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ABSTRACT: We report the [Ru(p-cymene)(L-proline)Cl]
([Ru1])-catalyzed cyclization of 1,4,2-dioxazol-5-ones to form
dihydroquinoline-2-ones in excellent yields with excellent
regioselectivity via a formal intramolecular arene C(sp2)−H
amidation. The reactions of the 2- and 4-substituted aryl
dioxazolones proceeds initially through spirolactamization via
electrophilic amidation at the arene site, which is para or ortho to the substituent. A Hammett correlation study showed that
the spirolactamization is likely to occur by electrophilic nitrenoid attack at the arene, which is characterized by a negative ρ value of
−0.73.

3,4-Dihydroquinolin-2(1H)-ones are privileged skeletons
found in many bioactive compounds;1a,b some notable
examples are cilostazol,1c aripripazole,1d and Yaequinolone
A1 (isolated from Penicillium sp. FKI-2140;1e Scheme 1a).

Apart from Friedel−Crafts cyclization, classical routes to the
dihydroquinolin-2-one skeletons include the acid-mediated
cyclization of N-phenylcinnamamides,2 the oxidative cycliza-
tion of aryl methoxyamides by hypervalent iodine reagents,3

and the N-iodosuccinimide (NIS)-initiated free -radical
cyclization of 3-phenylpropanamides.4

Transition-metal-catalyzed cyclizations of 2-aminostyrenes
are known to offer an alternative route to dihydroquinolin-2-
ones (Scheme 1b). For instance, Alper and coworkers reported
the Pd-catalyzed cyclocarbonylation of 2-aminostyrenes in
ionic liquid medium.5 In 2010, Youn and coworkers
demonstrated the Rh(I)-catalyzed domino conjugate addi-
tion−cyclization of (E)-methyl 3-(2-(benzylamino)phenyl)-

acrylates with organoboroxines.6 In 2014, Chang and cow-
orkers also reported the Ru-catalyzed olefin hydrocarbamoy-
lation of N-(2-vinylphenyl)-formamides to afford
dihydroquinolin-2-ones.7 Yet these methodologies rely on the
use of specially designed arylamine moieties, which often
require a tedious multistep synthesis.
Regiocontrolled direct arene aminations/amidations con-

stitute an atom- and step-economical approach for arylamine/-
amide synthesis (Scheme 2). In this regard, Falck and
coworkers developed dirhodium-catalyzed electrophilic C-
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Scheme 1. Examples of Dihydroquinolin-2-one Formation

Scheme 2. Examples of Metal-Catalyzed Intramolecular
Arene C(sp2)−H Aminations and Amidations
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(aryl)−H amination to give tetrahydroquinolines using NH2/
NH(alkyl)-O-(sulfonyl)-hydroxyamines as reagents,8 and the
reaction is believed to proceed by electrophilic amination by
some reactive Rh-nitrenoid species. Of particular interest,
Chang and coworkers reported the Cp*Ir(III)-catalyzed
intramolecular nitrenoid C(aryl)−H insertion employing
dioxazolones,9a−c which are readily derived from carboxylic
acid feedstock. Recently, we reported the Ru(II)-catalyzed
enantioselective intramolecular nitrenoid C(sp3)−H bond
insertion of dioxazolones to afford γ-lactams with up to 95%
ee.10 Here we describe the Ru-catalyzed intramolecular
C(aryl)−H amidation using dioxazolones as the nitrenoid
reagents to furnish dihydroquinolin-2-ones. Analogous to the
Cp*Ir(III) system, the Ru-catalyzed dihydroquinolin-2-one
formation proceeds by tandem electrophilic spirocyclization
and C−C migration.
In Table 1, which shows the treatment of dioxazolone 1a

(0.1 mmol) with [Ru1] (10 mol %) containing L-proline as a

ligand and AgSbF6 (10 mol %) in tetrafluoroethylene (TFE)
(1 mL) at 50 °C for 12 h, 4-phenyl-3,4-dihydroquinolin-
2(1H)-one (2a) was obtained in 76% yield with 30% ee (entry
1). The performance of Ru catalysts bearing several ligands has
been compared. The Ru catalyst with 8-hydroxyquinoline (L2)
as a ligand was found to give comparable results as L-proline
(L1); however, those complexes bearing ligands derived from
R,R-DPEN (L3 and L4) are ineffective catalysts, with the full
recovery of 1a. Analogous to L1, N-Boc-8-aminoquinoline
(L5) is an effective ligand for productive results (2a: 63%

yield). Yet the catalyst bearing the Schiff base ligand L6 failed
to effect significant transformation.
Whereas the reaction conducted in 1,2-dichloroethane

(DCE) resulted in poor product yield (9%), 2a was produced
in 21% yield with 63% ee when acetone was the solvent.
Whereas employing MeOH and EtOH as solvents produced
similar results as those for acetone (entries 9 and 10), the
analogous reactions conducted in hexafluoroisopropanol
(HFIP) afforded 2a in 65% yield. Performing the reaction at
lower temperatures did not show significant improvement.
Table 2 depicts the intramolecular C(aryl)−H amidations

for the ortho-, meta-, and para-substituted 1,4,2-dioxazol-5-

ones with [Ru1] as the catalyst. For the para-substituted
dioxazolones (1b−1q, 1r, and 1v), their dihydroquinolin-2-
one products were characterized by skeletal rearrangement
involving the migration of the pre-existing (aryl−alkyl) C−C
bond from the position para to the substituent in the substrates
to the position meta to the substituent in the products. In all
cases, the anticipated products due to amidation at the position
meta to the substituents were not obtained. Similar results
were also reported for the analogous Cp*Ir(III)-catalyzed
intramolecular C(aryl)−H amidation reactions.9b−d

For the diaryl-substituted dioxazolones, those bearing
electron-donating Me and OMe and electron-withdrawing
halogen (F, Cl, and Br) groups were effectively transformed to
their dihydroquinolin-2-ones 2b−2f in up to 90% yields. Yet
the reaction of 1g bearing a 4-CF3 substituent afforded 2g in
<5% yield. In the analogous reactions for the monoaryl-
substituted series, dihydroquinolin-2-one 2h−2n were formed
in 71−88% yields. Yet those halogenated analogues 2o−2q
were formed in moderate ∼40% yields. Apparently, the
amidation is preferentially directed to the more electron-rich
arene moieties. For instance, the reaction of 1r led to selective

Table 1. Optimization of Reaction Conditions

entry deviation from standard conditions % yield (% ee)a,b

1 none 76 (30)
2 L2 instead of L1 78
3 L3 instead of L1 <2
4 L4 instead of L1 <2
5 L5 instead of L1 63
6 L6 instead of L1 <2
7 DCE instead of TFE 9 (53)
8 acetone instead of TFE 21 (63)
9 MeOH instead of TFE 13 (52)
10 EtOH instead of TFE 21 (53)
11 HFIP instead of TFE 65 (15)
12 rt instead of 50 °C 38 (29)
13 40 °C instead of 50 °C 48 (32)
14 60 °C instead of 50 °C 78 (29)

aReaction conditions: 1a (0.1 mmol), catalyst (10 mol %), AgSbF6
(10 mol %), solvent (1 mL) at 50 °C for 12 h under N2 unless other
specified. Isolated yield. bee is determined by high-performance liquid
chromatography (HPLC) with a chiral column. (S)-2a is the major
isomer. (See the Supporting Information for details.)

Table 2. Substrate Scope Studies of para-, ortho-, and meta-
Substituted 1,4,2-Dioxazol-5-ones
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C−H amidation at the methoxy-substituted arene (2r: 82%).
In all cases, the dihydroquinolin-2-one formation is charac-
terized by skeletal C−C migration, with the C−N bond being
formed at the position para to the para substituent. Notably,
the Ru-catalyzed cyclization of 3-(4-(benzyloxy)phenethyl)-
1,4,2-dioxazol-5-one (1v) would afford 6-(benzyloxy)-3,4-
dihydroquinolin-2(1H)-one (2v) in 71% yield. According to
literature, 2v exhibits anticonvulsant activities for treating
bipolar disorder and neuropathic pain.11

For the ortho-substituted substrates (Table 2), the facile
reaction of 3-(2-methylphenethyl)-1,4,2-dioxazol-5-one af-
forded 3a in 60% yield. Again, 3a is characterized by skeletal
C−C migration, with the C−N bond being forged at the
position ortho to the substituent. In this work, the trans-
formation of 3-(2-methoxyphenethyl)-1,4,2-dioxazol-5-one to
3b was less successful. Yet the analogous 2-bromo-substituted
derivative reacted successfully to furnish 3c in 59% yield.
Compared with the current Ru-catalyzed system, the Cp*Ir
catalyst would produce both the C−C migration product and
the direct C−H amidation product in a ratio of 1:1.2.9b−d

For the meta-substituted dioxazolones, the Ru-catalyzed
cyclization of 3-(3-Y-substituted phenethyl)-1,4,2-dioxazol-5-
one (Y = Me, OMe, and Br) furnished the corresponding
dihydroquinoline-2-ones 4a−4c in 39−72% yields. In all cases,
the C−N bond formation occurred at the position para to the
meta substituents. Apparently, skeletal C−C arrangement is
not involved in the dihydroquinolin-2-one formations. The
reaction of the dioxazol-5-one bearing meta- and para-OMe
substituents produced 4d exclusively in 83% yield, presumably
via direct C−H amidation without skeletal rearrangement. Yet
the formation of 4a−4d may also occur via spirocyclization at
the position meta to the substituent, followed by skeletal C−N
rearrangement. The two pathways appear to be difficult to be
differentiated.
Assuming Ru-nitrenoid intermediates, amidation at the

benzylic C(sp3)−H, 20 C(sp3)−H, and 30 C(sp3)−H sites is
likely to be competitive.10 Here the regioselectivity was
assessed by reacting dioxazolones containing benzyl (1s),
ethyl (1t), and isopropyl (1u) side arms under the Ru-
catalyzed conditions. To our delight, the amidation is directed
exclusively to the aryl C(sp2)−H bond, rather than the
benzylic C(sp3)−H (2s), 2 °C(sp3)−H (2t), and 3 °C(sp3)−
H (2u) bonds, and the desired amidation products were
obtained in 78−83% yields.
The reactions of the para- and ortho-substituted dioxazo-

lones afforded the dihydroquinoline-2-ones involving skeletal
C−C rearrangement. We postulated that the reactive Ru-
nitrenoid intermediate should initiate the cyclization by
electrophilic amidation at the position para/ortho to the
substituent to form some spirolactam intermediates, and the
subsequent skeletal C−C rearrangement should afford the
observed products. A similar mechanism was reported for the
analogous Cp*Ir(III)-catalyzed intramolecular aryl C−H
amidation.9b−d

To probe the spirolactam formation, 3-(4-hydroxypheneth-
yl)-1,4,2-dioxazol-5-one (5a) was employed as a model
substrate for the Ru-catalyzed amidation, and the desired
azaspiro[4.5]deca-6,9-diene-2,8-dione (6a) was isolated in
95% yield (Table 3). Notably, replacing the 4-OMe substituent
in 1n with a hydroxyl group (5a) led to the successful trapping
of the spirolactam intermediate. Similarly, those phenol-based
dioxazolones bearing OMe and Me groups at the ortho and
meta positions underwent spirolactamization in excellent yield

(6b; 88%; 6c; 83%; 6d: 91%; 6e: 92%). Apparently, the
nitrenoid attack at the position ortho to the hydroxy group
should be facile to furnish 7a in 56% yield. Yet the presence of
a OMe group appears to be critical for an effective reaction
because the production of spirolactam 7b was unsuccessful due
to the lack of a para-methoxy substituent.
The nature of the spirolactamization transition state has

been examined by a Hammett correlation study using a series
of 4-substituted dioxazolones 1-Y (Y = OMe, Me, H, F, and
Cl) as substrates. In this work, dioxazolone 1-Y was subjected
to the standard conditions: 1-Y (0.1 mmol), [Ru1] (10 mol
%), and AgSbF6 (10 mol %) in TFE (1 mL) for 30 min. With
∼10−20% substrate conversion, the yields of the dihydroqui-
nolin-2-ones were determined by 1H NMR spectroscopy. (See
the Supporting Information for details.) By plotting the log kY/
kH (Y = OMe, Me, H, F, and Cl) versus Hammett σpara
constant, a straight line (R2 = 0.98) with slope (ρ) = −0.73.
(See the Supporting Information.) The negative ρ value
implies that the Ru-nitrenoid attack on the aryl ring is likely to
be electrophilic in nature.
Scheme 3 depicts the proposed mechanism of the aryl C−H

amidation of the 2- and 4-substituted dioxazolones. Assuming

some Ru-nitrenoid as active intermediates, electrophilic attack
of the nitrenoid moiety at the positions ortho and para to the
substituents should afford the spirolactams. The regioselectiv-
ity of the amidation was probably favored by π-conjugation of
the substituents, resulting in enhanced electron density at the

Table 3. Scope of the Dearomative Spirocyclization
Reaction

Scheme 3. Proposed Mechanism
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ortho and para positions of the substituent. The spirolactams
should undergo skeletal C−C migration to form the
dihydroquinolin-2-ones. For the 3-substituted dioxazolones,
the product formation may proceed by direct electrophilic
attack para to the substituent. However, a mechanism
involving tandem spirocyclization and C−N skeletal rearrange-
ment cannot be negated.12

To our delight, the Ru-catalyzed C(aryl)−H amidation can
be performed on the gram scale. For instance, treating 1a (2
mmol, 0.534 g) with 10 mol % [Ru1] and 10 mol % AgSbF6 in
TFE at 50 °C for 12 h gave 2a in 61% isolated yield. (See the
Supporting Information.)
Late-stage functionalization of the dihydroquinoline-2-ones

can offer a convenient synthesis of methyl 4-((2-oxo-1,2,3,4-
tetrahydroquinolin-6-yl)amino)benzoate (anticancer agent)13a

and 6-(1′-isopropyl-6′-oxo-1′,6′-dihydro-[3,3′-bipyridin]-5-
yl)-1-methyl-3,4-dihydroquinolin-2(1H)-one (Alk-2 inhibi-
tor).13b For instance, dihydroquinolin-2-one (2n: 80% yield
prepared in this work) was transformed to its O-triflate
derivative using AlCl3 followed by CF3SO2Cl treatment.14

Subsequent coupling to methyl 4-aminobenzoate (Buchwald−
Hartwig amination) and 1-isopropyl-5′-(4,4,5,5-tetramethyl-
1,3,2-dioxaborolan-2-yl)-[3,3′-bipyridin]-6(1H)-one (Suzuki
coupling) are known to afford the target medicinal products
(Scheme 4).

In conclusion, we have developed the Ru-catalyzed
cyclization of 1,4,2-dioxazol-5-ones to afford dihydroquinolin-
2-ones. For the ortho- and para-substituted dioxazolones, the
Ru-nitrenoid insertion occurs preferentially at the position
ortho/para to the substituents, resulting in spirolactamization,
followed by skeletal C−C/C−N rearrangement with remark-
able regioselectivity. Because dihydroquinoline-2-ones are
valuable pharmacophores, the successful development of this
Ru-catalyzed reaction enables facile access to this important
class of compounds from abundant hydrocarbon feedstocks.
This method should be of utility to synthetic and medicinal
chemistry.
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