760, 1188 cm⁻¹. MS (EI, 30 eV): m/z (%) 302 (4) [M⁺], 175 (100), 129 (20), 91 (75). Anal. Calcd. for C₁₁H₁₁IO₂: C 43.73 H 3.67, Found: C 43.47 H 3.56. Elemental analyses was obtained with a mixture of two structural isomers **2a** and **3a**.

5-Iodo-6-phenyl-tetrahydro-pyran-2-one 3a. ¹H NMR (400 MHz, CDCl₃): $\delta = 2.30-2.49$ (m, 2H), 2.68–2.76 (m, 1H), 2.82–2.90 (m, 1H), 4.40–4.45 (m, 1H, CHI), 5.60 (d, J = 8.0 Hz, 1H, CHO), 7.32–7.34 (m, 2H), 7.39–7.41 (m, 3H). IR (KBr): 3036, 2950, 1723, 1205 cm⁻¹. MS (EI, 30 eV): m/z (%) 302 (6) [M⁺], 254 (17), 175 (100), 129 (30), 91 (95). Anal. Calcd. for C₁₁H₁₁IO₂: C 43.73 H 3.67, Found: C 43.47 H 3.56. Elemental analyses was obtained with a mixture of two structural isomers **2a** and **3a**.

5-(Iodo-*p***-tolyl-methyl)-dihydro-furan-2-one 2b.** ¹H NMR (300 MHz, CDCl₃): $\delta = 2.11-2.18$ (m, 1H), 2.33 (s, 3H, CH₃), 2.52-2.63 (m, 3H), 4.84-4.91 (m, 1H, CHO), 5.12 (d, J = 8.0 Hz, 1H, CHI), 7.12 (d, J = 8.0 Hz, 2H), 7.31 (d, J = 8.0 Hz, 2H). IR (KBr): 3050, 2989, 1759, 1185, 822 cm⁻¹. MS (EI, 30 eV): m/z (%) 316 (2) [M⁺], 254 (38), 189 (98), 127 (20), 105 (100). Anal. Calcd. for C₁₂H₁₃IO₂: C 45.59 H 4.14, Found: C 45.53 H 3.93. Elemental analyses was obtained with a mixture of two structural isomers **2b** and **3b**.

5-Iodo-6-*p*-tolyl-tetrahydro-pyran-2-one **3b**. ¹H NMR (300 MHz, CDCl₃): $\delta = 2.35-2.50$ (m, 2H), 2.39 (s, 3H, CH₃), 2.67–2.77 (m, 1H), 2.81–2.90 (m, 1H), 4.40–4.47 (m, 1H, CHI), 5.56 (d, J = 8.0 Hz, 1H, CHO), 7.23 (s, 4H). IR (KBr): 3031, 2951, 1727, 1201, 1016 cm⁻¹. MS (EI, 30 eV): m/z (%) 316 (2) [M⁺], 254 (39), 189 (100), 143 (34), 131 (38), 119 (53), 105 (75), 91 (18), 69 (35). Anal. Calcd. for C₁₂H₁₃IO₂: C 45.59 H 4.14, Found: C 45.53 H 3.93. Elemental analyses was obtained with a mixture of two structural isomers **2b** and **3b**.

5-(Iodo-*o***-tolyl-methyl)-dihydrofuran-2-one 2c.** ¹H NMR (300 MHz, CDCl₃): $\delta = 2.17 - 2.27$ (m, 1H), 2.35 (s, 3H, CH₃), 2.61 - 2.67 (m, 2H), 2.71 - 2.79 (m, 1H), 5.01 - 5.09 (m, 1H, CHO), 5.30 (d, J = 7.5 Hz, 1H, CHI), 7.12 (d, J = 7.5 Hz, 1H), 7.15 - 7.24 (m, 2H), 7.51 (d, J = 7.5 Hz, 1H). IR (KBr): 3050, 2967, 1763, 1199 cm⁻¹. MS (EI, 30 eV): m/z (%) 316 (5) [M⁺], 189 (70), 105 (100), 91 (18), 55 (30). Anal. Calcd. for C₁₂H₁₃IO₂: C 45.59 H 4.14, Found: C 45.75 H 3.94. Elemental analyses was obtained with a mixture of two structural isomers **2c** and **3c**.

5-Iodo-6-*o*-tolyl-tetrahydro-pyran-2-one 3c. ¹H NMR (300 MHz, CDCl₃): $\delta = 2.34-2.46$ (m, 2H), 2.43 (s, 3H, CH₃), 2.74-2.94 (m, 2H), 4.43-4.50 (m, 1H, CHI), 5.81 (d, J = 7.5 Hz, 1H, CHO), 7.20-7.29 (m, 4H). IR (KBr): 3024, 2966, 1719, 1219 cm⁻¹. MS (EI, 30 eV): m/z (%) 316 (4)

1029

Copyright @ Marcel Dekker, Inc. All rights reserved

ORDER	ି	REPRINTS
	\equiv	ļ

 $[M^+]$, 254 (100), 189 (50), 127 (70), 105 (78), 55 (22). Anal. Calcd. for $C_{12}H_{13}IO_2$: C 45.59 H 4.14, Found: C 45.75 H 3.94. Elemental analyses was obtained with a mixture of two structural isomers **2c** and **3c**.

6-Anthracen-9-yl-5-iodo-tetrahydro-pyran-2-one 3d. ¹H NMR (300 MHz, CDCl₃): $\delta = 2.86-3.09$ (m, 4H), 5.33–5.39 (m, 1H, CHI), 7.04 (d, J = 10.5 Hz, 1H, CHO), 7.49 (dd, J = 6.8 Hz, J = 8.5 Hz, 2H), 7.57 (dd, J = 6.8 Hz, J = 8.5 Hz, 2H), 8.08 (d, J = 8.5 Hz, 2H), 8.30 (d, J = 8.5 Hz, 2H), 8.57 (s, 1H). IR (KBr): 3049, 2922, 1728, 1207, 1007, 729 cm⁻¹. MS (EI, 70 eV): m/z (%) 402 (2) [M⁺], 191 (100), 178 (32), 127 (38). Anal. Calcd. for C₁₉H₁₅IO₂: C 56.74 H 3.76, Found: C 56.56 H 3.69.

5-(*p*-Chloro-phenyl-iodo-methyl)-dihydrofuran-2-one 2e. ¹H NMR (600 MHz, CDCl₃): $\delta = 2.10-2.13$ (m, 1H), 2.56–2.60 (m, 2H), 2.63–2.66 (m, 1H), 4.87–4.91 (m, 1H, CHO), 5.05 (d, J = 8.4 Hz, 1H, CHI), 7.30 (d, J = 8.4 Hz, 2H), 7.36 (d, J = 8.4 Hz, 2H). IR (KBr): 3040, 2982, 1766, 1494, 1191, 833 cm⁻¹. MS (EI, 30 eV): m/z (%) 337 (2) [M⁺], 254 (26), 211 (30), 209 (100), 127 (56), 125 (70), 55 (32). Anal. Calcd. for C₁₁H₁₀ClIO₂: C 39.26 H 2.99 Cl 10.66, Found: C 39.68 H 2.82 Cl 11.32. Elemental analyses was obtained with a mixture of two structural isomers **2e** and **3e**.

6-(*P*-Chloro-phenyl)-5-iodo-tetrahydro-pyran-2-one 3e. ¹H NMR (300 MHz, CDCl₃): $\delta = 2.46-2.56$ (m, 2H, CH₂), 2.73-2.84 (m, 2H, CH₂), 4.30-4.38 (m, 1H, CHI), 5.50 (d, J = 8.4 Hz, 1H, CHO), 7.31 (d, J = 8.4 Hz, 2H), 7.40 (d, J = 8.4 Hz, 2H). IR (KBr): 3063, 2983, 1731, 1201, 1011 cm⁻¹. MS (EI, 30 eV): m/z (%) 339 (8) [M⁺ + 2], 337 (23) [M⁺], 211 (15), 209 (70), 163 (30), 69 (100), 55 (42). Anal. Calcd. for C₁₁H₁₀CIIO₂: C 39.26 H 2.99 Cl 10.66, Found: C 39.68 H 2.82 Cl 11.32. Elemental analyses was obtained with a mixture of two structural isomers **2e** and **3e**.

5-(1-Iodo-butyl)-dihydro-furan-2-one 2g. ¹H NMR (300 MHz, CDCl₃): $\delta = 0.96$ (t, J = 7.4 Hz, 3H, CH_3), 1.36–1.48 (m, 1H), 1.50–1.86 (m, 3H), 1.95–2.10 (m, 1H), 2.48-2.64 (m, 3H), 4.10–4.16 (m, 1H, CHO), 4.34–4.41 (m, 1H, CHI). IR (KBr): 2959, 1775, 1457, 1166, 1016 cm⁻¹. MS (EI, 70 eV): m/z (%) 268 (5) (M⁺), 141 (89), 85 (100). Anal. Calcd. for C₈H₁₃IO₂: C 35.84 H 4.89, Found: C 36.24 H 4.98.

ACKNOWLEDGMENTS

We thank Prof. Meng Xian Ding and Prof. Qun Liu (Northeast Normal University, China) and Dr. Peng Zhou (Kionix, Inc., USA) for their discussion and advice.

	REPRINTS
--	----------

REFERENCES

- 1. (a) Dowle, M.D.; Davies, D.I. Synthesis and synthetic utility of halolactones. Chem. Soc. Rev. 1979, 8, 171-197; (b) Cardillo, G.; Orena, M. Stereocontrolled cyclofunctionalizations of double bonds through heterocyclic intermediates. Tetrahedron 1990, 46, 3321-3408; (c) Mulzer, J. Halolactonization: the career of a reaction. In Organic Synthesis Highlights; Mulzer, J., Altenbach, H.J., Braun, M., Krohn, K., Reissig, H.U., Eds.; VCH: Weinheim, 1991; 158-164; (d) Rousseau, G.; Robin, S. Electrophilic cyclization of unsaturated amides. Tetrahedron 1998, 54, 13681-13736.
- (a) Fuji, K.; Node, M.; Naniwa, Y.; Kawabata, T. Enantioselective 2. iodolactonization through diastereotopic group differentiation. Tetrahedron Lett. 1990, 31, 3175-3178; (b) Yokomatsu, T.; Iwasawa, H.; Shibuya, S. Enantioselective halolactonisation of $bis-\gamma,\delta$ -unsaturated carboxylic acid derivatives: use of a sultam and oxazolidine-2-ones as chiral auxiliary. J. Chem. Soc., Chem. Commu. 1992, 728-729; (c) Moon, H.S.; Eisenberg, S.W.E.; Wilson, M.E.; Schore, N.E.; Kurth, M.J. Preparation of nonracemic 3,5-disubstituted-y-butyrolactones: an effective sequent auxiliary for amide alkylation and iodolactonization. J. Org. Chem. 1994, 59, 6504-6505; (d) Moon, H.S.; Schore, N.E.; Kurth, M.J. A polymer-supported C2-symmetric chiral auxiliary: preparation of nonracemic 3,5-disubstituted- γ -butyrolactones. Tetrahedron Lett. **1994**, 35, 8915-8918; (e) Mckew, J.C.; Olmstead, M.M.; Kurth, M.J. Doubly diastereoselective iodolactonizations: olefin and face selectivity in nona-2,7-diene-5-carboxylic acid cyclizations. J. Org. Chem. 1994, 59, 3389-3393; (f) Hoffmann, R.W.; Sturmer, R.; Harms, K. A phenylassisted asymmetric iodolactonization reaction. Tetrahedron Lett. 1994, 35, 6263-6266; (g) Kitagawa, O.; Momose, S.I.; Fushimi, Y.; Taguchi, T. Efficient synthesis of various atropisomeric amides in optically pure forms and their application to asymmetric reactions. Tetrahedron Lett. 1999, 40, 8827-8831; (h) Price, M.D.; Kurth, M.J.; Schore, N.E. Comparison of solid-phase and solution-phase chiral auxiliaries in the alkylation/iodolactonization sequence to γ -butyrolactones. J. Org. Chem. 2002, 67, 7769-7773.
- 3. (a) Fang, F.G.; Kishi, Y.; Matclich, M.C.; Scola, P.M. Synthetic studies towards halichondrins: synthesis of the left halves of norhalichondrins and homohalichondrins. Tetrahedron Lett. 1992, 33, 1557-1560; (b) Shi, Y.; Peng, L.F.; Kishi, Y. Enantioselective total synthesis of fumonisin B₂. J. Org. Chem. 1997, 62, 5666-5667; (c) Cuzzupe, A.N.; Diflorio, R.; Rizzacasa, M.A. Enantiospecific synthesis of the

Copyright @ Marcel Dekker, Inc. All rights reserved

ORDER	ି	REPRINTS
	\equiv	ļ

phospholipase A_2 inhibitor (-)-cinatrin. J. Org. Chem. **2002**, 67, 4392-4398.

- Kitagawa, O.; Hanano, T.; Tanabe, K.; Shiro, M.; Taguchi, T. Enantioselective halocyclization reaction using a chiral titanium complex. J. Chem. Soc., Chem. Commu. **1992**, 1005–1007.
- (a) Grossman, R.B.; Trupp, R. The first reagent-controlled asymmetric halolactonizations. Dihydroquinidine-halogen complexes as chiral sources of positive halogen ion. J. Can J. Chem. **1998**, *76*, 1233–1237; (b) Haas, J.; Piguel, S.; Wirth, T. Reagent-controlled stereoselective iodolactonizations. Org. Lett. **2002**, *4*, 297–300; (c) Cui, X.L.; Brown, R.S. Mechanistic evaluation of the halocyclization of 4-penten-1-ol by some *bis*(2-substituted pyridine) and *bis*(2,6-disubstituted pyridine(bromium triflates. J. Org. Chem. **2000**, *65*, 5653–5658.
- Richard, K.H.; Raghovan, S.; Seiji, S. Asymmetric induction in the thermal reactions of allylic alcohols with *N*,*N*-dimethylacetamide dimethylacetal and triethyl orthoacetate. J. Org. Chem. **1972**, *37*, 3737–3740.

Received in Japan July 7, 2003

1032

Request Permission or Order Reprints Instantly!

Interested in copying and sharing this article? In most cases, U.S. Copyright Law requires that you get permission from the article's rightsholder before using copyrighted content.

All information and materials found in this article, including but not limited to text, trademarks, patents, logos, graphics and images (the "Materials"), are the copyrighted works and other forms of intellectual property of Marcel Dekker, Inc., or its licensors. All rights not expressly granted are reserved.

Get permission to lawfully reproduce and distribute the Materials or order reprints quickly and painlessly. Simply click on the "Request Permission/ Order Reprints" link below and follow the instructions. Visit the <u>U.S. Copyright Office</u> for information on Fair Use limitations of U.S. copyright law. Please refer to The Association of American Publishers' (AAP) website for guidelines on <u>Fair Use in the Classroom</u>.

The Materials are for your personal use only and cannot be reformatted, reposted, resold or distributed by electronic means or otherwise without permission from Marcel Dekker, Inc. Marcel Dekker, Inc. grants you the limited right to display the Materials only on your personal computer or personal wireless device, and to copy and download single copies of such Materials provided that any copyright, trademark or other notice appearing on such Materials is also retained by, displayed, copied or downloaded as part of the Materials and is not removed or obscured, and provided you do not edit, modify, alter or enhance the Materials. Please refer to our <u>Website</u> User Agreement for more details.

Request Permission/Order Reprints

Reprints of this article can also be ordered at http://www.dekker.com/servlet/product/DOI/101081SCC120028633