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Visible-Light-Induced Photocatalyst-Free C-3 Functionalization of 
Indoles with Diethyl Bromomalonate
Guangmiao Gu,‡ Mengmeng Huang,‡ Jung Keun Kim, Jianye Zhang, Yabo Li* and Yangjie Wu*

A visible-light induced green and efficient method is developed for the synthesis of α-indolyl diethyl malonates. The 
reaction proceeds without any photocatalysts or ligands in green solvent in short time. Moreover, the reaction mechanism 
has been clearly studied by control experiments, spectrophotometric studies and density functional theory (DFT) 
calculations. The results showed that the photocatalyst-free transformation may proceed via an XB-promoted radical 
process. The EDA complex formation of diethyl bromomalonate with base is the main reason for the reaction initiation.

Introduction
Indoles and their derivatives as one of important building 
blocks are widely present in natural products, medical 
preparations, bioactive molecules, optically active substances 
and useful intermediates for organic synthesis.1 In particular, 
α-indolyl diethyl malonates not only possess the excellent 
properties of indoles, but also increase the possibility of 
modifying substituents due to the presence of the malonates.2 
The typical methods for the synthesis of these compounds are: 
1) Ni-catalyzed [3+2] annulation of 2-bromocyclopenes with 
anilines; 2) transition-metal-catalyzed C2-alkylation of indoles 
with diazo compounds (Scheme 1, a and b).3 In order to meet 
environmental protection requirements and improve the 
problem of heavy metal residues, the application of non-
renewable energy and high-dose transition-metal catalysts still 
need to be solved.

Recently, visible light as one of clean energy source has been 
used for the production various organic compounds via the 
photocatalytic process.4 In most cases, it is necessary to apply 
the photosensitizers to initiate the photoreactions because of 
the poor visible-light absorption of the reaction substrates.5 
With this concept, the photocatalytic approaches have been 
also used to achieve α-indolyl diethyl malonates (Scheme 1, c 
and d).6 However, the difficulty in the purification of heavy 
metal residues still exists in these photocatalytic systems. 
Therefore, the development of the visible-light-induced 
photocatalyst-free approaches has been considered as one of 
the most effective ways.7 Generally, the photocatalyst-free 

processes are realized by the following ways: 1) the 
modification of reaction substrates to increase their 
absorption in visible-light region;8 2) the photoexcitation of 
reaction intermediates;9 3) the addition of other radical 
initiators;10 4) the EDA (electron donor-acceptor) complexes 
construction between substrates, or between substrate and 
additive (such as base or oxidant).11 In the type of EDA 
complexes, non-covalent interaction of terminal halogen 
atoms (R−X, formation σ-hole) with Lewis bases (LBs) plays an 
important role in non-covalent photocatalysis12 due to higher 
directionality and larger polarizable interacting atoms of their 
halogen bonding (XB).13 The formation of the halogen bonding 
complexes not only increases the visible-light absorption of the 
substrates, but also reduces the dissociation energy of C-X 
bond. It may be the main reason for the initiation of a single-
electron-transfer (SET) transformation under mild reaction 
conditions.14 Herein, a green and efficient XB-promoted 
photocatalyst-free method is developed to construct C-3 
functionalization of indoles.

N
R2

R3 CO2R4

CO2R4

R1

CO2R4R4O2C

N2

transition metal
+

a)

N
R1

R2

R3

heat

R1 = H, alkyl, Boc, pym
R2, R3 = H, alkyl, ester, aryl

R4 = alkyl
Yield = 5-97%

NHR1

Br

CO2R4

CO2R4
+

Ni(ClO4)2 6H2O (20 mol %)
ligand (12 mol %)

DCE, 80 oC, 4A MS
o

Ar

b)

CO2R4R4O2C
[Ru] or [Ir] or

organic photocatalysts
+

Br blue LED
d)

N
R1

R2

R3

N CO2R4
CO2R4 hvc)

R1
N CO2R4

CO2R4

R1

CDCl3

[Au]
heat

Scheme 1. Synthetic methods of α-indolyl diethyl malonates.
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On the basis of our previous work,15 the C-H activation of 1-
methyl-2-phenylindole (1a) with diethyl bromomalonate (2) 
was chosen as the model reaction. In the presence of Ir(ppy)3 
or [Ir(ppy)2(bpy)]PF6 as a photocatalyst, 1-methyl-2-
phenylindole

Table 1. Optimization of reaction conditionsa,b

N
+ EtO OEt

O O base (2.0 equiv.)
solvent (1.5 mL)
3 W blue LED

Ar, time, rt
NBr

OEt

O
O

N

Br

+

EtO

1a 2 3a 4a

yieldb (%)
entry base conv. (%)

3a 4a
1c K2HPO4

.3H2O 89 79 10
2d K2HPO4

.3H2O 92 77 15
3 K2HPO4

.3H2O 97 81 16
4 K3PO4

.7H2O trace
5 KH2PO4 90 67 23
6 CsOAc 54 24 30
7 Et3N 59 36 23
8e K2HPO4

.3H2O 48 13 35
9f K2HPO4

.3H2O 88 76 12
10g K2HPO4

.3H2O 81 75 6
11g,h K2HPO4

.3H2O 90 87 3
12g,h - trace
13i K2HPO4

.3H2O NRj

aReaction conditions: 1a (0.2 mmol), 2 (3.0 equiv.), base (2.0 equiv.), DMF (1.5 mL), in a 
quartz tube under Ar at room temperature for 2 hours. bIsolated yield. cIr(ppy)3 (5 mol 
%). d[Ir(ppy)2(bpy)]PF6 (5 mol %). eCH3CN (1.5 mL) as solvent. fDMSO (1.5 mL) as solvent. 
gEtOH (1.5 mL) as solvent. hFor 1 hour. iIn darkness. jNR = No reaction.
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Scheme 2. Substrate scope. Reaction conditions: 1 (0.2 mmol), 2 (3.0 equiv.), 
K2HPO4·3H2O (2.0 equiv.), EtOH (1.5 mL), in a quartz tube under Ar at room 
temperature for 1 hour, isolated yield.

(1a) was converted into diethyl 2-(1-methyl-2-phenyl-1H-indol-
3-yl)malonate (3a) and 3-bromo-1-methyl-2-phenyl-1H-indole 
(4a) in 2 hours, using K2HPO4

.3H2O as base and DMF as solvent 
(Table 1, entries 1-2). Surprisingly, the model reaction could be 
carried out in the absence of any photocatalyst affording 
products 3a in 81% and 4a in 16% (entry 3). Other bases or 
solvents did not improve this transformation (entries 4-10). 
The compound 3a could be selectively afforded when the 
transformation was carried out in EtOH (entries 10-11). A 
better result was achieved at shorter reaction time (entry 11). 
The transformation was not carried out without any base or in 
darkness (entries 12-13).

As depicted in Scheme 2, various 2-substitutedindoles were 
accommodated to produce compounds 3. Generally, the 
reactivity of 2-arylindoles with electron-donating groups at the 
C5, C6 and C7 positions were higher than that with electron-
withdrawing groups (3a-h). The same electronic effect was 
observed for the 2-arylindoles bearing different substituents 
on the 2-aryl ring (3j-r). Although the methyl group at the C4 
position might hinder the coupling reaction, the desired 
product 3i was isolated in 66% yield. 1-Methyl-2-(o-tolyl)-1H-
indole (1s) has a greater steric hindrance than 1,4-dimethyl-2-
phenyl-1H-indole (1i), the corresponding compound 3s was 
only obtained in a moderate yield. In addition, the optimized 
conditions were also suitable for N-methylindoles substituted 
with naphthalenyl (3t) or methyl (3u) group at C2 position.

a)
N

+ EtO OEt

O O
standard conditions
exp 1: TEMPO (6 equiv.)
exp 2: BHT (6 equiv.)
exp 3: without 1a, TEMPO (6 equiv.)
exp 4: without 1a, BHT (6 equiv.)
exp 5: without 1a and base, TEMPO (6 equiv.)
exp 6: without 1a and base, BHT (6 equiv.)

N
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O

EtO

+ EtO

O O

3a

Br

2

d) OEt
standard conditions

N

OEt

O
O
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O O
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N
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O

O

OEtEtO

O

[II+H]+ exp 2 for 379.2481
I II

EtO OEt

O O

[III+H]+ exp 3 for 168.0805
exp 4 for 168.0806

[III+Na]+ exp 5 for 183.0626
exp 6 for 183.0626

III

OH
N

IV
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exp 3 for 158.1539
exp 5 for 158.1538
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O O

O O
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Scheme 3. Control experiments.

To obtain a detailed mechanistic insight for this 
transformation, several control experiments were carried out 
under optimized reaction conditions (Scheme 3). The coupling 
reaction was completely quenched by excess amount of 
radical scavenger such as butylated hydroxytoluene (BHT) or 
2,2,6,6-tetramethylpiperidine 1-oxide (TEMPO) (Scheme 3, a, 
exp 1-2), which indicated that the radical might be involved in 
this transformation. Meanwhile, five strong molecular ion 
peaks were obtained by ESI-MS and attributed to [I+H]+ (exact 
mass: 316.2120), [II+H]+ (exact mass: 379.2481), [III+H]+ (exact 
mass: 168.0605), [IV+H]+ (exact mass: 158.1538) and [V+H]+ 
(exact mass: 319.1385) (see ESI Figure S1-15.). These results 
indicated that the C-Br bond cleavage of diethyl 
bromomalonate (2) might be via a homolytic process (Scheme 
3, a, exp 3-6). It was found that product 3a could serve as an 
additional photosensitizer in this coupling reaction (Scheme 3, 
b). The photodecomposition of product 3a did not proceed 
directly without diethyl bromomalonate (2) (Scheme 3, c). 
However, the compound 3a could be transformed into diethyl 
2-ethoxy-2-(1-methyl-2-phenyl-1H-indol-3-yl)malonate (5a) in 
the presence of diethyl bromomalonate (2) (Scheme 3, d).
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Figure 1. (a) The UV-Vis absorption spectra of 1a, 2 and mixture of 1a and 2 in 
DMF ([1a] = 0.13 M, [2] = 0.4 M); (b) The UV-Vis absorption spectra of 2 and 
mixture of 2 and triethylamine in DMF ([2] = 0.4 M, [Et3N] = 0.27 M); (c) Job’s 
plot of the EDA complexes for the ratio between 1a and 2 with UV-Vis absorption 
spectra in DMF; (d) Benesi-Hildebrand plot for the interaction between 1a and 2 
in DMF ([2] = 0.05 M); (e) The luminescence quenching experiments of 3a with 2 
in EtOH.

Due to the formation of the complex [R-Br…O(H)R] between 
diethyl bromomalonate (2) and ethanol,16 the investigation of 
spectrum analysis was carried out in DMF to avoid the complex 
formation. Although the individual diethyl bromomalonate (2, 
368 nm) does not absorb light in the visible region (400-700 
nm), a weak absorption of reagent mixture (compounds 1a 
with 2) was detected in DMF (Fig. 1, a). To evaluate the 
function of base, we investigated the interaction of diethyl 
bromomalonate (2) with Et3N instead of K2HPO4

.3H2O because 
of the poor solubility of inorganic salt in EtOH (see ESI Scheme 
S1.). Surprisingly, a more pronounced red shift was detected 
(Fig. 1, b), which could indicate EDA complex formation 

between compound 2 with base (Et3N). According to the 
Gaussian calculation results, it is easy to form a σ-hole on the 
surface of the bromine atom of diethyl bromomalonate (2, Fig. 
2),12d, 17 which has the potential to interact with Lewis bases. 
Except that, the maximum absorption could reach the blue 
region of the visible range (∼480 nm). Applying Job’s method 
of continuous variations (see ESI Figure 22), a molar 
donor/acceptor ratio of 1:1 in solution for the EDA complex 
(Fig.1, c) was observed. Concomitantly, an association constant 
(KEDA) of 2.4 ± 0.19 M-1 for the complex in DMF was 
determined by spectrophotometric analysis using the Benesi-
Hildebrand method (see ESI Figure 23.). It might be a reason 
for the occurrence of photocatalytic transformation. Based on 
the results of the luminescence quenching experiments (Fig. 1, 
e), the energy transfer process might contribute to this 
transformation.

 - hole

Figure 2. Color-filled map of valence electron density of diethyl bromomalonate (2).18

In order to better understand the detailed mechanism of this 
reaction, the free energy barriers in the rate determining 
addition step for C-C bond formation and the energy profiles 
of the reaction were also investigated using Et3N and K2HPO4 
as the bases, respectively (Fig. 3). Due to the high excitation 
energy, the compound 1a could not be excited under the blue 
LED irradiation (Eex = 3.0645 eV). On the other hand, the active 
diethyl malonate radical (B) was generated via two pathways 
under the blue LED irradiation (𝛌 = 450 nm): 1) the homolysis 
of C-Br bond of diethyl bromomalonate 2 (EC-Br = 55.32 
kcal/mol, Path I, see ESI); 2) the decomposition of complexes A 
(Path II, Figure 3). Although the reaction of both processes 
cannot be carried out spontaneously (ΔG > 0), the 
decomposition of complexes A (path II) is more likely to occur 
than path I. The energy barriers of the nucleophilic attack by 
radical B on β-position of 1-methyl-2-phenylindole (1a) is not 
high (3.79 kcal/mol). Thus, the generated energy of blue LED is 
enough to promote the transformation. As described in the 
literatures, the intermediate D might be obtained via a SET 
process from the reaction of radical C with base22or substrate 
223. According to the calculated results, we are more inclined 
to believe that the applied base is more suitable for the single 
electron transfer (SET) process. All the calculated results are 
consistent well with the experiments, indicating that our 
computations should be reasonable.

Based on the above results, a possible radical mechanism is 
proposed (Scheme 4). The photodecomposition of compound 
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2 (Path I) or complexes A (Path II) forms radical B. 
Subsequently, the β-dicarbonyl radical B attacks on C-3 
position of 2-substitutedindoles 1 to generate the 

intermediate C. The cation D is afforded via the SET process. In 
the presence of base, the elimination of C3 proton of D results 
in the formation of product 3.
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Scheme 4. The proposed mechanism.

Conclusions
In summary, we have developed a green and mild XB-

promoted radical reaction of 2-substitutedindoles with diethyl 
bromomalonate under blue LED irradiation without any 

photocatalysts or ligands. The reaction mechanism is 
systematically verified by experimental and calculational 
methods. The results of our investigation indicated that the 
photocatalyst-free transformation might proceed via a radical 
process. The complex formation of diethyl bromomalonate 
with base is the main reason for the reaction initiation. The 
reaction mechanism was more deeply analysed and discussed 
by theoretical method using the Gaussian calculation. The 
advantages of this method meet the requirements of 
sustainable and green synthetic chemistry, and it provides a 
straight forward way to create valuable α-indolyl diethyl 
malonates.
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A visible-light-induced and XB-promoted green approach to construct α-indolyl diethyl 

malonates was developed.
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