Methoxycarbonylation of Alkyl-, Cycloalkyl-, and Arylamines with Dimethyl Carbonate in the Presence of Binder-Free Zeolite

R. I. Khusnutdinov^{a,*}, N. A. Shchadneva^a, Yu. Yu. Mayakova^a, and A. N. Khazipova^a

^a Institute of Petrochemistry and Catalysis, Russian Academy of Sciences, Ufa, 450075 Russia *e-mail: inklab4@gmail.com

Received February 27, 2020; revised April 18, 2020; accepted April 19, 2020

Abstract—Methyl *N*-alkyl-, *N*-cycloalkyl-, and *N*-arylcarbamates were synthesized by reaction of the corresponding amines with dimethyl carbonate in the presence of binder-free FeHY zeolite. The optimal conditions (reactant ratio, amount of the catalyst, temperature, reaction time) were found to afford the target products with high yields.

Keywords: dimethyl carbonate, N-alkylcarbamates, N-cycloalkylcarbamates, N-arylcarbamates, zeolite catalyst

DOI: 10.1134/S1070428020070179

N-Substituted carbamates are starting materials in phosgene-free syntheses of isocyanates that are widely used for the preparation of pesticides, fungicides, herbicides, medicines, cosmetics, as well as polyurethanes; they are also used as protecting groups in organic synthesis. Carbamates are of great interest as compounds exhibiting various biological activities, in particular anesthetics [1], anticholinesterase agents [2], preservatives [3], and insecticides [4]. Bi- and polyfunctional urethanes are widely used in the manufacture of construction materials, heat insulators, heavy duty revetments with specified properties, durable sealants, and adhesives [5].

Organic carbamates can be obtained by various methods. In particular, they are prepared by reaction of aliphatic or aromatic amines with dimethyl carbonate (40 equiv) in the presence of a base such as potassium *tert*-butoxide and sodium methoxide (1.2 equiv) [6]. Methoxycarbonylation of amines in solution can be catalyzed by transition metal compounds, e.g., Mn(OAc)₂, Co(OAc)₂, and Cr(OAc)₃. For example, the reaction of hexane-1,6-diamine with 4 equiv of dimethyl carbonate at 90°C (5 h) in the presence of Mn(OAc)₂ (7 wt %) afforded 98% of dimethyl *N*,*N*'-(hexane-1,6-diyl)dicarbamate [7]. However, the use of homogeneous catalysts has drawbacks related to the necessity of isolation of waste catalyst and impossibility of its repeated use. According to Baba et al. [8],

Pb(NO₃)₂ catalyzed methoxycarbonylation of propyl-, butyl-, and hexylamines at 100°C (2 h). In a number of studies, primary amines were subjected to methoxycarbonylation with dimethyl carbonate in the presence of heterogeneous catalysts such as ZrO_2/SiO_2 (25 wt %) [9], La₂O₃/SiO₂ [10], and γ -Al₂O₃ [11]. These reactions required elevated temperature (150–170°C) and prolonged time (7–48 h). Sarmah and Srivastava [12] proposed a modified zeolite, meso-ZSM-5 containing 30% of MnO₂, to catalyze the reaction of benzylamine with dimethyl carbonate. The reaction was complete in 24 h at 80°C, and the yield of methyl benzylcarbamate was 64%. *N*-Benzylidenebenzylamine was also formed as by-product (yield 16%).

The goal of the present work was to develop a new general method for methoxycarbonylation of amines with dimethyl carbonate in the presence of micro-, macro-, and mesoporous zeolites. Preliminarily, the following zeolites were tested as catalysts in methoxy-carbonylation of amines: NaX, Y, HY, and FeHY-mmm. No appreciable catalytic activity was demonstrated by NaX, Y, and HY zeolites. The iron-containing zeolite FeHY-mmm proved to be an efficient catalyst in the methoxycarbonylation of alkyl-, cyclo-alkyl-, and arylamines with dimethyl carbonate. It was prepared by impregnating binder-free micro-, macro-, and mesoporous HY-mmm zeolite with a solution of Fe(NO₃)₃·9H₂O, followed by thermal treatment at

Temperature, °C	Reaction time, h	Yield, %	
		1b	1c
90	1	25	0
100	1	52	0
120	1	95	0
120	2	49	49

Table 1. Reaction of butan-1-amine (1a) with dimethyl carbonate

150°C for 4 h and at 450°C for 3 h. We thus obtained samples of FeHY-mmm containing 3-5 wt % of Fe₂O₃ [13, 14].

The yields of N-substituted carbamates in the reaction of amines with dimethyl carbonate catalyzed by FeHY-mmm depended on the initial amine, amount of the catalyst, and reaction conditions. The conditions were optimized (Table 1) using the reaction of butan-1amine (1a) with dimethyl carbonate in the presence of 3 wt % of FeHY-mmm. It was found that the reaction at 120°C in 1 h produces 95% of methyl *N*-butylcarbamate 1b. Prolonged reaction (2 h) led to the formation of 49% of methyl *N*-butyl-*N*-methylcarbamate (1c) as a result of methylation of 1b. Dimethyl carbonate was taken in excess (4 equiv) since it acted simultaneously as reagent and solvent (Scheme 1).

Analogous reaction of heptan-1-amine (2a) with dimethyl carbonate in the presence of FeHY-mmm at 120°C (1 h) gave methyl *N*-heptylcarbamate (2b) in

93% yield, whereas after 2 h a mixture of compound **2b** and methyl *N*-heptyl-*N*-methylcarbamate (**2c**) at a ratio of 1:1 was formed (Scheme 2). Thus, the length of the alkyl chain in the initial amine almost does not affect the yield and selectivity.

Cycloropanamine (**3a**) reacted with dimethyl carbonate under similar conditions (120° C, 30 min, 3 wt % FeHY-mmm) to produce a mixture of methyl *N*-cyclopropylcarbamate (**3b**) and methyl *N*-cyclopropyl-*N*-methylcarbamate (**3c**) at a ratio of 1:9, the conversion of **3a** being complete. Further increase of the reaction time was undesirable due to opening of the cyclopropane ring and formation of high-molecularweight compounds (Scheme 3).

The reactions of cyclopentanamine (4a), cyclohexanamine (5a), cycloheptaneamine (6a), and cyclooctanamine (7a) with dimethyl carbonate at 120°C (1 h) gave 70–80% of the corresponding methyl *N*-cycloalkylcarbamates 4b–7b, regardless of the ring size. When

the reaction time was prolonged to 2 h, mixtures of approximately equal amounts of 4b-7b and their *N*-methyl derivatives 4c-7c were formed. Further increase of the reaction time to 5 h did not increase the yield of 4c-7c but favored methylation of initial amines

Despite the presence of a bulky substituent, adamantan-1-amine (**8a**) actively reacted with dimethyl carbonate under similar conditions, yielding methyl N-(adamantan-1-yl)carbamate (**8b**) as the only product (93%, Scheme 5). No further methylation of **8b** at the nitrogen atom was observed when the reaction time was prolonged or the amount of the catalyst was increased to 5 wt %, presumably due to steric effect of the bulky adamantane fragment.

4a-7a (Scheme 4).

Methoxycarbonylation of aniline (9a) with dimethyl carbonate in the presence of 5 wt % FeHY-mmm at

120°C (1 h) afforded 85% of methyl *N*-phenylcarbamate (9b). In the case of isomeric toluidines **10a–12a**, the position of the methyl group with respect to amino significantly influenced the yield of carbamates **10b–12b**. The highest yield was obtained for *p*-toluidine (**12a**). Raising the temperature or increasing the reaction time changed the reaction direction toward formation of the corresponding *N*-methylanilines (Scheme 6) [15].

Other *para*-substituted anilines, 4-chloroaniline (13a), 4-bromoaniline (14a), and 4-nitroaniline (15a), also smoothly reacted with dimethyl carbonate under the given conditions to produce methyl *N*-(4-chlorophenyl)carbamate (13b), methyl *N*-(4-bromophenyl)carbamate (14b), and methyl *N*-(4-nitrophenyl)carbamate (15b), respectively, in 85-88% yields (Scheme 7). No further methylation of 13b-15b was

observed when the reaction time was prolonged, but the corresponding N-methylanilines RC₆H₄NHMe were formed.

Methoxycarbonylation of benzylamine (16a) with dimethylcarbonate in the presence of 5 wt % FeHYmmm at 120°C (1 h) quantitatively afforded methyl *N*-benzylcarbamate (16b) (Scheme 8). After 6 h, a mixture of 16b, methyl *N*-benzyl-*N*-methylcarbamate (16c), and *N*-benzylidenebenzylamine (16d) at a ratio of 1:2:1 was obtained (Scheme 9).

Secondary amines, in particular dibutylamine (17a), reacted with dimethyl carbonate in the presence of FeHY-mmm to give only the corresponding tertiary amine, *N*-butyl-*N*-methylbutan-1-amine (17b) (Scheme 10).

Thus, we have developed a method for the synthesis of methyl *N*-alkyl-, *N*-cycloalkyl-, and *N*-arylcarbamates in high yields by methoxycarbonylation of the corresponding primary amines with dimethyl carbonate in the presence of binder-free FeHY-mmm zeolite catalyst.

EXPERIMENTAL

Initial reactants of pure and chemically pure grades were commercial products (Sigma–Aldrich). The ¹³C NMR spectra were recorded on a Bruker Avance 400 spectrometer (Germany) at 100.62 MHz using CDCl₃ as solvent (unless otherwise stated). The mass spectra (electron impact, 70 eV) were obtained with a Shimadzu GCMS-QP2010Plus instrument (Japan) equipped with an SPB-5 capillary column, 30 m× 0.25 mm; carrier gas helium; oven temperature programming from 40 to 300°C at a rate of 8 deg/min, injector temperature 280°C. The IR spectra were recorded in KBr or mineral oil on a Bruker-Vertex 79V spectrometer (Germany). The elemental compositions were determined using a Carlo Erba 1106 elemental analyzer (Italy).

The progress of reactions and the purity of the isolated compounds were monitored by GLC with a Shimadzu GC-9A or GC-2014 chromatograph (Japan) using a 2-m×3-mm column packed with SE-30 (5%) on Chromaton N-AW-HMDS; oven temperature

programming from 50 to 270°C at a rate of 8 deg/min; carrier gas helium, flow rate 47 mL/min.

The binder-free zeolite catalyst (FeHY-mmm) was prepared as described in [13, 14].

General procedure for the methoxycarbonylation of alkyl-, cycloalkyl-, and arylamines with dimethyl carbonate. The reactions were carried out in a 17-mL stainless steel high-pressure micro reactor or a 20-mL glass ampule. The results of parallel runs were almost the same. The reactor (ampule) was charged with 3-5 wt % of FeHY-mmm, 10 mmol of the corresponding amine, and 40 mmol of dimethyl carbonate. The reactor was hermetically closed (the ampule was sealed) and heated at 120°C for 0.5–2 h. When the reaction was complete, the reactor (ampule) was cooled to room temperature and opened, the mixture was filtered through a layer of alumina, excess dimethyl carbonate was distilled off, and the residue was distilled under atmospheric or reduced pressure or crystallized from ethanol.

Methyl N-butylcarbamate (1b). Yield 1.246 g (95%), bp 82–83°C (9 mm Hg). ¹³C NMR spectrum, $\delta_{\rm C}$, ppm: 13.68 (CH₃), 20.01 (C³), 31.93 (C²), 40.65 (C¹), 51.70 (OCH₃), 157.67 (C=O). Mass spectrum, *m/z* (*I*_{rel}, %): 131 (3) [*M*]⁺, 117 (1), 103 (15), 90 (5), 77 (56), 70 (100), 55 (85), 41 (57), 29 (35). Found, %: C 54.37; H 9.49; N 10.22. C₆H₁₃NO₂. Calculated, %: C 54.94; H 9.99; N 10.68. *M* 131.172.

Methyl *N***-butyl**-*N***-methylcarbamate (1c).** Yield 0.711 g (49%), bp 70–71°C (20 mm Hg). ¹³C NMR spectrum, $\delta_{\rm C}$, ppm: 13.57 (CH₃), 19.81 (C³), 30.47 (C²), 49.65 (C¹), 52.17 (OCH₃), 157.17 (C=O). Found, %: C 56.95; H 10.17; N 9.12. C₇H₁₅NO₂. Calculated, %: C 57.90; H 10.41; N 9.65. *M* 145.199.

Methyl N-heptylcarbamate (2b). Yield 1.611 g (93%), mp 31–32°C (from CH₂Cl₂–hexane). ¹³C NMR spectrum, $\delta_{\rm C}$, ppm: 14.10 (CH₃), 22.61 (C⁶), 26.89 (C³), 28.90 (C⁴), 30.63 (C²), 31.69 (C⁵), 41.20 (C¹), 51.70 (OCH₃), 157.87 (C=O). Mass spectrum, *m/z* (*I*_{rel}, %): 174 (3) [*M*]⁺, 158 (3), 144 (2), 130 (3), 103 (5), 88 (100), 76 (16), 59 (15), 44 (37), 29 (10). Found, %: C 62.97; H 10.99; N 7.82. C₉H₁₉NO₂. Calculated, %: C 62.39; H 11.05; N 8.08. *M* 173.252.

Methyl *N*-heptyl-*N*-methylcarbamate (2c). Yield 0.898 g (48%), bp 94–95°C (5 mm Hg). ¹³C NMR spectrum, $\delta_{\rm C}$, ppm: 14.10 (CH₃), 22.68 (C⁶), 27.89 (C³), 29.25 (C²), 29.89 (C⁴), 32.29 (C⁵), 33.65 (NCH₃), 50.60 (C¹), 52.17 (OCH₃), 156.87 (C=O). Found, %: C 63.85; H 10.97; N 6.92. C₁₀H₂₁NO₂. Calculated, %: C 64.13; H 11.30; N 7.48. *M* 187.279.

Methyl *N*-cyclopropylcarbamate (3b). Yield 1.036 g (90%), colorless oil, bp 84–85°C (11 mm Hg); published data [16]: bp 95–96°C (12 mm Hg). ¹³C NMR spectrum, $\delta_{\rm C}$, ppm: 6.68 (C¹), 22.89 (C²), 51.95 (C⁴), 158.47 (C³). Found, %: C 51.85; H 7.45; N 11.92. C₅H₉NO₂. Calculated, %: C 52.116; H 7.88; N 12.17. *M* 115.130.

Methyl *N*-cyclopropyl-*N*-methylcarbamate (3c). Yield 0.129 g (10%), colorless oil, bp 84–85°C (11 mm Hg). IR spectrum, v, cm⁻¹: 1028 m, 1040 m, 1159 s, 1287 s, 1363 m, 1375 m, 1695 s, 2984 s, br. ¹³C NMR spectrum, $\delta_{\rm C}$, ppm: 7.68 (C², C³), 30.52 (C¹), 34.80 (CH₃), 52.07 (OCH₃), 158.47 (C=O). Mass spectrum, *m*/*z* (*I*_{rel}, %): 129 (60) [*M*]⁺, 115 (80), 100 (100), 84 (40), 70 (90), 59 (92), 40 (95). Found, %: C 54.97; H 7.99; N 8.22. C₆H₁₁NO₂. Calculated, %: C 55.80; H 8.58; N 10.84. *M* 129.157.

Methyl *N*-cyclopentylcarbamate (4b). Yield 1.39 g (97%), bp 72–73°C (2 mm Hg). ¹³C NMR spectrum, δ_C , ppm: 23.52 d (C³, C⁴), 33.39 d (C², C⁵), 51.80 (C¹), 52.75 (OCH₃), 156.60 (C=O), 42.32. Found, %: C 57.95; H 8.29; N 9.66. C₇H₁₃NO₂. Calculated, %: C 58.72; H 9.15; N 9.78. *M* 143.183.

Methyl *N***-cyclopentyl***-N***-methylcarbamate (4c).** Yield 0.628 g (40%), bp 80–81°C (8 mm Hg). ¹³C NMR spectrum, δ_{C} , ppm: 23.58 d (C³, C⁴), 28.59 (CH₃), 33.18 d (C², C⁵), 56.65 (C¹), 51.96 (OCH₃), 156.46 (C=O). Found, %: C 59.95; H 9.29; N 8.66. C₈H₁₅NO₂. Calculated, %: C 61.12; H 9.62; N 8.91. *M* 157.210.

Methyl *N*-cyclohexylcarbamate (5b). Yield 1.446 g (92%), mp 74–75.0°C (from cyclohexane); published data [17]: mp 74–74.5°C. IR spectrum (KBr), v, cm⁻¹: 778 m, 894 m, 1052 s, br, 1238 s, 1250 s, 1284 s, 1350 s, 1451 s, 1533 s, 1695 s, 3320 m, 3350 s. ¹³C NMR spectrum, $\delta_{\rm C}$, ppm: 24.85 (C³, C⁵), 25.48 (C⁴), 33.59 (C², C⁶), 49.82 (C¹), 51.82 (OCH₃), 156.56 (C=O). Mass spectrum, *m/z* (*I*_{rel}, %): 156 (5) [*M*]⁺, 140 (1), 128 (100), 115 (6), 102 (9), 90 (14), 83 (5), 67 (3), 55 (10), 28 (2). Found, %: C 60.97; H 9.29; N 8.22. C₈H₁₅NO₂. Calculated, %: C 61.12; H 9.62; N 8.91. *M* 157.210.

Methyl *N*-cyclohexyl-*N*-methylcarbamate (5c). Yield 0.77 g (45%), bp 85–86°C (1 mm Hg). ¹³C NMR spectrum, $\delta_{\rm C}$, ppm: 26.15 (C³, C⁵), 26.48 (C⁴), 31.29 (C², C⁶), 41.28 (CH₃), 56.42 (C¹), 51.22 (OCH₃), 158.06 (C=O). Found, %: C 62.97; H 9.51; N 8.42. C₉H₁₇NO₂. Calculated, %: C 63.13; H 10.01; N 8.18. *M* 171.236.

Methyl N-cycloheptylcarbamate (6b). Yield 1.54 g (90%), bp 89–90°C (1 mm Hg). ¹³C NMR spectrum, $\delta_{\rm C}$, ppm: 22.64 (C³, C⁶), 31.57 (C⁴, C⁵), 36.33 (C², C⁷), 51.12 (C¹), 51.79 (OCH₃), 156.26 (C=O). Mass spectrum, *m/z* (*I*_{rel}, %): 171 (10) [*M*]⁺, 156 (15), 142 (15), 128 (60), 114 (100), 101 (40), 96 (60), 88 (55), 82 (56), 76 (100), 59 (50), 41 (72), 40 (100). Found, %: C 62.97; H 9.69; N 7.82. C₉H₁₇NO₂. Calculated, %: C 63.13; H 10.01; N 8.18. *M* 171.236.

Methyl *N*-cycloheptyl-*N*-methylcarbamate (6c). Yield 0.833 g (45%), bp 95–96°C (3 mm Hg). ¹³C NMR spectrum, $\delta_{\rm C}$, ppm: 23.86 (C³, C⁶), 28.02 (C⁴, C⁵), 30.21 (CH₃), 35.33 (C², C⁷), 51.79 (OCH₃), 57.72 (C¹), 156.26 (C=O). Mass spectrum, *m/z* (*I*_{rel}, %): 185 (10) [*M*]⁺, 170 (1), 156 (1), 142 (2), 128 (100), 114 (45), 102 (20), 96 (20), 90 (20), 76 (10), 71 (10), 59 (10), 41 (25), 42 (30), 40 (90). Found, %: C 63.87; H 9.89; N 7.28. C₁₀H₁₉NO₂. Calculated, %: C 64.83; H 10.34; N 7.56. *M* 185.263.

Methyl *N*-cyclooctylcarbamate (7b). Yield 1.684 g (91%), bp 115–115.5°C (2 mm Hg). ¹³C NMR spectrum, $\delta_{\rm C}$, ppm: 23.50 (C³, C⁷), 26.44 (C⁵), 27.22 (C⁴, C⁶), 31.56 (C², C⁸), 50.91 (C¹), 51.57 (OCH₃), 156.40 (C=O). Mass spectrum, *m/z* (*I*_{rel}, %): 185 (45) [*M*]⁺, 170 (48), 156 (49), 142 (100), 128 (99), 114 (97), 101 (95), 76 (96), 56 (88), 40 (91). Found, %: C 63.97; H 9.99; N 7.22. C₁₀H₁₉NO₂. Calculated, %: C 64.83; H 10.34; N 7.56. *M* 185.263.

Methyl *N*-cyclooctyl-*N*-methylcarbamate (7c). Yield 0.916 g (46%), bp 100–101°C (2 mm Hg). ¹³C NMR spectrum, $\delta_{\rm C}$, ppm: 24.96 (C³, C⁷), 25.38 (C⁴, C⁶), 26.06 (C⁵), 27.22 (CH₃), 32.34 (C², C⁸), 51.91 (OCH₃), 57.79 (C¹), 156.48 (C=O). Mass spectrum, *m/z* (*I*_{rel}, %): 199 (5) [*M*]⁺, 184 (0.5), 170 (1), 156 (1), 142 (2), 128 (100), 114 (30), 102 (15), 90 (30), 76 (10), 71 (15), 56 (20), 42 (40), 41 (38), 40 (40). Found, %: C 65.97; H 9.99; N 6.82. C₁₁H₂₁NO₂. Calculated, %: C 66.29; H 10.62; N 7.03. *M* 199.289.

Methyl *N*-(adamantan-1-yl)carbamate (8b). Yield 2.05 g (98%), mp 117–119°C (from CH₂Cl₂– hexane) {118–120°C [18]}. IR spectrum (KBr), v, cm⁻¹: 1722 (C=O), 3271 (NH). ¹³C NMR spectrum, $\delta_{\rm C}$, ppm: 29.95 (C³, C⁵, C⁷), 36.38 (C⁴, C⁶, C¹⁰), 41.29 (C², C⁸, C⁹), 51.02 (C¹), 51.22 (OCH₃), 154.98 (C=O). Mass spectrum, *m/z* (*I*_{rel}, %): 209 (35) [*M*]⁺, 152 (100), 120 (68). Found, %: C 67.97; H 9.89; N 6.22. C₁₂H₁₉NO₂. Calculated, %: C 68.87; H 9.15; N 6.69. *M* 209.284.

Methyl N-phenylcarbamate (9b). Yield 1.299 g (86%), mp 45–46.5°C (from cyclohexane); published data [18]: mp 47–48°C. IR spectrum (KBr), v, cm⁻¹: 710 m, 730 m, 905 m, 1032 m, 1072 s, 1247 s, 1324 s,

1453 s, 1505 m, 1546 s, 1605 s, 1615 m, 1709 s, 3322 m. ¹³C NMR spectrum, $\delta_{\rm C}$, ppm: 52.35 (OCH₃), 118.81 (C², C⁶), 123.48 (C⁴), 128.89 (C³, C⁵), 138.61 (C¹), 154.72 (C=O). Mass spectrum, *m/z* (*I*_{rel}, %): 151 (100) [*M*]⁺, 135 (4), 119 (75), 106 (97), 92 (48), 77 (30), 65 (80), 51 (20), 39 (40), 28 (10). Found, %: C 62.97; H 5.89; N 8.92. C₈H₉NO₂. Calculated, %: C 63.56; H 6.00; N 9.27. *M* 151.162.

Methyl *N*-(2-methylphenyl)carbamate (10b). Yield 0.743 g (45%), mp 67–68°C (from CH_2Cl_2 –hexane); published data [19]: mp 69–69.3°C. ¹³C NMR spectrum, δ_C , ppm: 15.57 (CH₃), 52.52 (OCH₃), 121.75 (C⁶), 124.79 (C⁴), 127.45 (C⁵), 128.88 (C¹), 130.87 (C³), 138.95 (C¹), 154.73 (C=O). Found, %: C 64.87; H 5.99; N 8.12. C₉H₁₁NO₂. Calculated, %: C 65.44; H 6.71; N 8.48. *M* 165.189.

Methyl *N*-(**3-methylphenyl)carbamate** (**11b**). Yield 0.743 g (45%), mp 69–70°C (from CH₂Cl₂– hexane); published data [19]: mp 69–69.3°C. ¹³C NMR spectrum, $\delta_{\rm C}$, ppm: 21.27 (CH₃), 52.65 (OCH₃), 115.92 (C⁶), 118.86 (C²), 123.29 (C⁴), 130.55 (C⁵), 138.08 (C³), 138.95 (C¹), 154.83 (C=O). Found, %: C 64.99; H 6.19; N 8.32. C₉H₁₁NO₂. Calculated, %: C 65.44; H 6.71; N 8.48. *M* 165.189.

Methyl *N*-(4-methylphenyl)carbamate (12b). Yield 1.452 g (88%), mp 97.5–98.5°C (from cyclohexane); published data [18]: mp 98.3–99°C. IR spectrum (KBr), v, cm⁻¹: 816 m, 1073 m, 1236 s, 1317 m, 1512 m, 1538 m, 1599 m, 1704 s, 3328 m. ¹³C NMR spectrum, $\delta_{\rm C}$, ppm: 20.65 (CH₃), 52.35 (OCH₃), 118.84 (C², C⁶), 129.48 (C³, C⁵), 132.84 (C⁴), 136.65 (C¹), 154.73 (C=O). Mass spectrum, *m/z* (*I*_{rel}, %): 165 (100) [*M*]⁺, 150 (6), 133 (78), 120 (15), 106 (41), 91 (14), 77 (36), 51 (95), 29 (2). Found, %: C 64.97; H 6.09; N 8.12. C₉H₁₁NO₂. Calculated, %: C 65.44; H 6.71; N 8.48. *M* 165.189.

Methyl *N*-(4-chlorophenyl)carbamate (13b). Yield 1.58 g (85%), mp 115–116.5°C (from CH₂Cl₂– hexane); published data [18]: mp 115.6–116.1°C. IR spectrum (KBr), v, cm⁻¹: 1092, 1238, 1546, 1606, 1704, 3345. ¹³C NMR spectrum, $\delta_{\rm C}$, ppm: 52.65 (OCH₃), 120.18 (C², C⁶), 128.34 (C⁴), 129.08 (C³, C⁵), 137.05 (C¹), 154.43 (C=O). Mass spectrum, *m*/*z* (*I*_{rel}, %): 185 (44) [*M*]⁺, 153 (46), 140 (39), 128 (11), 112 (8), 99 (29), 90 (17), 73 (20), 62 (25), 49 (18), 32 (100). Found, %: C 50.97; H 4.09; Cl 18.85; N 7.22. C₈H₈ClNO₂. Calculated, %: C 51.77; H 4.34; Cl 19.10; N 7.55. *M* 185.607.

Methyl N-(4-bromophenyl)carbamate (14b). Yield 2 g (87%), mp 125–126°C (from CH_2Cl_2 – hexane); published data [18]: mp 125.1–125.7°C.

RUSSIAN JOURNAL OF ORGANIC CHEMISTRY Vol. 56 No. 7 2020

¹³C NMR spectrum (CDCl₃), $δ_C$, ppm: 52.65 (OCH₃), 116.34 (C⁴), 120.15 (C², C⁶), 131.58 (C³, C⁵), 136.15 (C¹), 153.73 (C=O). Found, %: C 40.97; H 3.09; Br 33.85; N 5.82. C₈H₈BrNO₂. Calculated, %: C 41.77; H 3.50; Br 34.73; N 6.09. *M* 230.058.

Methyl *N*-(4-nitrophenyl)carbamate (15b). Yield 1.686 g (86%), mp 176.5–178°C (from CH₂Cl₂– hexane); published data [18]: mp 177.2–178°C. IR spectrum (KBr), v, cm⁻¹: 1220, 1326, 1506, 1596, 1740, 3394. ¹³C NMR spectrum, $\delta_{\rm C}$, ppm: 52.65 (OCH₃), 117.38 (C², C⁶), 125.08 (C³, C⁵), 143.05 (C¹), 146.04 (C⁴), 154.83 (C=O). Found, %: C 47.97; H 3.89; N 13.42. C₈H₈N₂O₄. Calculated, %: C 48.98; H 4.11; N 14.28. *M* 196.160.

Methyl *N*-benzylcarbamate (16b). Yield 1.6 g (97%), mp 64–65°C (from CH₂Cl₂–hexane; published data [20]: mp 62.2–62.9°C. IR spectrum (KBr), v, cm⁻¹: 704, 739, 999, 1144, 1273 s, 1495 m, 1536 s, 1692 s, 3344 m. ¹³C NMR spectrum, $\delta_{\rm C}$, ppm: 45.07 (CH₂), 52.25 (OCH₃), 127.29 (C⁴), 127.55 (C², C⁶), 128.08 (C³, C⁵), 137.65 (C¹), 156.83 (C=O). Mass spectrum, *m/z* (*I*_{rel}, %): 165 (40) [*M*]⁺, 150 (78), 133 (32), 121 (9), 106 (12), 91 (100), 79 (66), 77 (10), 65 (29), 59 (12), 29 (9). Found, %: C 64.87; H 6.19; N 7.82. C₉H₁₁NO₂. Calculated, %: C 65.44; H 6.71; N 8.48. *M* 165.189.

Methyl *N*-benzyl-*N*-methylcarbamate (16c). Yield 1.003 g (56%), colorless oil, R_f 0.44 (hexane–EtOAc, 2:1). IR spectrum (KBr), v, cm⁻¹: 701, 771, 1144, 1146 s, 1454 m, 1484, 1536 s, 1705 s, 2955, 3030 m. ¹³C NMR spectrum (DMSO- d_6), δ_C , ppm: 35.7 (CH₃), 52.29 (OCH₃), 53.74 (CH₂), 126.97 (C², C⁶), 127.56 (C⁴), 128.02 (C³, C⁵), 137.68 (C¹), 156.45 (C=O). Found, %: C 66.87; H 6.99; N 7.72. C₁₀H₁₃NO₂. Calculated, %: C 67.02; H 7.31; N 7.82. *M* 179.215.

N-Benzylidenebenzylamine (16d). Yield 0.488 g (25%), bp 124–125°C (2 mm Hg). ¹³C NMR spectrum, $\delta_{\rm C}$, ppm: 65.05 (PhCH₂), 127.98 (C², C⁶), 128.49 (C³, C⁵), 128.60 (C^{3'}, C^{5'}), 128.63 (C⁴), 130.76 (C^{4'}), 136.17 (C^{1'}), 139 (C¹), 162.00 (N=CH). Mass spectrum, *m/z* (*I*_{rel}, %): 195.25 (35) [*M*]⁺, 194 (33), 165 (5), 152 (3), 117 (15), 91 (100), 65 (20), 51 (5). Found, %: C 85.87; H 6.19; N 6.92. C₁₀H₂₁N. Calculated, %: C 86.12; H 6.71; N 7.17. *M* 195.2597.

N-Butyl-*N*-methylbutan-1-amine (17b). Yield 1.418 g (99%), bp 85–86°C (50 mm Hg). ¹³C NMR spectrum, $\delta_{\rm C}$, ppm: 14.60 (C⁴, C^{4'}), 21.10 (C³, C^{3'}), 29.31 (C², C^{2'}), 42.18 (NCH₃), 58.21 (C¹, C^{1'}). Found, %: C 76.87; H 13.99; N 9.12. C₉H₂₁N. Calculated, %: C 75.45; H 14.77; N 9.78. *M* 143.269.

ACKNOWLEDGMENTS

This study was performed using the equipment of Agidel joint center, Ufa Federal Research Center, Russian Academy of Sciences.

FUNDING

This study was performed under financial support by the Ministry of Science and Higher Education of the Russian Federation (project no. 2019-05-595-000-058).

CONFLICT OF INTEREST

The authors declare no conflict of interest.

REFERENCES

- Rose, S.L., Sullivan, H.R., and Pohland, A., J. Am. Pharm. Assoc., 1955, vol. 44, p. 766. https://doi.org/10.1002/jps.3030441217
- Konopacki, J., Gołebiewski, H., and Eckersdorf, B., Brain Res., 1992, vol. 572, p. 76. https://doi.org/10.1016/0006-8993(92)90453-G
- Bryld, L.E., Anger, T., Rastogi, S.C., and Menne, T., *Contact Dermatitis*, 1997, vol. 36, p. 156. https://doi.org/10.1111/j.1600-0536.1997.tb00400.x
- Fukuto, T.R., *Environ. Health Perspect.*, 1990, vol. 87, p. 245. https://doi.org/10.1289/ehp.9087245
- Daly, N.J. and Ziolkowski, F., Aust. J. Chem., 1972, vol. 25, p. 1453. https://doi.org/10.1071/CH9721453
- Tundo, P., Bressanello, S., Loris, A., and Sathicq, G., *Pure Appl. Chem.*, 2005, vol. 77, p. 1719. https://doi.org/10.1351/pac200577101719
- Cao, Y.L., Zhao, L.S., Wang, L.J., Zhu, G., Wang, L., He, P., and Li, H., *Int. J. Chem. Kinet.*, 2018, vol. 50, p. 767. https://doi.org/10.1002/kin.21211
- Baba, T., Fujiwara, M., Oosaku, A., Kobayashi, A., Deleon, R., and Ono, Y., *Appl. Catal.*, *A*, 2002, vol. 227, p. 1. https://doi.org/10.1016/S0926-860X(01)00939-5
- Li, F., Miao, J., Wang, Y., and Zhang, X., *Ind. Eng. Chem. Res.*, 2006, vol. 45, p. 4892. https://doi.org/10.1021/ie060142n
- Guo, X., Shang, J., Li, J., Wang, L., Ma, Y., Shi, F., and Deng, Y., *Synth. Commun.*, 2011, vol. 41, p. 1102. https://doi.org/10.1080/00397911003707055
- Vauthey, I., Valot, F., Gozzi, C., Fache, F., and Lemaire, M., *Tetrahedron Lett.*, 2000, vol. 41, p. 6347. https://doi.org/10.1016/S0040-4039(00)01051-0

- Sarmah, B. and Srivastava, R., *Ind. Eng. Chem. Res.*, 2017, vol. 56, p. 15017. https://doi.org/10.1021/acs.iecr.7b03993
- Kutepov, B.I., Travkina, O.S., Pavlova, I.N., Khazipova, A.N., Grigor'eva, N.G., and Pavlov, M.L., *Russ. J. Appl. Chem.*, 2015, vol. 88, p. 65. https://doi.org/10.1134/S1070427215010103
- Pavlov, M.L., Travkina, O.S., Kutepov, B.I., Pavlova, I.N., and Khazipova, A.N., RU Patent no. 2456238, 2012; *Byull. Izobret.*, 2012, no. 20.
- Khusnutdinov, R.I., Shchadneva, N.A., Mayakova, Yu.Yu., Abdrakhmanov, A.N., Khazipova, A.N., and Kutepov, B.I., *Russ. J. Org. Chem.* 2019, vol. 55, p. 1185.

https://doi.org/10.1134/S1070428019080049

- 16. Moffert, R.B., *J. Chem. Eng. Data*, 1980, vol. 25, p. 176. https://doi.org/10.1021/je60085a001
- Hiegel, G.A. and Hogenauer, T.J., Synth. Commun., 2005, vol. 35, p. 2091. https://doi.org/10.1081/SCC-200066695
- Zagulyaeva, A.A., Banek, C.T., Yusubov, M.S., and Zhdankin, V.V., *Org. Lett.*, 2010, vol. 12, p. 4644. https://doi.org/10.1021/ol101993q
- Moriarty, R.M., Chany, C.J., Vaid, R.K., Prakash, O., and Tuladhar, S.M., *J. Org. Chem.*, 1993, vol. 58, p. 2478. https://doi.org/10.1021/jo00061a022
- Yoshimura, A., Luedtke, M.W., and Zhdankin, V.V., J. Org. Chem., 2012, vol. 77, p. 2087. https://doi.org/10.1021/jo300007c