J.C.S. Снем. Сомм., 1981

Synthesis of Light Olefins from CO and H₂ over Highly Dispersed Ru/K-Al₂O₃ derived from Ru₃(CO)₁₂

By Toshio Okuhara,* Kenji Kobayashi, Tomoo Kimura, Makoto Misono,* and Yukio Yoneda

(Department of Synthetic Chemistry, Faculty of Engineering, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo, Japan)

Summary A highly dispersed $\text{Ru}/\text{Al}_2\text{O}_3$ catalyst, prepared from $\text{Ru}_3(\text{CO})_{12}$ was much more active and selective for C_2--C_5 olefins in the hydrogenation of CO than conventionally prepared $\text{Ru}/\text{Al}_2\text{O}_3$ catalyst, and addition of K to the carbonyl-derived catalyst enhanced significantly the preferential formation of light olefins (ca. 80% at 260 °C).

RECENTLY, much attention has been directed towards the selective synthesis of light olefins like ethylene and propene in the Fischer-Tropsch reaction. Only a few catalysts have been reported to show high selectivity for light olefins.

Commercu *et al.*¹ reported novel Fe catalysts prepared from Fe₃(CO)₁₃ which exhibited high selectivity for propene (45%) at the initial stage of the reaction. Vannice *et al.*² found that K₂Fe(CO)₄ supported on Al₂O₃ was active and selective for C₂—C₄ olefins (50%). Recently, Yasumori *et al.*³ demonstrated that Mo₂C produced 52% ethylene but that the activity was very low. Mixed oxide catalysts such as Fe₃O₄-TiO₂-ZnO-K₂O⁴ and Co-Mn-Al₂O₃-K₂O⁵ have been known to yield C₂—C₄ olefins preferentially. We report here that catalysts prepared by thermal decomposition of Ru₃(CO)₁₂ on Al₂O₃ have very high dispersion and afford light olefins in the hydrogenation of CO. Moreover, addition of K to this catalyst enhanced the preferential formation of light olefins. γ -Al₂O₃ (170 m²/g, reference catalyst ALO-4, The Catalysis Society of Japan) was calcined in air at 500 °C for 10 h and then subjected to a stream of N₂ for 2 h. K-Al₂O₃ supports were obtained by the addition of an aqueous solution of K₂CO₃ to the γ -Al₂O₃ and were treated in the same way as γ -Al₂O₃.

The catalysts were prepared by impregnation of the supports with Ru₃(CO)₁₂ (Stream Chemical Co.) in n-hexane solution and the solvent was removed in the stream of N_2 . Conventional $\mathrm{Ru}/\mathrm{Al}_2\mathrm{O}_3$ catalysts were prepared by the standard incipient wetness technique from RuCl₃ and $RuNO(NO_3)_3$. These catalysts were evacuated and reduced by H₂ at 450 °C for 2 h prior to the reaction and H₂chemisorption. Hereafter, these catalysts are described as, e.g., Ru₃(CO)₁₂/Al₂O₃ or RuCl₃/K-Al₂O₃. The reaction was carried out in a conventional circulating system (200 ml) at an initial pressure of 500 mmHg (H₂:CO = 2) at 200 or 260 °C; the products other than methane were collected in a trap kept at liquid nitrogen temperature to suppress secondary reactions. The products were analysed by gas chromatography, and the activities and selectivities were determined at the 10-25% conversion level in the second run in which the reaction proceeded with a steady rate.

Typical results are given in the Table. The chemisorption of H_2 was measured in a static system (60 ml) at room temperature. The dispersion was calculated from the

TABLE. Activities and selectivities in Fischer-Tropsch synthesis over Ru/Al₂O₃.^a

% Product distribution!

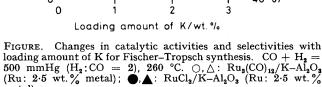
	Dis-	Rate ^e	S(CO ₂) ^t (%)	Saturated		Unsaturated					: 0
Catalyst ^b	persion			C ₁	C2-C68	C2	C ₃	C4	C ₅	C ₆ `	, c
Ru ₃ (CO) ₁₂ ^c	0.9	$2 \cdot 3$	1.8	$8 \cdot 2$	12.3	$2 \cdot 3$	28.5	24 ·8	15.6	8 ∙3	
RuClac	0.15	1.3	0.2	24.0	$23 \cdot 8$	1.9	18.4	17.9	11.9	$2 \cdot 1$	
Ru ₃ (ČO) ₁₂ d	0.9	$12 \cdot 2$	1.4	29.0	20.3	$3 \cdot 0$	$22 \cdot 3$	14.1	7.6	3.7	
RuĈlad	0.15	11.3	2.5	$33 \cdot 2$	26.8	$4 \cdot 2$	18.4	11.1	$5 \cdot 2$	1.1	
RuNÖ(NO),ª	0.20	2.3	7.9	20.9	44 ·6	0.4	8.7	13.4	9.5	$2 \cdot 5$	
Ru ₃ (CO) ₁₂ -Kd	0.9	4.5	5.0	18.9	6.7	9.3	28.9	14.0	13.1	9.1	
RuCla-Ka	0.14	4.0	$1 \cdot 2$	39.8	16.9	0.6	15.4	$14 \cdot 2$	7.6	5.5	

^a CO + H₂ = 500 mmHg, H₂:CO = 2. ^b Support: γ -Al₂O₃. Loading amounts of Ru are 2.5 wt.% for Ru₃(CO)₁₂ and RuCl₃, 0.9 wt.% for RuNO(NO₃)₃. Loading amount of K is 1 wt.% ^c T = 200 °C. ^d T = 260 °C. ^e × 10⁻² g atom of C/(g Ru)h. ^t S(CO₂) (selectivity to CO₂) = 100 × $N(CO_2)/[\Sigma\{nN[C_n (sat.)] + nN[C_n (unsat.)]\} + N(CO_2)]$. Percentage of C_n (sat.) or C_n (unsat.) = 100 × {nN[C_n(sat.)]} or $nN[C_n(unsat.)]\}/\Sigma\{nN[C_n(sat.)] + nN[C_n(unsat.)]\}$ where C_n(sat.), C_n(unsat.) = paraffin, olefin with n carbon atoms, $N[C_n(sat.)]$, $N[C_n(unsat.)] =$ number of hydrocarbon molecules with n carbon atoms, and $N(CO_2) =$ number of CO₂ molecules formed. ^g Total paraffins with carbon atoms from 2 to 6.

equilibrium amount of H₂ adsorption at an H₂ pressure of ca. 60 mmHg by assuming that one hydrogen atom was adsorbed on each Ru atom on the surface. It is apparent that the Ru dispersion in Ru₃(CO)₁₂/Al₂O₃ is very high compared with conventional catalysts. Addition of K (1 wt.%) did not change the dispersion of Ru for either Ru₃(CO)₁₂/Al₂O₃ or RuCl₃/Al₂O₃. In CO hydrogenation, Ru₃(CO)₁₂/Al₂O₃ was more active and selective for olefins than conventional catalysts; thus at 200 °C, Ru₃(CO)₁₂/Al₂O₃ produced olefins with 80% selectivity, compared with 52%on $RuCl_3/Al_2O_3$. The selectivities declined to 55% for $\mathrm{Ru}_{3}(\mathrm{CO})_{12}/\mathrm{Al}_{2}\mathrm{O}_{3}$ and 40% for $\mathrm{RuCl}_{3}/\mathrm{Al}_{2}\mathrm{O}_{3}$ at 260 °C.

Åddition of K to $Ru_3(CO)_{12}/Al_2O_3$ significantly enhanced the preferential formation of olefins, but the selectivity was not affected by the presence of K on RuCl₃/Al₂O₃. The selectivity for olefins formed on Ru₃(CO)₁₂/K-Al₂O₃ was ca. 75% which is very high compared with 46% found with $RuCl_3/K-Al_2O_3$ at 260 °C. The activities of both $Ru_3(CO)_{12}/$

20


15

5

0

metal).

Activity/atom-gC(gRu)⁻¹h⁻¹× 10⁻²

Al₂O₃ and RuCl₃/Al₂O₃ were similarly depressed by the addition of K. Thus, K has different effects on the activity and selectivity in the hydrogenation of CO.

The Figure shows the variation of activity and selectivity as a function of the loading amount of K. A similar drop in activity with increase in loading amount was observed for both catalysts. No promotional effect of K on the selectivity was observed in the case of $RuCl_3/Al_2O_3$. On the contrary, addition of more than 1 wt.% of K to $Ru_3(CO)_{12}$ Al₂O₃ increased the formation of olefins. These changes in activity and selectivity on addition of K indicate that K affects the electronic state or morphology of Ru on Al₂O₃. The surface area of 1% K-Al₂O₃ was 150 m²/g, which is close to that of Al_2O_3 .

Ru₃(CO)₁₂/K-Al₂O₃ was found to be less active than $Ru_3(CO)_{12}/Al_2O_3$ for the hydrogenolysis of ethane at 150 °C, by a factor of about 4, possibly because addition of K reduces the activation of H₂. The rate of the disproportionation of CO on Ru₃(CO)₁₂/Al₂O₃ at 230 °C was not affected by the addition of K at the initial stage. The total amount of CO₂ formed from CO was increased by addition of K by a factor of 1.3.

The i.r. band due to adsorbed CO on Ru₃(CO)₁₂/Al₂O₃ appeared at 2044 cm^{-1} , and was shifted to 2000 cm^{-1} by the addition of K (1 wt.%). However, adsorbed CO on both catalysts could be removed in a similar manner with increase in evacuation temperature. When hydrogenation of the adsorbed CO which remained at 200 °C was carried out at 200 °C for 1 h, half of the band intensity due to adsorbed CO disappeared in the case of Ru₃(CO)₁₂/Al₂O₃, but only a little (a few percent) was removed in the case of $Ru_{3}(CO)_{12}/K-Al_{2}O_{3}$.

From these results, we suggest that addition of K to Ru₃(CO)₁₂ causes depression of the H₂ dissociation and an increase in unreactive adsorbed CO, decreasing the activity for the hydrogenation of CO. This suppression of activity does not necessarily result in an increase in selectivity for olefins (Table, Figure). Therefore, the enhancement of the olefin selectivity may be explained by an acceleration in β -hydrogen abstraction from the surface alkyl intermediate.

(Received, 23rd June 1981; Com. 740.)

¹ D. Commereuc, Y. Chauvin, F. Hughes, M. Basset, and D. Oliver, J. Chem. Soc., Chem. Commun., 1980, 154.
² G. B. McVicker and M. A. Vannice, J. Catal., 1980, 63, 25.
³ I. Kojima, E. Miyazaki, and I. Yasumori, J. Chem. Soc., Chem. Commun., 1980, 573.
⁴ Ruhrchemie, Dutch Patent Appl. 75/10,634 (1975).
⁵ A. L. Dent and M. Lin, Adv. Chem. Ser., 1978, 178.

Selectivity to $C_2^-C_6$ olefins / C efficiency

90

-80

70

60

50

40

View Article Online