

Article

Subscriber access provided by Gothenburg University Library

Palladium-Catalyzed Amination/Dearomatization Reaction of Indoles and Benzofurans

Zhe Zhang, Bo-Sheng Zhang, Kai-Li Li, Yang An, Ce Liu, Xue-Ya Gou, and Yong-Min Liang J. Org. Chem., Just Accepted Manuscript • DOI: 10.1021/acs.joc.0c00475 • Publication Date (Web): 22 May 2020 Downloaded from pubs.acs.org on May 22, 2020

Just Accepted

"Just Accepted" manuscripts have been peer-reviewed and accepted for publication. They are posted online prior to technical editing, formatting for publication and author proofing. The American Chemical Society provides "Just Accepted" as a service to the research community to expedite the dissemination of scientific material as soon as possible after acceptance. "Just Accepted" manuscripts appear in full in PDF format accompanied by an HTML abstract. "Just Accepted" manuscripts have been fully peer reviewed, but should not be considered the official version of record. They are citable by the Digital Object Identifier (DOI®). "Just Accepted" is an optional service offered to authors. Therefore, the "Just Accepted" Web site may not include all articles that will be published in the journal. After a manuscript is technically edited and formatted, it will be removed from the "Just Accepted" Web site and published as an ASAP article. Note that technical editing may introduce minor changes to the manuscript text and/or graphics which could affect content, and all legal disclaimers and ethical guidelines that apply to the journal pertain. ACS cannot be held responsible for errors or consequences arising from the use of information contained in these "Just Accepted" manuscripts.

is published by the American Chemical Society. 1155 Sixteenth Street N.W., Washington, DC 20036

Published by American Chemical Society. Copyright © American Chemical Society. However, no copyright claim is made to original U.S. Government works, or works produced by employees of any Commonwealth realm Crown government in the course of their duties.

7

8 9 10

11 12

13

14 15

16

17

18

19

20

21

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

59

60

Palladium-Catalyzed Amination/Dearomatization Reaction of Indoles and Benzofurans

Zhe Zhang,^a Bo-Sheng Zhang,^a Kai-Li Li,^b Yang An,^a Ce Liu,^a Xue-Ya Gou,^a Yong-Min Liang^{*,a}

^a State key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China

^b Lanzhou University Second Clinical Medical College, Lanzhou 730000, China

ABSTRACT: This report describes a palladium-catalyzed dearomatization and amination tandem reaction of 2,3-disubstituted indoles and benzofurans via a Catellani strategy. This reaction provides a new method for the construction of amino-substituted indoline fused cyclic and benzofuran spiro compounds in good yields. The reaction has broad functional group compatibility and substrate scope.

1. INTRODUCTION

Indoline derivatives and benzofuran derivatives are important heterocyclic aromatic compounds that exist widely in natural products and have important applications in medicine and materials science.¹ Isatisine A acetonide is separated from Folium isatidis and exhibits anti-HIV-1 activity. The screwshaped alkaloid (+)-hinckdentine A was isolated from the marine bryozoan Hincksinoflustra denticulata in 1987. These two natural products offer great potential for drug development and attract the interest of many synthetic researchers.² In addition, (+)-aspidospermidine, a natureproduct with significant respiratory stimulation and antibiotic activity, is an alkaloid extracted from Aspidosperma.³ Spiropyran dye can be used to make photochromic functional materials.⁴ (+)-Griseofulvin is a selective antifungal agent used to treat skin infections in animals and humans. Recently, it has been reported that griseofulvin exhibits both antitumor and antiviral activities in mammals.⁵ Due to the low natural abundance, the synthesis of these skeletons has attracted much attention.

43 Aromatics can now be rapidly transformed into spiro or fused 44 cyclic compounds with complex structures by dearomatization 45 reactions.⁶ The dearomatization reactions of indole, benzofuran, 46 pyrrole and furan derivatives and other compounds were carried 47 out by Yao, Jia and Luan.⁷ Pyrrole has an electrophilic property 48 after the dearomatization occurs. The selective C-H 49 functionalizations of the cyanation, arylation and alkynylation 50 of indole at the C3 position have been successfully achieved at 51 the same time as dearomatization. These works were 52 implemented by Lautens, Jia, our group and other research groups.⁸ Some achievements in the dearomatization reactions 53 of benzofuran derivatives have also been obtained by Yin. 54 Yamaguchi and others.⁹ In these studies, the tandem reactions 55 are usually completed by nucleophilic reagents combined with 56 specific sites, while the tandem reactions with electrophilic 57 reagents are less common. 58

After Catellani discovered the Pd/NBE cooperative catalytic reaction system in 1997, Lautens introduced phosphine ligands to make the reaction system more compatible and established the palladium/norbornene cooperative catalysis reaction system.¹⁰ In past studies, ortho-alkylation, ortho-arylation, ortho-carbonylation and ortho-amination reactions have been developed by Catellani, Lautens, Dong, Bach, Gu and others.¹¹ Among them, ortho-amination was first realized by the Dong group in 2013.¹² Although the reaction system has ma de some gratifying achievements, its application in the rapid construction of complex structures, especially in the construction of natural products and drug skeletons, still faces great challenges.

Scheme1.Palladium-CatalyzedAmination/DearomatizationReaction of Indoles andBenzofurans

2

3

4

5

6

7

8

9 10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

41

42 43

60

A large number of biologically active molecules in nature have amino functional groups,¹³ such as piperidine, piperazine, morpholine and other functional groups.¹⁴ In addition, in pharmaceutical chemistry, antibacterial linezolid¹⁵ and antitumor targeted therapy drug gefitinib¹⁶ has morpholine group, hypertension drug β 1-AR,¹⁷ antibacterial levofloxacin¹⁸ and wide-spectrum veterinary antibacterial enrofloxacin¹⁹ has piperazine group, etc. These show that the site-selective introduction of amino functional groups is very valuable for drug screening. Due to the limitations of natural extraction, artificial synthesis is particularly important, and the synthesis of

these compounds has always been a primary focus of organic synthesis research. However, the domino reaction of selective amination of benzene ring and heterocyclic dearomatization has not been realized. We attempt to use the electrophilic N-(benzoyloxy)amine reagents as the amine source and introduce amines into the construction of fused cyclic compounds containing indole framework or spiro compounds containing benzofuran framework at the same time via Pd/NBE cooperative catalysis. (Scheme 1)

2. RESULTS AND DISCUSSION

For the tandem reaction conditions of dearomatization and amination of indole derivatives, we used morpholine benzoate as the amino source with Pd(OAc)₂/PPh₃/Cs₂CO₃ as the starting condition. Fortunately, we detected the presence of the product by GC-MS and successfully separated it to determine the structure. Interestingly, toluene was not the best solvent in the initial solvent selection, and the yield was only 51%. With the decrease of reaction temperature, the advantage of toluene as reaction solvent gradually emerged. When the temperature was reduced to 80 °C, the yield reached 67% (Entries 1-7). However, the reaction was not complete, and there was a surplus of starting substrate 1a. Therefore, the reaction time was prolonged, and the conversion rate of the reaction was significantly improved. We finally found that 48 h was the optimal reaction time (Entry 8). After that, we found that phosphine ligands crucially influenced the reaction direction. When trialkylphosphine ligands (such as PCy_3 and P^tBu_3 -HBF₄) were used, the dearomatization reaction was more likely to occur without amination. When electron-poor aromatic phosphine ligands were used, the reaction was promoted. Finally, TFP exerted the best effect on the reaction, and the yield reached 84% (Entries 9-12). At last, we screened the base and palladium. We found that when we used another base to replace Cs₂CO₃, the yield decreased or the reaction direction moved towards the product of the dearomatization reaction without amination. Finally, we found that $Pd(OAc)_2$ was the best palladium catalyst. (Entries 13-17) (Table 1)

Table 1. Optimization of the Tandem Reaction Conditions of Dearomatization and Amination of Indole Derivatives

Entry	Solvent	Temperatu re (°C)	Pd	Ligand	Base	Time (h)	Yield (%)
1	toluene	120	$Pd(OAc)_2$	PPh ₃	Cs_2CO_3	18	51
2	1,4-dioxane	120	$Pd(OAc)_2$	PPh ₃	Cs_2CO_3	18	66
3	THF	120	$Pd(OAc)_2$	PPh ₃	Cs_2CO_3	18	70
4	DCE	120	$Pd(OAc)_2$	PPh ₃	Cs_2CO_3	18	62
5	toluene	80	$Pd(OAc)_2$	PPh ₃	Cs_2CO_3	18	67
6	toluene	100	$Pd(OAc)_2$	PPh ₃	Cs_2CO_3	18	68
7	toluene	140	$Pd(OAc)_2$	PPh ₃	Cs_2CO_3	18	46
8	toluene	80	$Pd(OAc)_2$	PPh ₃	Cs_2CO_3	48	78
9	toluene	80	$Pd(OAc)_2$	TFP	Cs_2CO_3	18	74
10	toluene	80	$Pd(OAc)_2$	X-Phos	Cs_2CO_3	18	60
11	toluene	80	$Pd(OAc)_2$	PCy ₃	Cs_2CO_3	18	trace

The Journal of Organic Chemistry

12	toluene	80	Pd(OAc) ₂	TFP	Cs ₂ CO ₃	48	84
13	toluene	80	$Pd(OAc)_2$	TFP	Cs_2CO_3	24	81
14	toluene	80	Pd(PPh ₃) ₄	TFP	Cs_2CO_3	24	33
15	toluene	80	Pd(PPh ₃)Cl ₂	TFP	Cs_2CO_3	24	76
16	toluene	80	Pd(PPh ₃)Cl ₂	_	Cs_2CO_3	24	79
17	toluene	80	$Pd(OAc)_2$	TFP	K_2CO_3	24	55

^a Reaction conditions: substrate **1a** (0.2 mmol), **2a** (0.4 mmol, 2.0 equiv.), $Pd(OAc)_2$ (0.02 mmol, 10 mol %), TFP (0.04 mmol, 20 mol %), norbornene (0.8 mmol, 4.0 equiv.), Cs_2CO_3 (0.8 mmol, 4.0 equiv.), toluene (3.0 mL), 80 °C, 48 h. TFP = TrifuryIphosphine, PCy_3 = TricyclohexyIphosphine.

Amination reagents derived from cyclic amines, such as morpholine, thiomorpholine, pyrrolidine, hexamethyleneimine, piperidine and piperazine, provided the required products (**3a**-**3o**, **3r**) with good yields. Among them, morpholine (**3a**), ketalprotected (**3k**) and piperazinyl products (**3l-3o**) can be found in a large number of natural products or drug molecules.^{13e, 20} Noncyclic amination reagents also afforded the target products in good yields (**3p**, **3q**). The structures of representative products **3a**, **3b** and **3c** were confirmed by single-crystal X-ray diffraction technique.²⁵ In particular, the corresponding product (**3r**) of the antidepressant drug paroxetine was also derived by this method. (Table 2)

We next used piperidin-1-yl benzoate as an amination reagent to expand the substrate scope. The results showed that the target product (**4a-4m**) can be obtained in good yields when including halogenated substrates (-F, -Cl, -Br or -CF₃), electron-rich groups (-CH₃, -OCH₃) or the strong electron-withdrawing group -NO₂.²⁵ It is noteworthy that higher temperature (100 °C) was required to make the reaction proceed smoothly (**4m**, **4q**-**4t**). When the C3 position of indole was substituted with the benzyl group or there were electron donor groups in the C5 position, the reaction could proceed smoothly (**4n-4p**). The C3hexyl/isopropyl substituted indoles were also suitable for this

Table 2. Investigation of Substrate Scope^a

reaction system (4q-4r). In addition, the reaction still proceeded smoothly when there was a large steric hindrance group at the C2 position of indole (4s-4t). (Table 2)

For the tandem reaction conditions of dearomatization and amination of benzofuran derivatives, we found that both Pd(OAc)₂/X-Phos/DCE/120 °C and Pd(OAc)₂/TFP/toluene/80 °C are suitable for this reaction. On the basis of the optimum conditions, the scope of the amination reagents was investigated again:²⁵ the ketal-protected skeleton (**6c**) and piperazinyl skeleton products (**6d-6f**) were successfully obtained, but piperidine was not ideal. We then investigated the scope of substrate **5** and found that the desired products (**6g-6l**) could be obtained successfully with either an electron-withdrawing group or electron-donating group. (Table 3)

To study the feasibility of an asymmetric version of this domino reaction, we utilized 1a and 2b as the reactants, and preliminary studies with chiral phosphine ligand demonstrated that product 7 could be formed in 32% yield and with 66: 34 er by chiral phosphine ligand L3. We realized the asymmetric conversion of the amination/dearomatization reaction; unfortunately, we did not obtain better results after screening various ligands. (Scheme 2)

The Journal of Organic Chemistry

^a Reaction conditions: substrate **1a** (0.2 mmol), **2** (0.4 mmol, 2.0 equiv.), Pd(OAc)₂ (0.02 mmol, 10 mol %), TFP (0.04 mmol, 20 mol %), norbornene (0.8 mmol, 4.0 equiv.), Cs₂CO₃ (0.8 mmol, 4.0 equiv.), toluene (3.0 mL), 80 °C, 48 h. ^b at 100 °C.

To further expand the application of electrophilic reagents, we used n-butane bromide as an electrophilic reagent to explore the tandem reaction of dearomatization and alkylation. After selecting the reaction conditions, it was found that the target product **8** could be obtained in 23% yield after 24 h reaction at 60 °C with DMF instead of toluene as the solvent. Unfortunately, this method cannot produce the products of the dearomatization/arylation reaction. (Scheme 3)

To demonstrate the scalability of this method, we expanded the scale of **1a** to 2.7 mmol (1.01 g) and finally obtained the target product **3e** with 79% yield (0.71g). (Scheme 4) To explore the versatility of product skeletons and the potential application of this new method, we also conducted some derivative experiments. Considering that many bioactive compounds and natural products often contain unprotected N-H bonds,^{13e} we previously attempted to use TFA and SiO₂, respectively, to remove the Boc-protecting group of **3m**, and we could obtain the target product **9** with yields of 63% and 73%, respectively. Product **9** can be further modified according to specific needs. (Scheme 5) In addition, the hydrogenation reaction could be carried out for **3d** by using Pd/C as catalyst and ethyl acetate as

solvent under 1 atm H_2 , and product **10** could be obtained in 66% yield.^{7c} (Scheme 6)

In particular, we attempted to use substrate **11** with H in the C2 position of indole and found that norbornene could not be removed. Therefore, we speculate that the 2-substituent groups of indole are very important for the dearomatization reaction and ortho-amination. (Scheme 7)

Table 3. Reaction Scopea ^a

^a Reaction conditions: substrate **5** (0.2 mmol), **2** (0.4 mmol, 2.0 equiv.), Pd(OAc)₂ (0.02 mmol, 10 mol %), X-Phos (0.04 mmol, 20 mol %), norbornene (0.8 mmol, 4.0 equiv.), Cs₂CO₃ (0.8 mmol, 4.0 equiv.), DCE (3.0 mL), 120 °C, 18 h. ^b TFP (0.04 mmol, 20 mol %), toluene (3.0 mL), 80 °C, 48 h.

Scheme 2. Asymmetric Tandem Reaction of 1a

Scheme 3. Alkylation/Dearomatization Reaction of 1a

Scheme 4. Gram-scale Synthesis

Scheme 5. Deprotection of Production 3m

Scheme 6. Hydrogenation Reaction of 3d

Scheme 7. Amination/Dearomatization Reaction of Substrate 11

Based on the mechanism proposed by Catellani, Lautens, Dong and others, we propose the following reaction mechanism:

First, Pd(0) is bound to iodobenzene by oxidative addition reaction, and then, under the action of norbornene and palladium, intermediate I is formed through carbopalladation of norbornene and subsequent ortho-C-H activation. Then, N-(benzoyloxy)amine is added to intermediate I by oxidative addition, and aminated aromatic II is obtained by reductive elimination. Alternatively, N-(benzoyloxy)amine can undergo electrophilic amination directly with intermediate I to produce aminated aromatic II. Next, after intramolecular coordination of the indole to Pd and carbopalladation, the beta-hydride elimination reaction of intermediate III takes place under the action of cesium carbonate, and the desired target product \mathbf{N} is finally obtained. Pd then participates in the reaction cycle again. (Scheme 8)

Scheme 8. Possible Catalytic Cycle

3. CONCLUSIONS

In summary, we have demonstrated a new method for the direct construction of bicyclic compounds of indoles or spiro compounds of benzofurans with C2-quaternary center, C3-exo double bond and amino group by Pd/NBE cooperative catalysis. The synthesis method is efficient and convenient, and it exhibits good functional group tolerance. It may be useful in industrial production, complex natural product synthesis and asymmetric synthesis. The extension to additional aromatic hydrocarbon substrates and enhancement of enantioselectivity of synthesis are currently being studied in the laboratory.

4. EXPERIMENTAL SECTION

1

2

3

4

5

6 7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57 58 59

60

General Procedures. Unless otherwise noted, reactions were performed under an argon atmosphere. Plastic syringes were used to transfer air-and moisture-sensitive reagents. Solvent was freshly distilled/degassed prior to use unless otherwise noted. Analytical TLC was performed with silica gel GF254 plates. For column chromatography, a 200-300 mesh silica gel was employed. Organic solutions were concentrated under reduced pressure using a rotary evaporator. Room temperature (r.t.) is 23-25 °C. Commercial reagents were used as received without further purification unless otherwise noticed. Other commercially available reagents and solvents were used without further purification. Ligands L1-L6 were purchased or prepared according to the literature procedures and used directly as received. Deuterated solvents were purchased from Cambridge Isotope Laboratories. ¹H NMR spectra were recorded on Bruker AVANCE III 400 with 400 MHz frequencies, and ¹³C NMR spectra were recorded on Bruker AVANCE III 400 with 101 MHz frequencies. ¹⁹F NMR spectra were recorded on a Bruker AVANCE III 400 spectrometer with a ¹⁹F operating frequency of 376 MHz. Chemical shifts (δ) were reported in ppm relative to the residual solvent signal (CDCl₃ δ = 7.26 for ¹H NMR and δ = 77.00 for ¹³C NMR). Chemical shifts (ppm) were recorded with tetramethylsilane (TMS) as the internal reference standard. Multiplicities are given as s (singlet), d (doublet), t (triplet), q (quartet), m (multiplet), dd (doublet of doublets) or td (triplet of doublets). HRMS was obtained using a Q-TOF instrument equipped with an ESI source. Data collection for crystal structure was performed at room temperature using Mo Ka radiation on a Bruker APEXII diffractometer. HPLC analyses were performed using Agilent 1260 chromatography. Chiralpak AD-H columns were purchased from Daicel Corporation.

General Methods of Product Preparation and Product Derivatization.

Synthesis of chiral phosphoramidite ligands: The ligands L1-L4 were prepared according to the literature method with some modification.^{7c, 21} To a solution of 10,11-dihydro-5Hdibenzo[b,f]azepine (2.6 mmol) in dry THF (5 mL) at 0 °C was added n-BuLi (2.4 M in hexanes, 3.9 mmol) dropwise over 3 min under argon atmosphere. After stirring at 0 °C for 30 min, PCl₃ (7.8 mmol) was added to the reaction mixture in one portion. The resulting mixture was warmed to room temperature, stirred for 1 h, and then concentrated at room temperature. The remaining PCl₃ was removed under vacuum. Dry THF (5 mL) was then added to the resulting residue. After stirring for 10 min, the mixture was cooled to 0 °C, followed by

addition of a solution of (R)-[1,1'-binaphthalene]-2,2'-diol (1.3 mmol) and Et_3N (7.8 mmol) in dry THF (5 mL) over 2 min. The mixture was warmed to room temperature and stirred 24 h. It was then filtered and the solid was washed with THF. After evaporation, the residue was purified by chromatography on silica gel, eluting with petroleum ethyl/acetate ether to afford the ligands.

Ligands **L5-L6** are purchased from reagent manufacturers and used without further purification.

Typical procedure for the synthesis of O-benzoyl hydroxylamine **2**: O-Benzoyl hydroxylamines was synthesized using a modified procedure.^{11e, 12} To a 100 mL flask equipped with stir bar and benzoyl peroxide (3.46 g, 70% purity 10 mmol, 1 equiv.), K₂CO₃ (2.76g, 20 mmol, 2 equiv.), and CH₂Cl₂ (50 mL) was added sequentially. Then a solution of amine (15 mmol, 1.5 equiv.) was added dropwise at 0 °C. Upon completion, the reaction was further stirred at room temperature overnight. After monitored by TLC to see the full conversion of benzoyl peroxide, water (100 mL) was added, and the products were extracted with CH₂Cl₂ (3 × 50 mL). The combined organic extract was dried over Na₂SO₄, filtered and concentrated under vacuum. The residue was purified by column chromatography on silica gel to give O-benzoyl hydroxylamine **2**.

Typical procedure for the synthesis of 1: Methods I: Phenylhydrazine hydrochloride (12 mmol), AcOH (5 mL) and ketone (10.0 mmol) were added into a 20 mL tube, the mixture was stirred at 100 °C for 3 h. After the reaction was completed, water (10 mL) was added, and the mixture was extracted with ethyl acetate. The combined organic phase was washed with brine, dried over Na₂SO₄ and concentrated in vacuo to give crude product, which was purified by flash chromatography on silica gel to afford the fused indole products.^{7d} Methods II : 2methyl-1H-indole (6 mmol), KOH (7.8 mmol) and phenylmethanol (18 mmol) were added into a 20 mL tube, the mixture was stirred at 150 °C for 18 h. After the reaction was completed, water (10 mL) was added, and the mixture was extracted with ethyl acetate. The combined organic phase was washed with brine, dried over Na₂SO₄ and concentrated in vacuo to give crude product which was purified by flash chromatography on silica gel to afford the fused indole products.22

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49 50 51

52

53

54

55

56

57

58 59

60

Substrates 1 were prepared according to the known procedure by the condensation of 2-iodobenzoic acid with indole accordingly. The corresponding indoles was synthesis by known methods I (Fisher indole synthesis) or methods II. Unless otherwise indicated, all other reagents and solvents were obtained from commercial suppliers and used as received. To a solution of substituted indole (6 mmol) in 25 mL DMF was added NaH (60%, 9 mmol) in portion at 0 °C, after which the mixture was stirred at room temperature for 1 h. A solution of substituted 2-iodobenzoyl chloride (12 mmol) in 5 mL DMF was then introduced to the above mixture and the resulting mixture was reacted at 70 °C for 18 h. After quenched by water, the mixture was extracted with ethyl acetate and washed by saturated potassium carbonate solution. The collected organic phase was then dried over Na₂SO₄ followed by filtration and concentration under vacuum to afford the crude product, which was then purified by flash chromatography on slica gel, eluting with petroleum ether/ethyl acetate 100:1 (v/v) to afford the substrates 1.7d, 8d

Typical procedure for the synthesis of 5: To a stirred solution of substituted 2-iodobenzoic acid (10 mmol) in CH₂Cl₂ (15 mL) were added a catalytic amount of DMF (18 μ L) and (COCl)₂ (20 mmol, 0.7 mL), and the mixture was stirred for 4 h at room temperature. The mixture was then concentrated under reduced pressure. To a stirred solution of this residue in DCM (5.0 mL) was added a mixture of Substituted 2-iodoaniline (12 mmol) and Et₃N (3 mL) in DCM (25 mL). The mixture was stirred at room temperature for 24 h. After the reaction was completed, water (10 mL) was added, and the mixture was extracted with ethyl acetate. The combined organic phase was washed with brine, dried over Na₂SO₄. After filtration, the solvent was concentrated under vacuum and the residue was purified by flash chromatography on silica gel, eluting with petroleum ether/ethyl acetate 100:1 (v/v) to afford the substrates A. A 60%dispersion of NaH in mineral oil (20 mmol) was added to a stirred solution of the substrates A in THF at 0 °C, after which the mixture was stirred at room temperature for 15 min, CH₃I (20 mmol) was then introduced to the above mixture and the resulting mixture was reacted at room temperature. At this time the extent of completion of the reaction was determined by TLC analysis. After the reaction was completed, water (10 mL) was added, and the mixture was extracted with ethyl acetate. The combined organic phase was washed with brine, dried over Na₂SO₄ and concentrated in vacuo to give crude product, which was purified by flash chromatography on silica gel, eluting with petroleum ether/ethyl acetate 100:1-20:1 (v/v) to afford the substrates 5.7c

Product Preparation: In a 20 mL tube, **1** (0.2 mmol), **2** (0.4 mmol, 2.0 equiv.), $Pd(OAc)_2$ (0.02 mmol, 10 mol%), TFP (0.04 mmol, 20 mol%), Cs_2CO_3 (0.8 mmol, 4.0 equiv.) were added and charged with argon more than five times (The tube was

sealed with tipping plug). Toluene (3 mL) and norbornadiene (0.6 mmol, 3.0 equiv.) was injected into the tube via plastic syringes. Then the white medical adhesive tape was used to reinforce the tipping plug. The resulting light yellow suspension was stirred vigorously at room temperature for 10 minutes before being placed in a preheated oil bath at 80 °C stirring at 700~900 rpm for 48 h. After the reaction was completed, the residue was purified with chromatography column on silica gel, eluting with petroleum ethyl/acetate ether to afford the product **3** or **4**.

In a 20 mL tube, **5** (0.2 mmol), **2** (0.4 mmol, 2.0 equiv.), $Pd(OAc)_2$ (0.02 mmol, 10 mol%), X-Phos (0.04 mmol, 20 mol%), Cs_2CO_3 (0.8 mmol, 4.0 equiv.) were added and charged with argon more than five times (The tube was sealed with tipping plug). DCE (3 mL) and norbornadiene (0.6 mmol, 3.0 equiv.) was injected into the tube via plastic syringes. Then the white medical adhesive tape was used to reinforce the tipping plug. The resulting light yellow suspension was stirred vigorously at room temperature for 10 minutes before being placed in a preheated oil bath at 120 °C stirring at 700~900 rpm for 18 h. After the reaction was completed, the residue was purified with chromatography column on silica gel, eluting with petroleum ethyl/acetate ether to afford the product **6**.

Product Derivatization: In a 20 mL tube, 1a (0.2 mmol), Pd(OAc)₂ (0.02 mmol, 10 mol%), TFP (0.04 mmol, 20 mol%), Cs_2CO_3 (0.8 mmol, 4.0 equiv.) were added and charged with argon more than five times (The tube was sealed with tipping plug). DMF (3 mL), norbornadiene (0.6 mmol, 3.0 equiv.) and 1-bromobutane (0.4 mmol, 2.0 equiv.) was injected into the tube via plastic syringes. Then the white medical adhesive tape was used to reinforce the tipping plug. The resulting light yellow suspension was stirred vigorously at room temperature for 10 minutes before being placed in a preheated oil bath at 60 °C stirring at 700~900 rpm for 24 h. After the reaction was completed, water (10 mL) was added, and the products were extracted with acetate ether $(3 \times 5 \text{ mL})$. The combined organic extract was dried over Na₂SO₄, filtered and concentrated under vacuum. The residue was purified by column chromatography on silica gel to afford the product 8.

Pd/C (47.3 mg, palladium on activated carbon, 5% Pd basis, 0.1 equiv.) was added to a solution of **3d** (33.1 mg, 0.1 mmol) in EtOAc (3.0 mL). The reaction mixture was stirred under H_2 atmosphere (1 atm) at r.t. for 72 h. After the reaction was complete (monitored by TLC), the crude reaction mixture was filtered with celite and washed with EtOAc. The solvent was removed under reduced pressure. Then the residue was purified

by silica gel column chromatography (PE/EA = 14:1) to afford the desired product $10^{.23}$

Methods 1: In a 20 mL tube, **3m** (86.4 mg, 0.2 mmol) and silica gel (1.0 g) and toluene (5 mL) were added. The mixture was stirred at 110 °C reflux for 24 h. After the reaction was complete (monitored by TLC), the residue was purified with chromatography column on silica gel (CH₂Cl₂/MeOH = 15:1) to afford the desired product **9**.^{13d} Methods 2: Product **3m** (86.4 mg, 0.2 mmol) was dissolved in CH₂Cl₂ (2 mL) and then TFA (0.46 mL, 30 equiv.) was added. The reaction was stirred for 2 h at room temperature. Then the reaction was quenched with 6 M NaOH and rapidly stirred for 30 min at room temperature. The crude was extracted with dichloromethane (3 x 5 mL), then dried over Na₂SO₄ and filtered. The crude product **9**.²⁴

In a 20 mL tube, **11** (0.2 mmol), piperidin-1-yl benzoate (0.4 mmol, 2.0 equiv.), $Pd(OAc)_2$ (0.02 mmol, 10 mol%), TFP (0.04 mmol, 20 mol%), Cs_2CO_3 (0.8 mmol, 4.0 equiv.) were added and charged with argon more than five times (The tube was sealed with tipping plug). Toluene (3 mL) and norbornadiene (0.6 mmol, 3.0 equiv.) was injected into the tube via plastic syringes. Then the white medical adhesive tape was used to reinforce the tipping plug. The resulting light yellow suspension was stirred vigorously at room temperature for 10 minutes before being placed in a preheated oil bath at 80 °C stirring at 700~900 rpm for 48 h. After the reaction was completed, the residue was purified with chromatography column on silica gel, eluting with petroleum ethyl/acetate ether 100:1 (v/v) to afford the product **12**.

Characterization Data of Substrate.

(2,3-dimethyl-1H-indol-1-yl)(2-iodophenyl)methanone (1a) 1.58 g, yield: 70%, white soild. ¹H NMR (400 MHz, CDCl₃) δ 7.91 (d, J = 7.9 Hz, 1H), 7.49 – 7.36 (m, 3H), 7.32 – 7.16 (m, 3H), 7.15 – 7.06 (m, 1H), 2.25 – 2.15 (m, 6H). ¹³C {¹H} NMR (101 MHz, CDCl₃) δ 168.8, 142.5, 139.9, 136.0, 132.4, 131.7, 131.4, 129.0, 128.5, 123.8, 123.3, 118.0, 116.5, 114.8, 93.2, 13.6, 8.8. HRMS (ESI) *m/z*: [M+H]⁺ Calcd for C₁₇H₁₅INO 376.0193; found 376.0200. Purified by chromatography on silica gel, eluting with petroleum ethyl/acetate ether 100:1 (v/v);

(2,3-dimethyl-1H-indol-1-yl)(5-fluoro-2-

iodophenyl)methanone (**1b**) 1.25 g, yield: 53%, yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 7.70 (dd, J = 8.7, 5.1 Hz, 1H), 7.30 (d, J = 7.7 Hz, 1H), 7.19 (d, J = 8.2 Hz, 1H), 7.12 (t, J = 7.4 Hz, 1H), 7.07 – 6.98 (m, 2H), 6.84 (td, J = 8.4, 3.0 Hz, 1H), 2.08 (s, 6H). ¹³C {¹H} NMR (101 MHz, CDCl₃) δ 167.3 (d, J = 2.2 Hz), 162.7 (d, J = 251.3 Hz), 144.0 (d, J = 6.7 Hz), 141.3 (d, J = 7.6 Hz), 135.7, 132.0, 131.4, 124.0, 123.5, 119.2 (d, J = 21.7 Hz), 118.1, 116.9, 116.5 (d, J = 23.7 Hz), 114.6, 86.3 (d, J = 3.7 Hz), 13.5, 8.7. ¹⁹F NMR (376 MHz, CDCl₃) δ -116.96. HRMS (ESI) *m/z*: [M+H]⁺ Calcd for C₁₇H₁₄FINO 394.0099; found 394.0105. Purified by chromatography on silica gel, eluting with petroleum ethyl/acetate ether 90:1 then petroleum ethyl/acetone 3:1 (v/v);

(2,3-dimethyl-1H-indol-1-yl)(2-fluoro-6-

iodophenyl)methanone (1c) 0.90 g, yield: 38%, white soild. ¹H NMR (400 MHz, CDCl₃) δ 9.14 – 5.54 (m, 7H), 2.17 (s, 6H). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 164.1, 158.7 (d, *J* = 253.8 Hz), 135.2, 132.6, 132. 6, 131.9, 131.6, 131.6, 124.4, 123.8, 118.1, 117.2, 116.1, 115.9, 93.5, 13.3, 8.8.¹⁹F NMR (376 MHz, CDCl₃) δ -110.90. HRMS (ESI) *m/z*: [M+H]⁺ Calcd for C₁₇H₁₄FINO 394.0099; found 394.0105. Purified by chromatography on silica gel, eluting with petroleum ethyl/acetate ether 70:1 (v/v);

(5-chloro-2-iodophenyl)(2,3-dimethyl-1H-indol-1-

yl)methanone (1*d*) 1.28 g, yield: 52%, white soild. ¹H NMR (400 MHz, CDCl₃) δ 7.82 (d, *J* = 8.5 Hz, 1H), 7.43 (d, *J* = 7.7 Hz, 1H), 7.40 (d, *J* = 2.5 Hz, 1H), 7.31 (d, *J* = 8.1 Hz, 1H), 7.24 (t, *J* = 7.5 Hz, 1H), 7.20 (dd, *J* = 8.5, 2.5 Hz, 1H), 7.13 (t, *J* = 7.8 Hz, 1H), 2.20 (s, 6H). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 167.4, 143.9, 141.0, 135.8, 135.1, 132.1, 131.9, 131.5, 129.0, 124.1, 123.6, 118.1, 117.1, 114.7, 90.3, 13.6, 8.8. HRMS (ESI) *m/z*: [M+H]⁺ Calcd for C₁₇H₁₄ClINO 409.9803; found 409.9811. Purified by chromatography on silica gel, eluting with petroleum ethyl/acetate ether 100:1 (v/v);

(5-bromo-2-iodophenyl)(2,3-dimethyl-1H-indol-1-

yl)methanone (*1e*) 1.31 g, yield: 48%, white soild. ¹H NMR (400 MHz, CDCl₃) δ 7.75 (d, J = 8.4 Hz, 1H), 7.54 (d, J = 2.1 Hz, 1H), 7.43 (d, J = 7.7 Hz, 1H), 7.36 – 7.29 (m, 2H), 7.25 (t, J = 7.5 Hz, 1H), 7.14 (t, J = 7.8 Hz, 1H), 2.20 (s, 6H). ¹³C {¹H} NMR (101 MHz, CDCl₃) δ 167.2, 144.2, 141.2, 135.8, 134.8, 132.0, 131.7, 131.5, 124.1, 123.6, 122.8, 118.1, 117.1, 114.7, 91.2, 13.7, 8.8. HRMS (ESI) *m/z*: [M+H]⁺ Calcd for C₁₇H₁₄BrINO 453.9298; found 453.9307. Purified by chromatography on silica gel, eluting with petroleum ethyl/acetate ether 100:1 (v/v);

(5-fluoro-2,3-dimethyl-1H-indol-1-yl)(2-

iodophenyl)methanone (**If**) 1.23 g, yield: 52%, white soild. ¹H NMR (400 MHz, CDCl₃) δ 7.95 – 7.85 (m, 1H), 7.47 (td, J = 7.5, 0.9 Hz, 1H), 7.43 – 7.37 (m, 1H), 7.32 (dd, J = 9.0, 4.5 Hz, 1H), 7.21 (td, J = 7.7, 1.9 Hz, 1H), 7.06 (dd, J = 8.7, 2.7 Hz, 1H), 6.82 (td, J = 9.1, 2.7 Hz, 1H), 2.15 (s, 3H), 2.12 (s, 3H). ¹³C {¹H} NMR (101 MHz, CDCl₃) δ 168.6, 159.7 (d, J = 240.5 Hz), 142.3, 139.8, 134.0, 132.7 (d, J = 9.4 Hz), 132.2, 131.8, 128.9, 128.5, 116.3 (d, J = 3.7 Hz), 115.9 (d, J = 8.8 Hz), 111.1 (d, J = 24.4 Hz), 103.8 (d, J = 23.5 Hz), 93.1, 13.6, 8.8. ¹⁹F NMR (376 MHz, CDCl₃) δ -119.48. HRMS (ESI) *m/z*: [M+H]⁺ Calcd for C₁₇H₁₄FINO 394.0099; found 394.0104. Purified by chromatography on silica gel, eluting with petroleum ethyl/acetate ether 70:1 (v/v);

(5-chloro-2,3-dimethyl-1H-indol-1-yl)(2-

iodophenyl)methanone (**1g**) 1.40 g, yield: 57%, white soild. ¹H NMR (400 MHz, CDCl₃) δ 7.91 (d, J = 8.0 Hz, 1H), 7.49 (t, J = 7.5 Hz, 1H), 7.44 – 7.36 (m, 2H), 7.26 – 7.20 (m, 2H), 7.06 (dd, J = 8.8, 2.2 Hz, 1H), 2.16 (s, 3H), 2.15 (s, 3H). ¹³C {¹H} NMR (101 MHz, CDCl₃) δ 168.7, 142.1, 139.9, 134.3, 133.9, 132.8, 132.0, 129.0, 129.0, 128.6, 123.8, 117.8, 115.9, 115.8, 93.1, 13.6, 8.7. HRMS (ESI) *m/z*: [M+H]⁺ Calcd for C₁₇H₁₄ClINO 409.9803; found 409.9802. Purified by chromatography on silica gel, eluting with petroleum ethyl/acetate ether 100:1 (v/v);

(2,3-dimethyl-5-(trifluoromethyl)-1H-indol-1-yl)(2-

iodophenyl)methanone (1h) 1.22 g, yield: 46%, white soild. ¹H NMR (400 MHz, CDCl₃) δ 7.93 (d, J = 8.0 Hz, 1H), 7.69 (s, 1H), 7.51 (t, J = 7.5 Hz, 1H), 7.46 – 7.40 (m, 1H), 7.39 – 7.30 (m, 2H), 7.28 – 7.23 (m, 1H), 2.23 (s, 3H), 2.20 (s, 3H). ¹³C {¹H} NMR (101 MHz, CDCl₃) δ 168.9, 141.9, 140.0, 137.6, 134.4, 132.2, 131.2, 129.2, 128.6, 125.5 (q, J = 32.1 Hz), 124.7 (q, J = 271.9 Hz), 120.6 (q, J = 3.6 Hz), 116.3, 115.4 (q, J = 4.0 Hz), 114.8, 93.06, 13.5, 8.7. ¹⁹F NMR (282 MHz, CDCl₃) δ -61.76. HRMS (ESI) m/z: [M+H]⁺ Calcd for C₁₈H₁₄F₃INO 444.0067; found 444.0065. Purified by chromatography on silica gel, eluting with petroleum ethyl/acetate ether 100:1 (v/v);

(2,3-dimethyl-1H-indol-1-yl)(2-iodo-5methoxyphenyl)methanone (1i) 1.12 g, yield: 46%, colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 7.68 (d, J = 8.8 Hz, 1H), 7.38 (d, J = 7.6 Hz, 1H), 7.29 (d, J = 8.3 Hz, 1H), 7.19 (t, J = 7.4 Hz, 1H), 7.08 (t, J = 7.5 Hz, 1H), 6.96 (d, J = 3.0 Hz, 1H), 6.74 (dd, J = 8.7, 3.0 Hz, 1H), 3.73 (s, 3H), 2.20 (s, 3H), 2.16 (s, 3H). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 168.3, 159.9, 143.1, 140.4, 135.7, 132.2, 131.3, 123.7, 123.2, 118.2, 117.8, 116.4, 114.6, 114.4, 81.4, 55.5, 13.4, 8.7. HRMS (ESI) *m/z*: [M+H]⁺ Calcd for C₁₈H₁₇INO₂ 406.0298; found 406.0305. Purified by chromatography on silica gel, eluting with petroleum ethyl/acetate ether 21:1 (v/v);

(2-iodophenyl)(2,3,5-trimethyl-1H-indol-1-yl)methanone (1j) 1.28 g, yield: 55%, yellow soild. ¹H NMR (400 MHz, CDCl₃) δ 7.92 – 7.87 (m, 1H), 7.48 – 7.42 (m, 1H), 7.41 – 7.36 (m, 1H), 7.22 – 7.16 (m, 2H), 7.13 – 7.05 (m, 1H), 6.93 – 6.88 (m, 1H), 2.43 – 2.38 (m, 3H), 2.21 – 2.15 (m, 6H). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 168.7, 142.6, 139.8, 134.1, 132.9, 132.5, 131.7, 131.6, 128.9, 128.4, 125.0, 118.1, 116.4, 114.5, 93.2, 21.3, 13.6, 8.8. HRMS (ESI) *m/z*: [M+H]⁺ Calcd for C₁₈H₁₇INO 390.0349; found 390.0343. Purified by chromatography on silica gel, eluting with petroleum ethyl/acetate ether 100:1 (v/v);

(2-iodophenyl)(5-methoxy-2,3-dimethyl-1H-indol-1-

yl)methanone (1k) 1.29 g, yield: 53%, yellow soild. ¹H NMR (400 MHz, CDCl₃) δ 7.91 – 7.84 (m, 1H), 7.48 – 7.42 (m, 1H), 7.41 – 7.35 (m, 1H), 7.25 – 7.15 (m, 2H), 6.90 – 6.84 (m, 1H), 6.74 – 6.66 (m, 1H), 3.83 (s, 3H), 2.15 (s, 3H), 2.14 (s, 3H). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 168.4, 156.4, 142.6, 139.7, 133.1, 132.5, 131.6, 130.4, 128.8, 128.4, 116.5, 115.7, 111.4, 101.5, 93.1, 55.6, 13.6, 8.8. HRMS (ESI) *m/z*: [M+H]⁺ Calcd for C₁₈H₁₇INO₂ 406.0298; found 406.0293. Purified by chromatography on silica gel, eluting with petroleum ethyl/acetate ether 50:1 (v/v);

(2,3-dimethyl-1H-indol-1-yl)(2-iodo-5-

methylphenyl)methanone (11) 1.01 g, yield: 43%, white soild. ¹H NMR (400 MHz, CDCl₃) δ 7.75 (d, J = 8.1 Hz, 1H), 7.41 (d, J = 7.6 Hz, 1H), 7.26 – 7.19 (m, 3H), 7.12 – 7.06 (m, 1H), 7.02 (dd, J = 8.1, 2.2 Hz, 1H), 2.33 (s, 3H), 2.21 (s, 3H), 2.19 (s, 3H). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 168.9, 142.3, 139.6, 138.8, 135.9, 132.7, 132.5, 131.4, 129.6, 123.7, 123.2, 117.9, 116.4, 114.7, 89.1, 20.9, 13.5, 8.8. HRMS (ESI) *m/z*: [M+H]⁺ Calcd for C₁₈H₁₇INO 390.0349; found 390.0356. Purified by chromatography on silica gel, eluting with petroleum ethyl/acetate ether 70:1 (v/v);

(1,2-dimethyl-3H-benzo[e]indol-3-yl)(2-

iodophenyl)methanone (**1m**) 1.22 g, yield: 48%, yellow soild. ¹H NMR (400 MHz, CDCl₃) δ 8.49 (d, J = 8.4 Hz, 1H), 7.87 – 7.79 (m, 2H), 7.52 – 7.36 (m, 6H), 7.18 – 7.10 (m, 1H), 2.57 (s, 3H), 2.20 (s, 3H). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 169.3, 142.0, 140.1, 132.9, 132.1, 131.1, 131.0, 129.7, 128.5, 128.4, 128.0, 125.8, 124.6, 124.1, 124.0, 123.6, 117.6, 114.5, 93.4, 13.0. HRMS (ESI) m/z: [M+H]⁺ Calcd for C₂₁H₁₇INO 426.0349; found 426.0342. Purified by chromatography on silica gel, eluting with petroleum ethyl/acetate ether 25:1 (v/v);

(2,3-dimethyl-5-nitro-1H-indol-1-yl)(2-iodophenyl)methanone (1n) 1.11 g, yield: 44%, yellow soild. ¹H NMR (400 MHz, CDCl₃) δ 8.24 – 8.18 (m, 1H), 7.94 – 7.85 (m, 2H), 7.58 – 7.47 (m, 2H), 7.36 (d, J = 9.1 Hz, 1H), 7.27 (t, J = 8.2 Hz, 1H), 2.21 (s, 3H), 2.14 (s, 3H). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 168.4, 143.4, 140.9, 139.7, 138.7, 135.4, 132.3, 131.0, 129.2, 128.5, 118.5, 116.2, 114.2, 113.7, 92.7, 13.2, 8.4. HRMS (ESI) *m/z*: [M+H]⁺ Calcd for C₁₇H₁₄IN₂O₃ 421.0044; found 421.0051. Purified by chromatography on silica gel, eluting with petroleum ethyl/acetate ether 25:1 (v/v);

(3-benzyl-2-methyl-1H-indol-1-yl)(2-iodophenyl)methanone (10) 1.35 g, yield: 50%, yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 7.86 (d, J = 8.0 Hz, 1H), 7.43 – 7.39 (m, 2H), 7.31 (d, J = 7.3Hz, 1H), 7.25 (d, J = 8.5 Hz, 1H), 7.22 – 7.09 (m, 7H), 7.07 – 7.03 (m, 1H), 4.01 (s, 2H), 2.23 (s, 3H). ¹³C {¹H} NMR (101 MHz, CDCl₃) δ 168.9, 142.2, 139.8, 139.6, 136.1, 133.5, 131.8, 130.6, 129.1, 128.5, 128.4, 128.1, 126.0, 123.8, 123.3, 119.3, 118.5, 114.7, 93.1, 29.8, 13.6. HRMS (ESI) m/z: [M+H]⁺ Calcd for C₂₃H₁₉INO 452.0506; found 452.0516. Purified by chromatography on silica gel, eluting with petroleum ethyl/acetate ether 25:1 (v/v);

(3-benzyl-2,5-dimethyl-1H-indol-1-yl)(2-

iodophenyl)methanone (**1***p*) 1.12 g, yield: 40%, yellow soild. ¹H NMR (400 MHz, CDCl₃) δ 7.87 (d, J = 7.9 Hz, 1H), 7.48 – 7.40 (m, 2H), 7.24 – 7.08 (m, 8H), 6.88 (d, J = 8.4 Hz, 1H), 4.00 (s, 2H), 2.32 (s, 3H), 2.22 (s, 3H). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 168.8, 142.4, 139.8, 139.7, 134.3, 133.7, 132.9, 131.7, 130.9, 129.1, 128.5, 128.4, 128.1, 126.0, 125.1, 119.2, 118.5, 114.4, 93.1, 29.7, 21.3, 13.7. HRMS (ESI) *m/z*: [M+H]⁺ Calcd for C₂₄H₂₁INO 466.0662; found 466.0658. Purified by chromatography on silica gel, eluting with petroleum ethyl/acetate ether 25:1 (v/v);

(3-benzyl-5-methoxy-2-methyl-1H-indol-1-yl)(2-

iodophenyl)methanone (*1q*) 1.21 g, yield: 42%, yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 7.80 (d, J = 7.9 Hz, 1H), 7.37 (d, J = 4.6 Hz, 2H), 7.26 – 7.17 (m, 5H), 7.15 – 7.06 (m, 2H), 6.78 (d, J = 2.5 Hz, 1H), 6.66 (dd, J = 8.9, 2.6 Hz, 1H), 3.95 (s, 2H), 3.66 (s, 3H), 2.17 (s, 3H). ¹³C {¹H} NMR (101 MHz, CDCl₃) δ 168.4, 156.2, 142.2, 139.6, 139.4, 134.1, 131.7, 131.6, 130.5, 128.8, 128.4, 128.3, 128.0, 126.0, 119.3, 115.5, 111.2, 101.9, 93.0, 55.3, 29.7, 13.7. HRMS (ESI) *m/z*: [M+H]⁺ Calcd for C₂₄H₂₁INO₂ [M+H]⁺ 482.0611; found 482.0609. Purified by chromatography on silica gel, eluting with petroleum ethyl/acetate ether 25:1 (v/v);

(2-iodophenyl)(3-isopropyl-2-methyl-1H-indol-1-

yl)methanone (1r) 1.33 g, yield: 55%, yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 7.89 (d, J = 7.8 Hz, 1H), 7.63 (d, J = 7.8 Hz, 1H), 7.46 – 7.38 (m, 2H), 7.30 (d, J = 8.3 Hz, 1H), 7.22 – 7.14 (m, 2H), 7.06 (t, J = 7.8 Hz, 1H), 3.24 – 3.10 (m, 1H), 2.18 (s, 3H), 1.42 (s, 3H), 1.40 (s, 3H). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 169.0, 142.3, 140.0, 136.4, 131.8, 130.9, 129.3, 129.2, 128.4, 126.2, 123.3, 122.8, 119.6, 114.8, 93.3, 25.7, 22.0, 13.5. HRMS (ESI) *m/z*: [M+H]⁺ Calcd for C₁₉H₁₉INO 404.0504; found 404.0506. Purified by chromatography on silica gel, eluting with petroleum ethyl/acetate ether 100:1 (v/v);

(3-hexyl-2-methyl-1H-indol-1-yl)(2-iodophenyl)methanone (1s) 1.15 g, yield: 43%, yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 7.90 (d, J = 8.0 Hz, 1H), 7.49 – 7.40 (m, 3H), 7.27 (d, J = 8.0 Hz, 1H), 7.24 – 7.17 (m, 2H), 7.08 (t, J = 7.7 Hz, 1H), 2.64 (t, J = 7.6 Hz, 2H), 2.18 (s, 3H), 1.64 – 1.53 (m, 2H), 1.39 – 1.26 (m, 6H), 0.92 – 0.82 (m, 3H). ¹³C {¹H} NMR (101 MHz, CDCl₃) δ 168.9, 142.4, 139.9, 136.1, 132.3, 131.7, 130.8, 129.1, 128.4, 123.6, 123.2, 121.4, 118.1, 114.8, 93.2, 31.7, 29.8, 29.2, 23.9, 22.6, 14.1, 13.5. HRMS (ESI) *m/z*: [M+H]⁺ Calcd for C₂₂H₂₅INO 446.0975; found 446.0969. Purified by chromatography on silica gel, eluting with petroleum ethyl/acetate ether 100:1 (v/v);

(2-iodophenyl)(3-methyl-2-(p-tolyl)-1H-indol-1-yl)methanone (1t) 1.57 g, yield: 58%, white soild. ¹H NMR (400 MHz, CDCl₃) δ 8.13 – 8.06 (m, 1H), 7.57 – 7.53 (m, 2H), 7.38 – 7.32 (m, 2H), 7.09 – 7.02 (m, 4H), 6.96 – 6.91 (m, 2H), 6.86 – 6.79 (m, 1H), 2.23 (s, 3H), 2.15 (s, 3H). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 169.3, 141.4, 139.3, 137.2, 136.9, 135.5, 130.9, 130.3, 130.0, 129.2, 128.3, 127.3, 125.1, 123.7, 118.7, 118.3, 115.4, 94.3, 21.1, 9.3. HRMS (ESI) *m/z*: [M+H]⁺ Calcd for C₂₃H₁₉INO 452.0506; found 452.0500. Purified by chromatography on

60

silica gel, eluting with petroleum ethyl/acetate ether 100:1 (v/v);

(3,4-dihydro-1H-carbazol-9(2H)-yl)(2-iodophenyl)methanone (1u) 0.91 g, yield: 38%, yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 7.77 (d, J = 7.9 Hz, 1H), 7.54 (d, J = 8.0 Hz, 1H), 7.36 – 7.28 (m, 3H), 7.17 (t, J = 7.4 Hz, 1H), 7.13 – 7.04 (m, 2H), 2.58 (s, 2H), 2.33 (d, J = 20.9 Hz, 2H), 1.77 – 1.61 (m, 4H). ¹³C {¹H} NMR (101 MHz, CDCl₃) δ 168.1, 142.2, 139.3, 135.9, 134.7, 131.3, 130.2, 128.4, 128.1, 123.8, 123.3, 119.0, 117.4, 115.1, 92.9, 25.3, 23.3, 21.6, 20.8. HRMS (ESI) *m/z*: [M+H]⁺ Calcd for C₁₉H₁₇INO 402.0349; found 402.0354. Purified by chromatography on silica gel, eluting with petroleum ethyl/acetate ether 70:1 (v/v);

N-(2-iodophenyl)-N,3-dimethylbenzofuran-2-carboxamide (5a) 2.82 g, yield: 72%, white soild. ¹H NMR (400 MHz, CDCl₃) δ 7.82 (d, *J* = 7.8 Hz, 1H), 7.51 (d, *J* = 7.5 Hz, 1H), 7.35 – 7.28 (m, 2H), 7.24 – 7.13 (m, 2H), 7.03 – 6.96 (m, 1H), 6.92 (d, *J* = 8.0 Hz, 1H), 3.37 (s, 3H), 2.58 (s, 3H). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 161.2, 153.2, 146.5, 143.7, 139.5, 129.1, 129.0, 128.8, 126.4, 123.5, 122.6, 120.5, 111.2, 98.9, 37.3, 9.5. HRMS (ESI) *m/z*: [M+H]⁺ Calcd for C₁₇H₁₅INO₂ 392.0142; found 392.0140. Purified by chromatography on silica gel, eluting with petroleum ethyl/acetate ether 100:1-20:1 (v/v);

F N F

N-(5-fluoro-2-iodophenyl)-*N*,3-dimethylbenzofuran-2carboxamide (**5b**) 2.01 g, yield: 49%, white soild. ¹H NMR (400 MHz, CDCl₃) δ 7.80 – 7.72 (m, 1H), 7.54 (d, J = 7.7 Hz, 1H), 7.29 – 7.17 (m, 2H), 7.11 (dd, J = 8.9, 2.9 Hz, 1H), 6.97 (d, J = 8.1 Hz, 1H), 6.82 (td, J = 8.3, 2.9 Hz, 1H), 3.36 (s, 3H), 2.59 (s, 3H).¹³C{¹H} NMR (101 MHz, CDCl₃) δ 164.2, 161.8, 160.9, 153.2, 148.0, 147.9, 143.4, 140.1, 140.1, 128.7, 126.6, 124.2, 122.8, 120.6, 116.8, 116.8, 116.6, 116.5, 111.3, 92.3, 37.2, 9.5. ¹⁹F NMR (376 MHz, CDCl₃) δ -112.37. HRMS (ESI) *m*/*z*: [M+H]⁺ Calcd for C₁₇H₁₄FINO₂ 410.0048; found 410.0045. Purified by chromatography on silica gel, eluting with petroleum ethyl/acetate ether 100:1-20:1 (v/v);

 $\begin{array}{l} N-(5\text{-}chloro\text{-}2\text{-}iodophenyl)\text{-}N,3\text{-}dimethylbenzofuran\text{-}2-}\\ carboxamide (5c) 2.72 g, yield: 64%, white soild. ¹H NMR (400 MHz, CDCl_3) & 7.77 - 7.68 (m, 1H), 7.54 (d, <math>J$ = 7.6 Hz, 1H), 7.36 (d, J = 2.3 Hz, 1H), 7.29 - 7.23 (m, 1H), 7.23 - 7.17 (m, 1H), 7.03 (d, J = 8.5 Hz, 1H), 6.98 (d, J = 8.1 Hz, 1H), 3.36 (s, 3H), 2.60 (s, 3H). ¹³C{¹H} NMR (101 MHz, CDCl_3) & 160.8, 153.2, 147.7, 143.3, 140.1, 134.7, 129.4, 129.3, 128.7, 126.7, \end{array}

124.3, 122.8, 120.6, 111.3, 96.4, 37.2, 9.5. HRMS (ESI) m/z: [M+H]⁺ Calcd for C₁₇H₁₄ClINO₂ 425.9752; found 425.9748. Purified by chromatography on silica gel, eluting with petroleum ethyl/acetate ether 100:1-20:1 (v/v);

N-(5-bromo-2-iodophenyl)-N,3-dimethylbenzofuran-2-

carboxamide (*5d*) 1.79 g, yield: 38%, white soild. ¹H NMR (400 MHz, CDCl₃) δ 7.65 (d, J = 8.4 Hz, 1H), 7.57 – 7.49 (m, 2H), 7.30 – 7.23 (m, 1H), 7.23 – 7.11 (m, 2H), 6.98 (d, J = 7.8 Hz, 1H), 3.35 (s, 3H), 2.59 (s, 3H). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 160.8, 153.2, 147.8, 143.3, 140.3, 132.2, 132.2, 128.7, 126.6, 124.3, 122.7, 122.2, 120.6, 111.3, 97.3, 37.2, 9.5. HRMS (ESI) *m/z*: [M+H]⁺ Calcd for C₁₇H₁₄BrINO₂ 469.9247; found 469.9243. Purified by chromatography on silica gel, eluting with petroleum ethyl/acetate ether 100:1-20:1 (v/v);

N-(2-iodo-5-(trifluoromethyl)phenyl)-*N*,3-dimethylbenzofuran-2-carboxamide (**5e**) 1.88 g, yield: 41%, white soild. ¹H NMR (400 MHz, CDCl₃) δ 7.93 (d, J = 8.3 Hz, 1H), 7.67 (s, 1H), 7.53 (d, J = 7.6 Hz, 1H), 7.28 – 7.15 (m, 3H), 6.88 (d, J = 8.1 Hz, 1H), 3.39 (s, 3H), 2.59 (s, 3H). ¹³C {¹H} NMR (101 MHz, CDCl₃) δ 160.8, 153.1, 147.3, 143.2, 140.2, 132.3, 131.9, 131.6, 131.3, 128.6, 127.4, 126.7, 126.3, 126.2, 125.5, 125.5, 125.4, 125.4, 124.7, 124.4, 122.8, 122.0, 120.6, 119.3, 111.1, 103.5, 37.1, 9.5. ¹⁹F NMR (376 MHz, CDCl₃) δ -62.81. HRMS (ESI) *m/z*: [M+H]⁺ Calcd for C₁₈H₁₄F₃INO₂ 460.0016; found 460.0012. Purified by chromatography on silica gel, eluting with petroleum ethyl/acetate ether 100:1-20:1 (v/v);

methyl 3-(*N*,3-dimethylbenzofuran-2-carboxamido)-4iodobenzoate (5f) 2.02 g, yield: 45%, white soild. ¹H NMR (400 MHz, CDCl₃) δ 8.00 – 7.88 (m, 2H), 7.66 (d, *J* = 7.7 Hz, 1H), 7.52 (d, *J* = 7.4 Hz, 1H), 7.25 – 7.13 (m, 2H), 6.89 (d, *J* = 7.9 Hz, 1H), 3.90 (s, 3H), 3.38 (s, 3H), 2.60 (s, 3H). ¹³C {¹H} NMR (101 MHz, CDCl₃) δ 165.7, 160.8, 153.1, 147.0, 143.3, 139.7, 131.4, 129.6, 129.6, 128.7, 126.6, 124.3, 122.7, 120.5, 111.2, 105.6, 52.4, 37.2, 9.5. HRMS (ESI) *m/z*: [M+H]⁺ Calcd for C₁₉H₁₇INO₄ 450.0197; found 450.0190. Purified by chromatography on silica gel, eluting with petroleum ethyl/acetate ether 8:1 (v/v);

N-(2-iodo-5-methylphenyl)-*N*,3-dimethylbenzofuran-2carboxamide(**5**g) 2.03 g, yield: 50%, white soild. ¹H NMR (400 MHz, CDCl₃) δ 7.66 (d, *J* = 8.1 Hz, 1H), 7.51 (d, *J* = 7.4 Hz, 1H), 7.26 - 7.12 (m, 3H), 6.95 (d, *J* = 8.1 Hz, 1H), 6.82 (d, *J* = 8.0 Hz, 1H), 3.36 (s, 3H), 2.58 (s, 3H), 2.28 (s, 3H). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 161.1, 153.2, 146.2, 143.8, 139.3, 139.0, 130.0, 129.7, 128.8, 126.3, 123.4, 122.5, 120.4, 111.2, 94.6, 37.3, 20.7, 9.4. HRMS (ESI) *m/z*: [M+H]⁺ Calcd for C₁₈H₁₇INO₂ 406.0298; found 406.0294. Purified by chromatography on silica gel, eluting with petroleum ethyl/acetate ether 100:1-20:1 (v/v);

(2-iodophenyl)(3-methyl-1H-indol-1-yl)methanone (11) 1.19 g, yield: 55%, white soild. ¹H NMR (400 MHz, CDCl₃) δ 8.50 (s, 1H), 7.90 (d, J = 7.8 Hz, 1H), 7.54 – 7.41 (m, 2H), 7.41 – 7.27 (m, 3H), 7.22 – 7.14 (m, 1H), 6.68 (s, 1H), 2.20 (s, 3H). ¹³C {¹H} NMR (101 MHz, CDCl₃) δ 167.5, 141.3, 139.4, 135.6, 132.1, 131.3, 128.1, 125.2, 124.1, 123.3, 119.0, 119.0, 118.9, 116.5, 92.4, 9.6. HRMS (ESI) *m/z*: [M+H]⁺ Calcd for C₁₆H₁₃INO 362.0036; found 362.0032. Purified by chromatography on silica gel, eluting with petroleum ethyl/acetate ether 25:1 (v/v);

Characterization Data of Product.

10b-methyl-11-methylene-10-morpholino-10b, 11-dihydro-6Hisoindolo[2,1-a]indol-6-one (**3a**) 56.0 mg, yield: 84%, white soild, mp 146°C. ¹H NMR (400 MHz, CDCl₃) δ 7.76 – 7.72 (m, 2H), 7.68 – 7.64 (m, 1H), 7.53 – 7.46 (m, 2H), 7.37 (td, J = 7.7, 1.0 Hz, 1H), 7.14 (td, J = 7.6, 0.8 Hz, 1H), 6.15 (s, 1H), 5.67 (s, 1H), 3.94 (t, J = 4.6 Hz, 4H), 3.16 – 3.07 (m, 2H), 2.99 – 2.89 (m, 2H), 1.88 (s, 3H). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 168.6, 149.4, 147.9, 146.5, 140.8, 134.2, 133.2, 130.2, 129.9, 129.7, 124.7, 123.2, 121.3, 117.5, 106.0, 75.6, 67.1, 54.5, 30.0. HRMS (ESI) *m/z*: [M+H]⁺ Calcd for C₂₁H₂₁N₂O₂ 333.1598; found 333.1601. IR (cm⁻¹): 2962.66, 2853.84, 1712.00, 1483.97, 1369.28, 1300.26, 1114.70, 761.86, 735.27. Purified by chromatography on silica gel, eluting with petroleum ethyl/acetate ether 6:1 (v/v);

10b-methyl-11-methylene-10-thiomorpholino-10b,11-dihydro-6H-isoindolo[2,1-a]indol-6-one (**3b**) 51.0 mg, yield: 73%, white soild, mp 186°C. ¹H NMR (400 MHz, CDCl₃) δ 7.73 (d, J = 7.7 Hz, 2H), 7.65 – 7.61 (m, 1H), 7.52 – 7.46 (m, 2H), 7.40 – 7.34 (m, 1H), 7.17 – 7.12 (m, 1H), 6.09 (s, 1H), 5.66 (s, 1H), 3.36 – 3.29 (m, 2H), 3.20 – 3.12 (m, 2H), 2.90 (s, 4H), 1.86 (s, 3H). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 168.6, 150.4, 147.9, 145.8, 140.7, 134.3, 133.2, 130.2, 130.0, 129.8, 124.7, 123.2, 121.3, 117.5, 106.0, 75.6, 56.1, 29.7, 28.0. HRMS (ESI) *m/z*: [M+H]⁺ Calcd for C₂₁H₂₁N₂OS 349.1369; found 349.1365. IR (cm⁻¹): 2923.74, 2828.49, 1708.06, 1481.85, 1352.78, 1301.82, 946.83, 762.13, 734.96. Purified by chromatography on silica gel, eluting with petroleum ethyl/acetate ether 10:1 (v/v);

10b-methyl-11-methylene-10-(pyrrolidin-1-yl)-10b,11dihydro-6H-isoindolo[2,1-a]indol-6-one (*3c*) 53.3 mg, yield: 84%, white soild, mp 150°C. ¹H NMR (400 MHz, CDCl₃) δ 7.75 (d, J = 7.8 Hz, 1H), 7.68 (d, J = 7.3 Hz, 1H), 7.63 (d, J = 7.9 Hz, 1H), 7.49 – 7.42 (m, 2H), 7.35 (t, J = 7.6 Hz, 1H), 7.12 (t, J = 7.6 Hz, 1H), 6.02 (s, 1H), 5.66 (s, 1H), 3.25 – 3.15 (m, 2H), 3.07 – 2.98 (m, 2H), 2.06 – 1.97 (m, 4H), 1.86 (s, 3H). ¹³C {¹H} NMR (101 MHz, CDCl₃) δ 168.9, 148.2, 147.7, 147.6, 140.8, 133.9, 133.4, 130.1, 130.0, 129.7, 124.5, 122.3, 121.2, 117.3, 106.1, 106.1, 75.6, 56.1, 30.2, 24.6. HRMS (ESI) *m/z*: [M+H]⁺ Calcd for C₂₁H₂₁N₂O 317.1648; found 317.1646. IR (cm⁻¹): 2969.37, 2823.15, 1710.26, 1465.73, 1348.47, 1299.67, 900.47, 760.36. Purified by chromatography on silica gel, eluting with petroleum ethyl/acetate ether 15:1 (v/v);

10-(azepan-1-yl)-10b-methyl-11-methylene-10b, 11-dihydro-6H-isoindolo[2, 1-a]indol-6-one (3d) 58.0 mg, yield: 84%, white soild, mp 134°C. ¹H NMR (400 MHz, CDCl₃) δ 7.74 (d, J = 7.8 Hz, 1H), 7.67 (dd, J = 7.4, 0.9 Hz, 1H), 7.61 – 7.55 (m, 1H), 7.49 – 7.40 (m, 2H), 7.35 (td, J = 7.8, 1.0 Hz, 1H), 7.12 (td, J = 7.6, 1.0 Hz, 1H), 6.28 (s, 1H), 5.68 (s, 1H), 3.18 – 3.02 (m, 4H), 1.91 – 1.78 (m, 11H). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 168.8, 153.6, 147.7, 145.0, 140.8, 133.9, 133.4, 130.6, 130.1, 129.7, 124.6, 122.2, 121.2, 117.4, 106.6, 75.7, 59.8, 29.9, 28.5, 26.6. HRMS (ESI) *m/z*: [M+H]⁺ Calcd for C₂₃H₂₅N₂O 345.1961; found 345.1965. IR (cm⁻¹): 2929.21, 2857.88, 1710.52, 1465.54, 1349.19, 1301.70, 1134.84, 899.27, 759.85. Purified by chromatography on silica gel, eluting with petroleum ethyl/acetate ether 15:1 (v/v);

10b-methyl-11-methylene-10-(piperidin-1-yl)-10b,11-dihydro-6H-isoindolo[2,1-a]indol-6-one (3e) 57.7 mg, yield: 87%, yellow soild, mp 130°C. ¹H NMR (400 MHz, CDCl₃) δ 7.74 (d, J = 7.9 Hz, 1H), 7.69 (dd, J = 7.3, 0.8 Hz, 1H), 7.62 (dd, J =7.8, 0.8 Hz, 1H), 7.48 – 7.42 (m, 2H), 7.35 (td, J = 7.8, 1.0 Hz, 1H), 7.12 (td, J = 7.7, 1.0 Hz, 1H), 6.21 (s, 1H), 5.66 (s, 1H), 3.06 – 2.98 (m, 2H), 2.91 – 2.76 (m, 2H), 1.88 (s, 3H), 1.82 – 1.74 (m, 4H), 1.65 (s, 2H). ¹³C {¹H} NMR (101 MHz, CDCl₃) δ 168.9, 151.2, 147.8, 146.3, 140.8, 134.0, 133.5, 129.9, 129.8, 129.6, 124.6, 122.6, 121.2, 117.5, 106.3, 75.7, 55.6, 29.6, 26.1, 24.0. HRMS (ESI) *m/z*: [M+H]⁺ Calcd for C₂₂H₂₃N₂O 331.1805; found 331.1807. IR (cm⁻¹): 2935.97, 2853.94, 1710.68, 1465.87, 1349.94, 1301.96, 898.95, 761.19. Purified by chromatography on silica gel, eluting with petroleum ethyl/acetate ether 20:1 (v/v);

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18 19

20 21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38 39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42 43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58 59

60

10b-methyl-11-methylene-10-(3-methylpiperidin-1-yl)-10b,11dihvdro-6H-isoindolo[2,1-a]indol-6-one (3f) 49.1 mg, yield: 71%, yellow soild, mp 108°C. ¹H NMR (400 MHz, CDCl₃) δ 7.74 (d, J = 7.8 Hz, 1H), 7.69 (d, J = 7.4 Hz, 1H), 7.64 – 7.58 (m, 1H), 7.48 - 7.42 (m, 2H), 7.35 (td, J = 7.7, 1.2 Hz, 1H), 7.12(td, J = 7.6, 1.1 Hz, 1H), 6.18 (d, J = 5.5 Hz, 1H), 5.65 (d, J =2.6 Hz, 1H), 3.09 - 2.93 (m, 2H), 2.91 - 2.25 (m, 2H), 1.99 -1.73 (m, 7H), 1.17 - 1.02 (m, 1H), 0.94 (dd, J = 27.7, 6.4 Hz)3H). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 168.9, 168.9, 151.0, 151.0, 147.9, 147.9, 146.3, 140.9, 140.9, 134.0, 133.4, 129.9, 129.8, 129.6, 129.5, 124.6, 122.6, 121.2, 117.5, 106.2, 75.7, 64.5, 61.5, 56.6, 53.6, 32.8, 32.7, 31.8, 31.2, 29.6, 29.6, 25.9, 25.7, 19.7, 19.6. HRMS (ESI) m/z: [M+H]⁺ Calcd for C₂₃H₂₅N₂O 345.1961; found 345.1966. IR (cm⁻¹): 2928.17, 2851.58, 1711.67, 1464.79, 1350.40, 1301.72, 1133.32, 760.71, 735.92. Purified by chromatography on silica gel, eluting with petroleum ethyl/acetate ether 25:1 (v/v);

methvl 1-(10b-methyl-11-methylene-6-oxo-10b,11-dihydro-6H-isoindolo[2,1-a]indol-10-yl)piperidine-3-carboxylate (3g) 59.2 mg, yield: 76%, yellow soild, mp 102°C. ¹H NMR (400 MHz, CDCl₃) δ 7.76 – 7.70 (m, 2H), 7.63 (d, J = 7.9 Hz, 1H), 7.50 - 7.45 (m, 2H), 7.36 (t, J = 7.7 Hz, 1H), 7.13 (t, J = 7.6 Hz, 1H), 6.06 (s, 1H), 5.68 – 5.63 (m, 1H), 3.72 – 3.67 (m, 3H), 3.35 - 3.22 (m, 1H), 3.18 - 2.90 (m, 2H), 2.88 - 2.65 (m, 2H), 2.25 -2.07 (m, 1H), 1.97 - 1.90 (m, 1H), 1.88 - 1.84 (m, 3H), 1.82 - 1.56 (m, 2H). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 174.1, 173.9, 168.7, 150.1, 150.1, 147.9, 147.8, 146.1, 146.1, 140.8, 134.2, 133.3, 133.3, 130.1, 130.0, 129.9, 129.9, 129.5, 129.5, 124.7, 123.1, 123.0, 121.3, 117.5, 117.4, 106.0, 106.0, 75.6, 75.6, 57.7, 56.4, 55.3, 53.6, 51.8, 51.7, 42.4, 41.7, 29.7, 29.6, 26.8, 26.5, 24.9. HRMS (ESI) m/z: [M+H]+ Calcd for C₂₄H₂₅N₂O₃ 389.1860; found 389.1865. IR (cm⁻¹): 2949.83, 2854.11, 1713.27, 1465.14, 1352.06, 1302.82, 761.93. Purified by chromatography on silica gel, eluting with petroleum ethyl/acetate ether 8:1 (v/v);

10b-methyl-11-methylene-10-(4-phenylpiperidin-1-yl)-10b,11dihydro-6H-isoindolo[2,1-a]indol-6-one (**3h**) 65.2 mg, yield: 80%, yellow soild, mp 216°C. ¹H NMR (400 MHz, CDCl₃) δ 7.77 – 7.70 (m, 2H), 7.67 (d, J = 7.8 Hz, 1H), 7.50 – 7.45 (m, 2H), 7.38 – 7.30 (m, 5H), 7.27 – 7.21 (m, 1H), 7.16 – 7.10 (m, 1H), 6.24 (s, 1H), 5.69 (s, 1H), 3.27 – 3.18 (m, 1H), 3.18 – 3.10 (m, 2H), 2.92 – 2.81 (m, 1H), 2.81 – 2.69 (m, 1H), 2.09 – 1.96 (m, 4H), 1.91 (s, 3H). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 169.0, 150.9, 148.1, 146.5, 146.0, 141.0, 134.3, 133.6, 130.2, 130.0, 129.6, 128.7, 126.9, 126.5, 124.8, 123.0, 121.5, 117.7, 106.4, 75.8, 57.1, 54.1, 42.2, 33.9, 33.7, 29.8. HRMS (ESI) *m/z*: [M+H]⁺ Calcd for C₂₈H₂₇N₂O 407.2118; found 407.2122. IR (cm⁻¹): 2934.53, 2811.47, 1709.52, 1466.00, 1348.95, 1301.09, 759.66, 700.63. Purified by chromatography on silica gel, eluting with petroleum ethyl/acetate ether 14:1 (v/v);

ethyl 1-(10b-methyl-11-methylene-6-oxo-10b,11-dihydro-6Hisoindolo[2,1-a]indol-10-yl)piperidine-4-carboxylate (3i) 64.6 mg, vield: 80%, white soild, mp 160°C. ¹H NMR (400 MHz, $CDCl_3$) δ 7.76 – 7.67 (m. 2H), 7.61 (d. J = 7.9 Hz, 1H), 7.49 – 7.43 (m, 2H), 7.35 (t, J = 7.6 Hz, 1H), 7.13 (t, J = 7.6 Hz, 1H), 6.11 (s, 1H), 5.66 (s, 1H), 4.20 (q, J = 7.1 Hz, 2H), 3.20 - 3.12(m, 1H), 3.12 - 3.05 (m, 1H), 3.00 (td, J = 11.2, 2.9 Hz, 1H), 2.74 (td, J = 11.4, 2.8 Hz, 1H), 2.57 - 2.47 (m, 1H), 2.15 - 1.95(m, 4H), 1.87 (s, 3H), 1.30 (t, J = 7.2 Hz, 3H). ¹³C{¹H} NMR (101 MHz, CDCl₃) & 174.8, 168.7, 150.3, 147.7, 146.2, 140.7, 134.1, 133.3, 130.0, 129.8, 129.3, 124.6, 122.9, 121.3, 117.4, 106.2, 75.6, 60.5, 55.3, 52.9, 40.6, 29.5, 28.6, 28.3, 14.2. HRMS (ESI) *m/z*: [M+H]⁺ Calcd for C₂₅H₂₇N₂O₃ 403.2016; found 403.2020. IR (cm⁻¹): 2952.80, 2814.09, 1716.22, 1466.17, 1348.62, 1302.06, 1135.37, 1045.08, 762.21. Purified by chromatography on silica gel, eluting with petroleum ethyl/acetate ether 8:1 (v/v);

10b-methyl-11-methylene-10-(4-morpholinopiperidin-1-yl)-10b,11-dihydro-6H-isoindolo[2,1-a]indol-6-one (3j) 65.8 mg, yield: 79%, white soild, mp 218°C. ¹H NMR (400 MHz, CDCl₃) δ 7.75 – 7.69 (m, 2H), 7.62 (d, J = 7.9 Hz, 1H), 7.50 – 7.43 (m, 2H), 7.39 - 7.33 (m, 1H), 7.17 - 7.10 (m, 1H), 6.12 (s, 1H), 5.64 (s, 1H), 3.87 - 3.71 (m, 4H), 3.21 - 3.08 (m, 2H), 3.07 - 2.98 (m, 1H), 2.78 - 2.70 (m, 1H), 2.68 - 2.58 (m, 4H), 2.43 - 2.33 (m, 1H), 2.11 – 1.98 (m, 2H), 1.87 (s, 3H), 1.83 – 1.68 (m, 2H). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 168.8, 150.2, 147.7, 146.2, 140.8, 134.1, 133.4, 129.9, 129.8, 129.2, 124.6, 122.9, 121.2, 117.5, 106.2, 75.6, 67.2, 61.7, 55.6, 52.7, 50.1, 29.5, 29.1, 28.7. HRMS (ESI) *m/z*: [M+H]⁺ Calcd for C₂₆H₃₀N₃O₂ 416.2333; found 416.2333. IR (cm⁻¹): 2952.12, 2853.18, 1710.06, 1465.81, 1348.83, 1301.90, 1119.64, 898.58, 762.10. Purified chromatography on silica by gel, eluting with dichloromethane/methanol 25:1 (v/v);

10b-methyl-11-methylene-10-(1,4-dioxa-8-

azaspiro[4.5]*decan*-8-*y*])-10*b*,11-*dihydro*-6*H*-*isoindolo*[2,1*a*]*indo*]-6-*one* (**3***k*) 62.3 mg, yield: 80%, yellow soild, mp 150°C. ¹H NMR (400 MHz, CDCl₃) δ 7.76 – 7.66 (m, 3H), 7.49 – 7.42 (m, 2H), 7.36 (t, *J* = 7.5 Hz, 1H), 7.13 (t, *J* = 7.5 Hz, 1H), 6.15 (s, 1H), 5.65 (s, 1H), 4.04 (s, 4H), 3.23 – 3.12 (m, 2H), 3.05 – 2.95 (m, 2H), 2.00 – 1.92 (m, 4H), 1.88 (s, 3H). ¹³C {¹H} NMR (101 MHz, CDCl₃) δ 168.7, 150.1, 147.8, 146.1, 140.8, 134.0, 133.3, 130.0, 129.8, 129.5, 124.6, 122.9, 121.3, 117.4, 106.5, 106.0, 75.6, 64.3, 52.6, 35.3, 29.5. HRMS (ESI) *m/z*: [M+H]⁺ Calcd for C₂₄H₂₅N₂O₃ 389.1860; found 389.1864. IR (cm⁻¹): 2959.45, 2835.30, 1710.22, 1482.87, 1366.15, 1306.27, 1140.81, 1112.64, 1042.59, 762.46, 735.29. Purified by chromatography on silica gel, eluting with petroleum ethyl/acetate ether 5:1 (v/v);

1

2

3

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

30

31

32

33

34

35

36

37

38

39

40

41

42

43 44

45 46 47

48

49

50

51

52

53

54

55

56

57

58 59

60

ethyl 4-(10b-methyl-11-methylene-6-oxo-10b,11-dihydro-6Hisoindolo[2,1-a]indol-10-yl)piperazine-1-carboxylate (**31**) 64.7 mg, yield: 69%, yellow soild, mp 130°C. ¹H NMR (400 MHz, CDCl₃) δ 7.74 (d, J = 7.6 Hz, 2H), 7.60 (d, J = 7.9 Hz, 1H), 7.48 (t, J = 7.4 Hz, 2H), 7.37 (t, J = 7.6 Hz, 1H), 7.14 (t, J = 7.6 Hz, 1H), 6.12 (s, 1H), 5.66 (s, 1H), 4.21 (q, J = 7.2 Hz, 2H), 3.73 (s, 4H), 3.14 – 3.03 (m, 2H), 2.97 – 2.86 (m, 2H), 1.88 (s, 3H), 1.31 (t, J = 7.1 Hz, 3H). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 168.5, 155.5, 149.3, 147.8, 146.1, 140.7, 134.2, 133.1, 130.1, 129.9, 129.3, 124.7, 123.2, 121.3, 117.4, 105.9, 75.5, 61.5, 53.9, 45.7, 43.8, 29.9, 14.6, 8.5. HRMS (ESI) *m*/*z*: [M+H]⁺ Calcd for C₂₄H₂₆N₃O₃ 404.1969; found 404.1974. IR (cm⁻¹): 2981.38, 2859.74, 1704.42, 1466.21, 1353.31, 1304.12, 1245.73, 1130.82, 989.21, 762.65. Purified by chromatography on silica gel, eluting with petroleum ethyl/acetate ether 4:1 (v/v);

tert-butyl 4-(10b-methyl-11-methylene-6-oxo-10b,11-dihydro-6H-isoindolo[2,1-a]indol-10-yl)piperazine-1-carboxylate (**3m**) 62.3 mg, yield: 72%, yellow soild, mp 120°C. ¹H NMR (400 MHz, CDCl₃) δ 7.74 (d, J = 7.4 Hz, 2H), 7.60 (d, J = 7.8 Hz, 1H), 7.48 (t, J = 7.5 Hz, 2H), 7.36 (t, J = 7.7 Hz, 1H), 7.14 (t, J= 7.5 Hz, 1H), 6.13 (s, 1H), 5.65 (s, 1H), 3.67 (s, 4H), 3.12 – 3.02 (m, 2H), 2.94 – 2.86 (m, 2H), 1.88 (s, 3H), 1.52 (s, 9H). ¹³C {¹H} NMR (101 MHz, CDCl₃) δ 168.5, 154.8, 149.5, 147.9, 146.2, 140.7, 134.2, 133.2, 130.2, 129.9, 129.4, 124.7, 123.3, 121.3, 117.5, 105.9, 80.0, 75.5, 54.1, 29.9, 28.4. HRMS (ESI) m/z: [M+H]⁺ Calcd for C₂₆H₃₀N₃O₃ 432.2282; found 432.2285. IR (cm⁻¹): 2977.73, 2861.06, 1696.21, 1484.78, 1368.24, 1248.15, 1168.54, 762.22, 735.90. Purified by chromatography on silica gel, eluting with petroleum ethyl/acetate ether 7:1 (v/v);

10-(4-benzoylpiperazin-1-yl)-10b-methyl-11-methylene-10b,11-dihydro-6H-isoindolo[2,1-a]indol-6-one (**3n**) 52.4 mg, yield: 60%, yellow soild, mp 90°C. ¹H NMR (400 MHz, CDCl₃) δ 7.74 (dd, J = 7.5, 3.1 Hz, 2H), 7.62 (d, J = 7.4 Hz, 1H), 7.52 – 7.46 (m, 4H), 7.46 – 7.43 (m, 3H), 7.37 (t, J = 7.6 Hz, 1H), 7.14 (t, J = 7.5 Hz, 1H), 6.10 (s, 1H), 5.66 (s, 1H), 4.25 – 3.51 (m, 4H), 3.25 – 2.79 (m, 4H), 1.88 (s, 3H). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 170.8, 168.6, 149.0, 148.1, 146.3, 140.9, 135.6, 134.5, 133.2, 130.4, 130.2, 130.1, 129.5, 128.7, 127.2, 124.9, 123.6, 121.5, 117.6, 105.9, 75.6, 54.5, 48.1, 42.4, 30.1. HRMS (ESI) m/z: $[M+H]^+$ Calcd for $C_{28}H_{26}N_3O_2$ 436.2020; found 436.2025. IR (cm⁻¹): 3058.18, 2923.08, 2826.84, 1712.41, 1633.50, 1485.57, 1369.77, 1014.79, 762.44, 733.80, 709.23. Purified by chromatography on silica gel, eluting with petroleum ethyl/acetate ether 2:1 (v/v);

benzvl 4-(10b-methyl-11-methylene-6-oxo-10b,11-dihydro-6Hisoindolo[2,1-a]indol-10-yl)piperazine-1-carboxylate (30)65.3 mg, yield: 70%, yellow soild, mp 76°C. ¹H NMR (400 MHz, CDCl₃) δ 7.77 - 7.68 (m, 2H), 7.59 - 7.54 (m, 1H), 7.49 -7.44 (m, 2H), 7.40 - 7.32 (m, 6H), 7.12 (t, J = 7.5 Hz, 1H), 6.09 (s, 1H), 5.64 (s, 1H), 5.20 (s, 2H), 3.74 (s, 4H), 3.06 (s, 2H), 2.91 (s, 2H), 1.86 (s, 3H). ¹³C{¹H} NMR (101 MHz, CDCl₃) & 168.4, 155.2, 149.2, 147.9, 146.1, 140.7, 136.5, 134.2, 133.1, 130.1, 129.9, 129.3, 128.4, 128.0, 127.9, 124.7, 123.3, 121.2, 117.4, 105.8, 75.5, 67.3, 55.6, 53.9, 44.0, 42.1, 29.9. HRMS (ESI) m/z: [M+H]⁺ Calcd for C₂₉H₂₈N₃O₃ 466.2125; found 466.2132. IR (cm⁻¹): 3061.03, 2949.06, 2859.71, 1704.51, 1464.70, 1431.11, 1359.05, 1244.27, 976.08, 761.73, 735.19, 700.58. Purified by chromatography on silica gel, eluting with petroleum ethyl/acetate ether 4:1 (v/v);

10-(dimethylamino)-10b-methyl-11-methylene-10b,11dihydro-6H-isoindolo[2,1-a]indol-6-one (**3p**) 46.1 mg, yield: 79%, white soild, mp 136°C. ¹H NMR (400 MHz, CDCl₃) δ 7.75 (d, *J* = 7.9 Hz, 1H), 7.70 (dd, *J* = 7.4, 1.1 Hz, 1H), 7.65 (dd, *J* = 8.0, 1.1 Hz, 1H), 7.50 – 7.44 (m, 2H), 7.35 (td, *J* = 7.7, 1.2 Hz, 1H), 7.12 (td, *J* = 7.5, 1.1 Hz, 1H), 6.14 (s, 1H), 5.69 (s, 1H), 2.75 (s, 6H), 1.88 (s, 3H). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 168.8, 151.5, 147.4, 146.4, 140.8, 133.9, 133.3, 130.0, 129.7, 129.1, 124.5, 122.6, 121.2, 117.3, 106.3, 75.5, 47.1, 30.1. HRMS (ESI) *m*/*z*: [M+H]⁺ Calcd for C₁₉H₁₉N₂O 291.1492; found 291.1495. IR (cm⁻¹): 3051.46, 2975.75, 2938.96, 2861.56, 2827.31, 2786.70, 1711.52, 1465.85, 1350.13, 1300.34, 761.14. Purified by chromatography on silica gel, eluting with petroleum ethyl/acetate ether 15:1 (v/v);

10-(benzyl(methyl)amino)-10b-methyl-11-methylene-10b,11dihydro-6H-isoindolo[2,1-a]indol-6-one (**3q**) 52.0 mg, yield: 71%, light yellow soild, mp 124°C. ¹H NMR (400 MHz, CDCl₃) δ 7.79 – 7.73 (m, 2H), 7.71 (d, J = 7.9 Hz, 1H), 7.54 – 7.46 (m, 4H), 7.42 – 7.30 (m, 4H), 7.17 – 7.11 (m, 1H), 6.20 (s, 1H), 5.71 (s, 1H), 4.26 (d, J = 13.5 Hz, 1H), 3.99 (d, J = 13.5 Hz, 1H), 2.63 (s, 3H), 1.94 (s, 3H). ¹³C {¹H} NMR (101 MHz, CDCl₃) δ 168.6, 151.0, 147.6, 146.0, 140.7, 137.7, 134.4, 133.4, 130.0, 130.0, 129.9, 128.8, 128.6, 127.5, 124.6, 123.0, 121.3, 117.3, 106.7, 75.8, 63.6, 43.6, 29.7. HRMS (ESI) *m*/*z*: [M+H]⁺ Calcd for C₂₅H₂₃N₂O 366.1805; found 366.1810. IR (cm⁻¹): 3030.32,

2

3 4 5

6

7

8

9

35

36

37

38 39 40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57 58 59

60

2924.20, 2847.46, 2797.33, 1709.90, 1464.77, 1353.30, 1300.08, 760.28. Purified by chromatography on silica gel, eluting with petroleum ethyl/acetate ether 20:1 (v/v);

10 10-((3S,4R)-3-((benzo[d][1,3]dioxol-5-yloxy)methyl)-4-(4fluorophenyl)piperidin-1-yl)-10b-methyl-11-methylene-11 10b,11-dihydro-6H-isoindolo[2,1-a]indol-6-one (3r) 86.3 mg, 12 yield: 75%, yellow soild, mp 94°C. ¹H NMR (400 MHz, CDCl₃) 13 δ 7.77 – 7.66 (m, 3H), 7.51 – 7.45 (m, 2H), 7.37 (td, J = 7.7, 1.2 14 Hz, 1H), 7.28 – 7.23 (m, 2H), 7.17 – 7.11 (m, 1H), 7.03 (t, J = 15 8.6 Hz, 2H), 6.60 (dd, J = 15.0, 8.5 Hz, 1H), 6.31 (dd, J = 20.5, 16 2.5 Hz, 1H), 6.22 (d, J = 16.0 Hz, 1H), 6.16 - 6.06 (m, 1H), 17 5.86 (s, 1H), 5.84 (s, 1H), 5.69 (d, J = 12.3 Hz, 1H), 3.70 - 3.40 18 (m, 3H), 3.26 - 3.05 (m, 2H), 2.91 - 2.66 (m, 2H), 2.50 - 2.38 19 (m, 1H), 2.12 - 1.96 (m, 2H), 1.95 - 1.90 (m, 3H). ${}^{13}C{}^{1}H{}$ 20 NMR (101 MHz, CDCl₃) δ 168.7 (d, J = 2.4 Hz), 161.6 (d, J =244.8 Hz), 154.0 (d, J = 4.4 Hz), 150.3 (d, J = 3.4 Hz), 148.1, 21 148.1 (d, J = 9.1 Hz), 146.1 (d, J = 2.7 Hz), 141.6 (d, J = 2.722 Hz), 140.8, 139.2 (d, J = 3.0 Hz), 134.2 (d, J = 5.5 Hz), 133.4 23 (d, J = 1.5 Hz), 130.0, 129.9, 129.3 (d, J = 21.1 Hz), 128.8 (d, J 24 = 7.9 Hz), 124.7 (d, J = 1.6 Hz), 123.0 (d, J = 6.2 Hz), 121.3, 25 117.5, 115.6, 115.4, 107.8 (d, J = 3.3 Hz), 106.0 (d, J = 11.726 Hz), 105.6 (d, J = 7.5 Hz), 101.0 (d, J = 2.3 Hz), 97.9 (d, J =27 10.1 Hz), 75.7 (d, J = 2.3 Hz), 69.2 (d, J = 13.0 Hz), 60.2, 57.0 28 (d, J = 40.2 Hz), 53.6, 43.8 (d, J = 2.3 Hz), 42.5 (d, J = 38.229 Hz), 34.7 (d, J = 30.0 Hz), 29.6 (d, J = 2.8 Hz). ¹⁹F NMR (376 30 MHz, CDCl₃) δ -115.92. HRMS (ESI) m/z: [M+H]⁺ Calcd for C₃₆H₃₂FN₂O₄ 575.2341; found 575.2344. IR (cm⁻¹): 2918.58, 31 1709.99, 1507.17, 1486.09, 1350.49, 1222.63, 1185.99, 32 1037.08, 761.61. Purified by chromatography on silica gel, 33 eluting with petroleum ethyl/acetate ether 7:1 (v/v); 34

8-fluoro-10b-methyl-11-methylene-10-(piperidin-1-yl)-10b,11dihydro-6H-isoindolo[2,1-a]indol-6-one (4a) 61.5 mg, yield: 88%, white soild, mp 129°C. ¹H NMR (400 MHz, CDCl₃) δ 7.72 (d, J = 7.8 Hz, 1H), 7.49 - 7.45 (m, 1H), 7.39 - 7.29 (m, 3H),7.13 (td, J = 7.6, 1.1 Hz, 1H), 6.16 (s, 1H), 5.65 (s, 1H), 3.03 – 2.92 (m, 2H), 2.89 – 2.70 (m, 2H), 1.86 (s, 3H), 1.82 – 1.75 (m, 4H), 1.64 (s, 2H). ¹³C {¹H} NMR (101 MHz, CDCl₃) δ 167.7 (d, J = 3.8 Hz), 163.6 (d, J = 251.1 Hz), 152.9 (d, J = 6.7 Hz), 147.6, 142.1 (d, J = 2.8 Hz), 140.5, 135.6 (d, J = 9.2 Hz), 133.4, 129.8, 124.8, 121.3, 117.5, 116.8 (d, J = 21.2 Hz), 109.3 (d, J = 23.6 Hz), 106.3, 75.4, 55.7, 29.5, 26.0, 23.8. 19F NMR (376 MHz, CDCl₃) δ -110.51. HRMS (ESI) m/z: [M+H]⁺ Calcd for C₂₂H₂₂FN₂O 349.1711; found 349.1715. IR (cm⁻¹): 3052.35, 2937.33, 2855.19, 2810.55, 1714.24, 1606.55, 1472.35, 1345.51, 1307.40, 1119.41, 868.56, 745.28. Purified by chromatography on silica gel, eluting with petroleum ethyl/acetate ether 45:1 (v/v);

7-fluoro-10b-methyl-11-methylene-10-(piperidin-1-yl)-10b,11dihydro-6H-isoindolo[2,1-a]indol-6-one (4b) 53.1 mg, yield: 76%, yellow soild, mp 109°C. ¹H NMR (400 MHz, CDCl₃) δ 7.72 (d, J = 7.9 Hz, 1H), 7.62 – 7.53 (m, 1H), 7.47 (d, J = 7.4Hz, 1H), 7.35 (td, J = 7.8, 1.0 Hz, 1H), 7.13 (td, J = 7.6, 0.8 Hz, 1H), 7.08 (t, J = 8.6 Hz, 1H), 6.19 (s, 1H), 5.67 (s, 1H), 3.00 -2.92 (m, 2H), 2.80 (s, 2H), 1.86 (s, 3H), 1.80 - 1.73 (m, 4H), 1.64 (s, 2H). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 165.7, 157.2 (d, J = 260.9 Hz), 148.2, 147.5, 147.0 (d, J = 4.2 Hz), 140.7,133.2, 131.4 (d, J = 7.9 Hz), 129.8, 124.8, 121.2, 120.3 (d, J = 12.9 Hz), 117.6, 117.1 (d, J = 20.2 Hz), 106.5, 75.3, 55.8, 29.5, 26.0, 23.9. ¹⁹F NMR (376 MHz, CDCl₃) δ -119.41. HRMS (ESI) *m/z*: [M+H]⁺ Calcd for C₂₂H₂₂FN₂O 349.1711; found 349.1716. IR (cm⁻¹): 2936.37, 2854.16, 2810.54, 1715.76, 1495.07, 1465.22, 1342.94, 1300.11, 1261.42, 752.76. Purified chromatography on silica gel, eluting with by dichloromethane/petroleum ethyl 3:2 (v/v);

8-chloro-10b-methyl-11-methylene-10-(piperidin-1-yl)-10b,11-dihydro-6H-isoindolo[2,1-a]indol-6-one (4c) 62.9 mg, yield: 86%, white soild, mp 129°C. ¹H NMR (400 MHz, CDCl₃) δ 7.71 (d, J = 7.9 Hz, 1H), 7.68 – 7.62 (m, 1H), 7.55 (s, 1H), 7.46 (d, J = 7.6 Hz, 1H), 7.35 (t, J = 7.7 Hz, 1H), 7.13 (t, J =7.5 Hz, 1H), 6.16 (s, 1H), 5.65 (s, 1H), 3.04 – 2.94 (m, 2H), 2.87 – 2.75 (m, 2H), 1.85 (s, 3H), 1.82 – 1.75 (m, 4H), 1.65 (s, 2H). ¹³C {¹H} NMR (101 MHz, CDCl₃) δ 167.4, 152.3, 147.5, 144.7, 140.5, 135.6, 135.5, 133.3, 130.0, 129.8, 124.9, 122.7, 121.3, 117.5, 106.4, 75.5, 55.7, 29.5, 26.0, 23.8. HRMS (ESI) *m/z*: [M+H]⁺ Calcd for C₂₂H₂₂ClN₂O 365.1415; found 365.1422. IR (cm⁻¹): 3075.04, 2919.16, 2850.56, 1707.99, 1461.05, 1263.16, 740.26. Purified by chromatography on silica gel, eluting with petroleum ethyl/acetate ether 50:1 (v/v);

8-bromo-10b-methyl-11-methylene-10-(piperidin-1-yl)-10b,11-dihydro-6H-isoindolo[2,1-a]indol-6-one (4d) 61.4 mg, yield: 75%, yellow soild, mp 200°C. ¹H NMR (400 MHz, CDCl₃) δ 7.86 – 7.79 (m, 1H), 7.73 – 7.68 (m, 2H), 7.46 (d, J= 7.6 Hz, 1H), 7.35 (t, J = 7.6 Hz, 1H), 7.13 (t, J = 7.5 Hz, 1H), 6.15 (s, 1H), 5.65 (s, 1H), 3.03 – 2.96 (m, 2H), 2.87 – 2.77 (m, 2H), 1.85 (s, 3H), 1.81 – 1.74 (m, 4H), 1.65 (s, 2H). ¹³C {¹H} NMR (101 MHz, CDCl₃) δ 167.3, 152.4, 147.4, 145.2, 140.5, 135.8, 133.4, 132.9, 129.9, 125.7, 124.9, 123.3, 121.3, 117.5, 106.4, 75.5, 55.7, 29.5, 26.0, 23.8. HRMS (ESI) *m/z*: [M+H]⁺ Calcd for C₂₂H₂₂BrN₂O 409.0910; found 409.0919. IR (cm⁻¹): 3072.02, 2936.63, 2853.79, 1713.11, 1464.39, 1348.04, 1302.77, 760.25, 737.17. Purified by chromatography on silica gel, eluting with petroleum ethyl/acetate ether 50:1 (v/v);

2-fluoro-10b-methyl-11-methylene-10-(piperidin-1-yl)-10b,11dihydro-6H-isoindolo[2,1-a]indol-6-one (4e) 56.6 mg, yield: 81%, yellow soild, mp 128°C. ¹H NMR (400 MHz, CDCl₃) δ 7.71 - 7.65 (m, 2H), 7.65 - 7.60 (m, 1H), 7.46 (t, J = 7.7 Hz, 1H), 7.14 (dd, J = 8.3, 2.5 Hz, 1H), 7.04 (td, J = 8.8, 2.6 Hz, 1H), 6.26 (s, 1H), 5.64 (s, 1H), 3.05 - 2.97 (m, 2H), 2.89 - 2.73 (m, 2H), 1.87 (s, 3H), 1.82 – 1.74 (m, 4H), 1.65 (s, 2H). ¹³C {¹H} NMR (101 MHz, CDCl₃) δ 169.0, 160.4 (d, J = 242.6 Hz), 151.2, 147.4 (d, J = 2.9 Hz), 146.1, 137.0, 135.1 (d, J = 8.6 Hz), 133.7, 130.0, 129.7, 122.6, 118.4 (d, J = 8.6 Hz), 116.4 (d, J = 24.0 Hz), 108.2 (d, J = 24.2 Hz), 107.7, 76.1, 55.6, 29.5, 26.1, 23.9. ¹⁹F NMR (376 MHz, CDCl₃) δ -118.04. HRMS (ESI) m/z: [M+H]⁺ Calcd for C₂₂H₂₂FN₂O 349.1711; found 349.1715. IR (cm⁻¹): 2936.79, 2854.58, 2807.84, 1712.10, 1479.26, 1349.03, 1270.38, 904.50, 817.44, 737.91. Purified by chromatography on silica gel, eluting with petroleum ethyl/acetate ether 20:1 (v/v);

2-chloro-10b-methyl-11-methylene-10-(piperidin-1-yl)-10b,11-dihydro-6H-isoindolo[2,1-a]indol-6-one (4f) 62.8 mg, yield: 86%, white soild, mp 129°C. ¹H NMR (400 MHz, CDCl₃) δ 7.72 – 7.58 (m, 3H), 7.46 (t, J = 7.6 Hz, 1H), 7.42 (d, J = 1.7 Hz, 1H), 7.30 (dd, J = 8.3, 1.8 Hz, 1H), 6.26 (s, 1H), 5.65 (s, 1H), 3.06 – 2.96 (m, 2H), 2.90 – 2.71 (m, 2H), 1.86 (s, 3H), 1.81 – 1.74 (m, 4H), 1.65 (s, 2H). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 168.8, 151.2, 146.9, 146.0, 139.4, 135.1, 133.6, 130.1, 130.1, 129.8, 129.6, 122.7, 121.4, 118.4, 107.7, 76.0, 55.6, 29.6, 26.1, 23.9. HRMS (ESI) *m/z*: [M+H]⁺ Calcd for C₂₂H₂₂ClN₂O 365.1415; found 365.1412. IR (cm⁻¹): 2932.90, 1714.08, 1468.47, 1342.55, 1265.91, 880.28, 817.63, 757.05. Purified by chromatography on silica gel, eluting with petroleum ethyl/acetate ether 24:1 (v/v);

10b-methyl-11-methylene-10-(piperidin-1-yl)-2-(trifluoromethyl)-10b, 11-dihydro-6H-isoindolo[2,1-a]indol-6one (4g) 64.7 mg, yield: 81%, yellow soild, mp 180°C. ¹H NMR (400 MHz, CDCl₃) δ 7.82 (d, J = 8.2 Hz, 1H), 7.73 – 7.63 (m, 2H), 7.66 (d, J = 7.6 Hz, 1H), 7.62 (d, J = 8.2 Hz, 1H), 7.48 (t, J = 7.6 Hz, 1H), 6.34 (s, 1H), 5.76 (s, 1H), 3.06 – 2.98 (m, 2H), 2.90 – 2.76 (m, 2H), 1.88 (s, 3H), 1.83 – 1.76 (m, 4H), 1.67 (s, 2H). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 168.8, 151.3, 146.7, 146.2, 143.4, 133.9, 133.4, 130.2, 130.1, 127.0 (q, J = 3.8 Hz), 126.9 (q, J = 32.5 Hz), 125.6, 122.9, 118.4 (q, J = 3.8 Hz), 117.4, 108.3, 76.0, 55.7, 29.7, 26.1, 23.9. ¹⁹F NMR (376 MHz, CDCl₃) δ -61.80. HRMS (ESI) m/z: [M+H]⁺ Calcd for C₂₃H₂₂F₃N₂O 399.1679; found 399.1676. IR (cm⁻¹): 2937.60, 1719.37, 1346.40, 1324.95, 1270.91, 1161.99, 1122.18, 888.96, 832.05, 759.49. Purified by chromatography on silica gel, eluting with petroleum ethyl/acetate ether 25:1 (v/v);

8-methoxy-10b-methyl-11-methylene-10-(piperidin-1-yl)-

10b,11-dihydro-6H-isoindolo[2,1-a]indol-6-one (4h) 60.0 mg, yield: 83%, yellow soild, mp 238°C. ¹H NMR (400 MHz, CDCl₃) δ 7.72 (d, J = 7.9 Hz, 1H), 7.47 (d, J = 7.6 Hz, 1H), 7.36 (t, J = 7.5 Hz, 1H), 7.20 – 7.16 (m, 2H), 7.13 (t, J = 7.5 Hz, 1H), 6.16 (s, 1H), 5.63 (s, 1H), 3.85 (s, 3H), 3.05 – 2.94 (m, 2H), 2.88 – 2.74 (m, 2H), 1.85 (s, 3H), 1.82 – 1.73 (m, 4H), 1.64 (s, 2H). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 169.0, 161.2, 152.2, 148.0, 140.8, 139.2, 134.9, 133.6, 129.7, 124.6, 121.3, 117.7, 117.5, 106.0, 105.1, 75.4, 55.8, 29.6, 26.2, 24.0. HRMS (ESI) *m/z*: [M+H]⁺ Calcd for C₂₃H₂₅N₂O₂ 361.1911; found 361.1917. IR (cm⁻¹): 2935.15, 2852.45, 1710.38, 1611.34, 1464.95, 1347.50, 1131.75, 745.14. Purified by chromatography on silica gel, eluting with petroleum ethyl/acetate ether 15:1 (v/v);

2,10b-dimethyl-11-methylene-10-(piperidin-1-yl)-10b,11dihydro-6H-isoindolo[2,1-a]indol-6-one (**4i**) 61.5 mg, yield: 89%, yellow soild, mp 122°C. ¹H NMR (400 MHz, CDCl₃) δ 7.68 (d, *J* = 7.3 Hz, 1H), 7.64 – 7.58 (m, 2H), 7.44 (t, *J* = 7.6 Hz, 1H), 7.27 (s, 1H), 7.16 (d, *J* = 8.0 Hz, 1H), 6.17 (s, 1H), 5.62 (s, 1H), 3.05 – 2.95 (m, 2H), 2.89 – 2.74 (m, 2H), 2.35 (s, 3H), 1.86 (s, 3H), 1.81 – 1.73 (m, 4H), 1.64 (s, 2H). ¹³C {¹H} NMR (101 MHz, CDCl₃) δ 168.8, 151.2, 147.9, 146.2, 138.6, 134.2, 134.1, 133.5, 130.5, 129.8, 129.4, 122.5, 121.6, 117.1, 105.9, 75.9, 55.6, 29.5, 26.1, 24.0, 21.2. HRMS (ESI) *m/z*: [M+H]⁺ Calcd for C₂₃H₂₅N₂O 345.1961; found 345.1960. IR (cm⁻¹): 2935.56, 2854.66, 2806.91, 1709.75, 1482.67, 1344.29, 1286.06, 1234.64, 967.12, 899.64, 815.21, 737.02. Purified by chromatography on silica gel, eluting with petroleum ethyl/acetate ether 15:1 (v/v);

2-methoxy-10b-methyl-11-methylene-10-(piperidin-1-yl)-10b,11-dihydro-6H-isoindolo[2,1-a]indol-6-one (**4j**) 60.0 mg, yield: 83%, yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 7.70 – 7.59 (m, 3H), 7.45 (t, *J* = 7.7 Hz, 1H), 6.99 (d, *J* = 2.5 Hz, 1H), 6.92 (dd, *J* = 8.6, 2.5 Hz, 1H), 6.20 (s, 1H), 5.63 (s, 1H), 3.82 (s, 3H), 3.07 – 2.95 (m, 2H), 2.91 – 2.71 (m, 2H), 1.87 (s, 3H), 1.81 – 1.74 (m, 4H), 1.65 (s, 2H). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 168.9, 157.3, 151.1, 148.0, 146.1, 134.7, 134.6, 134.0, 129.9, 129.4, 122.5, 118.1, 115.6, 106.4, 76.1, 55.7, 29.4, 26.1, 24.0. HRMS (ESI) *m/z*: [M+H]⁺ Calcd for C₂₃H₂₅N₂O₂ 361.1911; found 361.1907. IR (cm⁻¹): 2935.94, 1707.00, 1592.13, 1483.07, 1351.48, 1279.28, 1230.82, 1067.34, 1032.37, 900.41, 759.66, 659.79. Purified by chromatography

1

2 3 4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

26

27

28

29

30

31

32

33

34

35

36

37

38

44

45

46

47

48

49

50

51

52

53

54

2

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

48

49

50

51

52

53

54

55

56

57

58 59

60

on silica gel, eluting with petroleum ethyl/acetate ether 14:1 (v/v);

8,10b-dimethyl-11-methylene-10-(piperidin-1-yl)-10b,11dihydro-6H-isoindolo[2,1-a]indol-6-one (**4k**) 59.4 mg, yield: 86%, white soild, mp 136°C. ¹H NMR (400 MHz, CDCl₃) δ 7.72 (d, *J* = 7.9 Hz, 1H), 7.49 (s, 1H), 7.45 (d, *J* = 7.6 Hz, 1H), 7.41 (s, 1H), 7.33 (t, *J* = 7.7 Hz, 1H), 7.10 (t, *J* = 7.5 Hz, 1H), 6.18 (s, 1H), 5.63 (s, 1H), 3.04 – 2.95 (m, 2H), 2.88 – 2.74 (m, 2H), 2.39 (s, 3H), 1.85 (s, 3H), 1.80 – 1.73 (m, 4H), 1.63 (s, 2H). ¹³C {¹H} NMR (101 MHz, CDCl₃) δ 169.0, 150.9, 148.0, 143.5, 140.9, 140.1, 133.9, 133.4, 130.3, 129.6, 124.5, 122.8, 121.2, 117.4, 106.0, 75.4, 55.6, 29.5, 26.1, 24.0, 21.0. HRMS (ESI) *m/z*: [M+H]⁺ Calcd for C₂₃H₂₅N₂O 345.1961; found 345.1965. IR (cm⁻¹): 3049.64, 2935.26, 2853.91, 2807.87, 1711.01, 1602.61, 1465.16, 1341.33, 1302.79, 896.32, 744.28. Purified by chromatography on silica gel, eluting with petroleum ethyl/acetate ether 25:1 (v/v);

12b-methyl-13-methylene-12-(piperidin-1-yl)-12b,13-dihydro-8H-benzo[e]isoindolo[2,1-a]indol-8-one (4l) 61.0 mg, yield: 80%, yellow soild, mp 198°C. ¹H NMR (400 MHz, CDCl₃) δ 8.36 (d, J = 8.5 Hz, 1H), 8.02 (d, J = 8.7 Hz, 1H), 7.87 (d, J = 8.5 Hz, 2H), 7.73 (d, J = 7.4 Hz, 1H), 7.62 (d, J = 7.8 Hz, 1H), 7.53 (t, J = 7.2 Hz, 1H), 7.45 (t, J = 7.6 Hz, 1H), 7.41 (t, J = 7.5 Hz, 1H), 6.46 (s, 1H), 6.09 (s, 1H), 3.07 - 2.99 (m, 2H), 2.84 (s, 2H), 1.96 (s, 3H), 1.83 - 1.76 (m, 4H), 1.65 (s, 2H). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 168.4, 151.2, 149.0, 146.3, 140.3, 134.4, 131.8, 131.1, 130.0, 130.0, 129.7, 129.5, 127.5, 125.4, 124.5, 122.8, 122.7, 117.3, 110.1, 76.8, 55.7, 29.2, 26.1, 24.0. HRMS (ESI) m/z: [M+H]⁺ Calcd for C₂₆H₂₅N₂O 381.1961; found 381.1959. IR (cm⁻¹): 3055.01, 2935.56, 2853.57, 2806.94, 1708.84, 1588.22, 1480.07, 1330.61, 819.32, 739.75. Purified by chromatography on silica gel, eluting with petroleum ethyl/acetate ether 16:1 (v/v);

10b-methyl-11-methylene-2-nitro-10-(piperidin-1-yl)-10b,11dihydro-6H-isoindolo[2,1-a]indol-6-one (4m) 59.5 mg, yield: 79%, white soild, mp 192°C. ¹H NMR (400 MHz, CDCl₃) δ 8.33 (d, J = 2.2 Hz, 1H), 8.26 (dd, J = 8.7, 2.3 Hz, 1H), 7.83 (d, J = 8.7 Hz, 1H), 7.75 – 7.66 (m, 2H), 7.51 (t, J = 7.7 Hz, 1H), 6.44 (s, 1H), 5.86 (s, 1H), 3.06 – 2.99 (m, 2H), 2.91 – 2.77 (m, 2H), 1.89 (s, 3H), 1.84 – 1.77 (m, 4H), 1.68 (s, 2H). ¹³C {¹H} NMR (101 MHz, CDCl₃) δ 168.5, 151.3, 146.1, 145.9, 145.7, 144.9, 134.4, 132.9, 130.5, 130.4, 125.8, 123.0, 117.0, 116.9, 109.6, 76.3, 55.7, 30.0, 26.1, 23.9. HRMS (ESI) *m*/*z*: [M+H]⁺ Calcd for C₂₂H₂₂N₃O₃ 376.1656; found 376.1663. IR (cm⁻¹): 2935.29, 1720.93, 1592.04, 1521.32, 1469.50, 1320.36, 1268.94, 1130.14, 903.97, 740.86. Purified by chromatography on silica gel, eluting with petroleum ethyl/acetate ether 20:1 (v/v);

11-benzylidene-10b-methyl-10-(piperidin-1-yl)-10b,11dihydro-6H-isoindolo[2,1-a]indol-6-one (4n) 66.0 mg, yield: 81%, white soild, mp 152°C. ¹H NMR (400 MHz, CDCl₃) δ 8.05 -7.94 (m, 1H), 7.78 - 6.50 (m, 12H), 3.61 - 2.33 (m, 4H), 2.04- 1.90 (m, 3H), 1.80 - 1.33 (m, 6H). ¹³C{¹H} NMR (101 MHz, CDCl₃) & 168.4, 167.9, 153.6, 151.1, 146.4, 142.8, 141.9, 141.5, 140.8, 138.8, 138.6, 137.1, 136.3, 134.3, 132.8, 132.1, 130.3, 129.9, 129.7, 129.5, 129.3, 129.1, 128.9, 128.5, 128.3, 128.1, 127.9, 127.8, 127.2, 126.8, 125.7, 125.0, 124.7, 124.0, 124.0, 122.7, 121.2, 120.6, 118.9, 117.8, 76.6, 75.5, 57.4, 55.6, 29.4, 26.7, 26.2, 26.1, 24.9, 24.2, 23.9, 23.2. HRMS (ESI) m/z: [M+H]⁺ Calcd for C₂₈H₂₇N₂O 407.2118; found 407.2124. IR (cm⁻¹): 3054.44, 2935.50, 2854.17, 2805.67, 1709.33, 1599.96, 1464.40, 1333.12, 759.33, 735.57, 702.36. Purified by chromatography on silica gel, eluting with petroleum ethyl/acetate ether 15:1 (v/v);

11-benzylidene-2,10b-dimethyl-10-(piperidin-1-yl)-10b,11dihydro-6H-isoindolo[2,1-a]indol-6-one (40) 59.8 mg, yield: 71%, white soild, mp 160°C. ¹H NMR (400 MHz, CDCl₃) δ 8.04 – 7.91 (m, 1H), 7.79 – 7.67 (m, 1H), 7.66 – 7.50 (m, 2H), 7.49 – 7.41 (m, 1H), 7.41 – 7.15 (m, 5H), 7.11 – 6.94 (m, 2H), 3.10 – 2.44 (m, 4H), 2.41 – 2.12 (m, 3H), 2.03 – 1.92 (m, 3H), 1.89 – 1.54 (m, 6H). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 168.3, 151.1, 146.4, 140.9, 139.3, 137.2, 134.4, 133.5, 132.2, 130.2, 129.9, 129.5, 128.4, 128.2, 127.2, 125.4, 125.2, 122.6, 117.5, 76.8, 55.7, 29.3, 26.2, 24.0, 21.2. HRMS (ESI) *m/z*: [M+H]⁺ Calcd for C₂₉H₂₉N₂O 421.2274; found 421.2273. IR (cm⁻¹): 3054.45, 3027.32, 2934.97, 2854.61, 2806.63, 1709.05, 1602.03, 1480.01, 1444.77, 1339.27, 814.71, 737.26, 702.66. Purified by chromatography on silica gel, eluting with petroleum ethyl/acetate ether 16:1 (v/v);

11-benzylidene-2-methoxy-10b-methyl-10-(piperidin-1-yl)-10b,11-dihydro-6H-isoindolo[2,1-a]indol-6-one (**4p**) 68.2 mg, yield: 78%, white soild, mp 144°C. ¹H NMR (400 MHz, CDCl₃) δ 7.97 (s, 1H), 7.74 (d, J = 7.4 Hz, 1H), 7.62 (d, J = 8.4 Hz, 2H), 7.47 (t, J = 7.6 Hz, 1H), 7.41 – 7.33 (m, 4H), 7.31 – 7.26 (m, 1H), 6.84 (dd, J = 8.7, 2.6 Hz, 1H), 6.80 – 6.69 (m, 1H), 3.53 (s, 3H), 3.12 – 2.98 (m, 2H), 2.84 (s, 2H), 1.96 (s, 3H), 1.86 – 1.73 (m, 4H), 1.65 (s, 2H). ¹³C {¹H} NMR (101 MHz, CDCl₃) δ 168.5, 156.3, 151.0, 146.3, 141.0, 137.0, 135.3, 134.4, 133.2, 129.9, 129.5, 128.4, 128.3, 127.4, 125.9, 122.6, 118.3, 115.7, 109.8, 55.5, 55.2, 29.3, 26.2, 23.9. HRMS (ESI) m/z: [M+H]⁺ Calcd for C₂₉H₂₉N₂O₂ 437.2224; found 437.2218. IR (cm⁻¹): 3054.80, 3025.98, 2935.93, 2852.97, 2832.65, 2807.00, 1706.84, 1590.18, 1481.11, 1442.00, 1359.19, 1329.81, 1272.70, 1226.29, 1032.66, 736.94. Purified by chromatography on silica gel, eluting with petroleum ethyl/acetate ether 10:1 (v/v);

1

2

3

4

5

6

7

8

9

15

16

17

18

19

20

21

22

23

24

25

26

27

28

34

35

36

37

38

39

40

41

42

43

44

45

46

47

54

55

56

57 58 59

60

10b-methyl-10-(piperidin-1-yl)-11-(propan-2-ylidene)-10b,11dihydro-6H-isoindolo[2,1-a]indol-6-one (4q) 38.1 mg, yield: 53%, yellow soild, mp 192°C. ¹H NMR (400 MHz, CDCl₃) δ 7.76 – 7.72 (m, 1H), 7.64 (d, J = 7.7 Hz, 1H), 7.60 – 7.56 (m, 1H), 7.53 – 7.45 (m, 2H), 7.29 (t, J = 7.6 Hz, 1H), 7.15 (t, J = 7.9 Hz, 1H), 3.11 – 2.99 (m, 2H), 2.79 – 2.61 (m, 2H), 2.19 (s, 3H), 1.99 (s, 3H), 1.89 (s, 3H), 1.81 – 1.66 (m, 6H). ¹³C {¹H} NMR (101 MHz, CDCl₃) δ 168.1, 153.3, 142.4, 139.3, 137.1, 136.3, 135.5, 130.8, 130.3, 128.2, 126.1, 124.4, 121.9, 119.0, 78.2, 26.2, 25.6, 24.1, 23.1, 21.9. HRMS (ESI) *m/z*: [M+H]⁺ Calcd for C₂₄H₂₇N₂O 359.2118; found 359.2118. IR (cm⁻¹): 2934.26, 1707.23, 1476.64, 1361.56, 1321.18, 965.99, 758.00. Purified by chromatography on silica gel, eluting with petroleum ethyl/acetate ether 14:1 (v/v);

11-hexylidene-10b-methyl-10-(piperidin-1-yl)-10b,11-dihydro-6H-isoindolo[2,1-a]indol-6-one (4r) 63.4 mg, yield: 79%, yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 8.11 – 7.37 (m, 5H), 7.36 - 7.27 (m, 1H), 7.18 - 7.08 (m, 1H), 6.78 - 5.89 (m, 1H), 4.27 - 2.98 (m, 2H), 2.94 - 2.29 (m, 4H), 1.94 - 1.83 (m, 3H), 1.82 - 1.60 (m, 6H), 1.59 - 1.39 (m, 2H), 1.39 - 1.28 (m, 4H), 0.91 - 0.77 (m, 3H). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 169.0, 168.4, 153.0, 151.1, 146.6, 141.6, 140.9, 140.0, 138.9, 138.7, 137.2, 135.0, 134.3, 133.7, 130.8, 130.3, 129.7, 129.4, 128.7, 128.5, 128.2, 128.0, 128.0, 125.3, 124.9, 124.4, 122.5, 121.9, 120.3, 118.7, 117.7, 76.4, 76.2, 55.6, 31.8, 30.8, 29.4, 29.3, 29.2, 28.6, 26.2, 26.1, 24.0, 24.0, 22.7, 22.5, 14.0, 14.0. HRMS (ESI) m/z: [M+H]⁺ Calcd for C₂₇H₃₃N₂O 401.2587; found 401.2582. IR (cm⁻¹): 3055.28, 2930.71, 2857.03, 2808.85, 1710.87, 1602.92, 1479.75, 1463.18, 1347.60, 759.93, 736.92. Purified by chromatography on silica gel, eluting with petroleum ethyl/acetate ether 20:1 (v/v);

7.75 (dd, J = 6.1, 2.5 Hz, 1H), 7.62 (d, J = 7.8 Hz, 1H), 7.50 (d, J = 7.6 Hz, 1H), 7.47 – 7.42 (m, 4H), 7.29 – 7.24 (m, 1H), 7.10 – 7.02 (m, 3H), 6.44 (s, 1H), 6.00 (s, 1H), 2.55 – 2.35 (m, 2H), 2.27 – 2.13 (m, 5H), 1.56 – 1.37 (m, 6H). ¹³C {¹H} NMR (101 MHz, CDCl₃) δ 168.8, 150.6, 146.5, 144.1, 140.3, 137.4, 137.0, 134.8, 134.1, 130.3, 129.8, 129.2, 128.6, 127.1, 124.8, 122.1, 121.1, 117.5, 110.5, 80.3, 54.5, 26.1, 23.9, 20.9. HRMS (ESI) m/z: [M+H]⁺ Calcd for C₂₈H₂₇N₂O 407.2118; found 407.2116. IR (cm⁻¹): 2935.40, 2853.57, 2805.70, 1709.31, 1465.63, 1350.18, 1304.49, 758.94. Purified by chromatography on silica gel, eluting with petroleum ethyl/acetate ether 20:1 (v/v);

5-(piperidin-1-yl)-3,4-dihydroisoindolo[1,2-k]carbazol-9(2H)one (4t) 45.1 mg, yield: 63%, white soild, mp 196°C. ¹H NMR $(400 \text{ MHz}, \text{CDCl}_3) \delta 7.68 \text{ (d}, J = 8.0 \text{ Hz}, 1\text{H}), 7.62 \text{ (dd}, J = 6.1,$ 2.4 Hz, 1H), 7.40 - 7.35 (m, 3H), 7.19 (t, J = 7.7 Hz, 1H), 7.00(t, J = 7.5 Hz, 1H), 6.21 - 6.17 (m, 1H), 3.26 - 2.77 (m, 4H),2.56 - 2.42 (m, 1H), 2.32 - 2.18 (m, 1H), 2.09 - 1.98 (m, 1H), 1.88 - 1.37 (m, 9H). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 175.6, 151.8, 150.9, 143.6, 136.0, 133.6, 131.1, 129.7, 128.4, 126.0, 123.6, 123.3, 121.7, 119.6, 114.0, 74.1, 40.0, 26.1, 25.7, 23.8, 16.6. HRMS (ESI) m/z: [M+H]⁺ Calcd for C₂₄H₂₅N₂O 357.1961; found 357.1969. IR (cm⁻¹): 2930.18, 2856.74, 2812.14, 1716.86, 1598.70, 1461.34, 1358.50, 1324.75, 1133.29. 1099.34, 1294.50. 765.31. Purified hv chromatography on silica gel, eluting with petroleum ethyl/acetate ether 50:1 (v/v);

*l'-methyl-3-methylene-4'-morpholino-3H-spiro[benzofuran-*2,3'-indolin]-2'-one (6a) 40.6 mg, yield: 58%, white soild, mp 234°C. ¹H NMR (400 MHz, CDCl₃) δ 7.48 (d, J = 7.5 Hz, 1H), 7.37 (t, J = 8.0 Hz, 1H), 7.27 (t, J = 7.7 Hz, 1H), 7.01 (t, J = 7.5 Hz, 1H), 6.92 (d, J = 8.1 Hz, 1H), 6.84 (d, J = 8.2 Hz, 1H), 6.67 (d, J = 7.7 Hz, 1H), 5.41 (s, 1H), 4.56 (s, 1H), 3.26 – 3.20 (m, 5H), 3.11 – 3.03 (m, 2H), 3.03 – 2.97 (m, 2H), 2.71 – 2.64 (m, 2H). ¹³C {¹H} NMR (101 MHz, CDCl₃) δ 173.3, 161.9, 151.4, 145.6, 131.7, 130.9, 126.4, 122.9, 121.6, 121.0, 116.3, 110.6, 104.6, 101.3, 88.7, 66.8, 52.8, 26.6. HRMS (ESI) *m/z*: [M+H]⁺ Calcd for C₂₁H₂₁N₂O₃ 349.1547; found 349.1543. IR (cm⁻¹): 2858.46, 1725.21, 1601.35, 1464.93, 1340.34, 1354.95, 1229.99, 1108.70, 854.33, 739.70. Purified by chromatography on silica gel, eluting with petroleum ethyl/acetate ether 5:1 (v/v);

ethyl 1-(1'-methyl-3-methylene-2'-oxo-3H-spiro[benzofuran-2,3'-indolin]-4'-yl)piperidine-4-carboxylate (**6b**) 47.8 mg, yield: 57%, yellow soild, mp 118°C. ¹H NMR (400 MHz, CDCl₃) δ 7.47 (d, J = 7.5 Hz, 1H), 7.33 (t, J = 8.0 Hz, 1H), 7.26

2

3

4

5

6

7

8

9

10

11

12

13

14

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58 59

60

(t, J = 7.6 Hz, 1H), 7.02 – 6.91 (m, 2H), 6.82 (d, J = 8.3 Hz, 1H), 6.64 (d, J = 7.7 Hz, 1H), 5.40 (s, 1H), 4.55 (s, 1H), 4.05 (q, J = 7.1 Hz, 2H), 3.29 – 3.15 (m, 4H), 2.97 – 2.86 (m, 1H), 2.76 – 2.64 (m, 1H), 2.54 – 2.42 (m, 1H), 2.17 – 2.07 (m, 1H), 1.58 (d, J = 12.4 Hz, 1H), 1.46 (d, J = 12.7 Hz, 1H), 1.30 – 1.18 (m, 4H), 0.89 – 0.77 (m, 1H). ¹³C {¹H} NMR (101 MHz, CDCl₃) δ 174.7, 173.4, 162.1, 152.2, 145.6, 145.5, 131.5, 130.7, 126.3, 122.6, 121.4, 121.0, 116.5, 110.7, 104.2, 101.1, 88.7, 60.0, 53.4, 51.0, 40.5, 28.1, 28.0, 26.6, 14.2. HRMS (ESI) *m/z*: [M+H]⁺ Calcd for C₂₅H₂₇N₂O₄ 419.1965; found 419.1963. IR (cm⁻¹): 2950.99, 2806.97, 1732.73, 1603.82, 1463.13, 1340.73, 1303.70, 1253.82, 1169.87, 1046.00, 1013.19, 865.07, 749.08. Purified by chromatography on silica gel, eluting with petroleum ethyl/acetate ether 7:1 (v/v);

1'-methyl-3-methylene-4'-(1,4-dioxa-8-azaspiro[4.5]decan-8yl)-3H-spiro[benzofuran-2,3'-indolin]-2'-one (6c) 44.6 mg, yield: 55%, yellow soild, mp 202°C. ¹H NMR (400 MHz, $CDCl_3$) δ 7.46 (d, J = 7.5 Hz, 1H), 7.33 (t, J = 8.0 Hz, 1H), 7.27 (t, J = 7.8 Hz, 1H), 7.01 (t, J = 7.5 Hz, 1H), 6.93 (d, J = 8.1 Hz, 10.00 Hz)1H), 6.87 (d, J = 8.2 Hz, 1H), 6.64 (d, J = 7.7 Hz, 1H), 5.41 (s, 1H), 4.56 (s, 1H), 3.86 - 3.82 (m, 4H), 3.21 (s, 3H), 3.11 - 3.03 (m, 2H), 2.83 – 2.75 (m, 2H), 1.32 – 1.25 (m, 2H), 1.18 – 1.10 (m, 2H). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 173.3, 162.1, 151.9, 145.6, 145.3, 131.5, 130.8, 126.3, 122.2, 121.4, 120.9, 116.6, 110.5, 106.6, 104.2, 101.2, 88.7, 64.0, 50.7, 34.7, 26.6. HRMS (ESI) m/z: $[M+H]^+$ Calcd for C₂₄H₂₅N₂O₄ 405.1809; found 405.1806. IR (cm⁻¹): 2957.43, 1731.77, 1604.59, 1462.47, 1340.27, 1254.55, 1110.09, 749.17. Purified by chromatography on silica gel, eluting with petroleum ethyl/acetate ether 5:1 (v/v);

4'-(4-benzoylpiperazin-1-yl)-1'-methyl-3-methylene-3Hspiro[benzofuran-2,3'-indolin]-2'-one (6d) 43.5 mg, yield: 48%, yellow soild, mp 187°C. ¹H NMR (400 MHz, CDCl₃) δ 7.48 (d, J = 7.5 Hz, 1H), 7.46 – 7.33 (m, 5H), 7.31 – 7.28 (m, 2H), 7.03 (t, J = 7.5 Hz, 1H), 6.93 (d, J = 8.1 Hz, 1H), 6.83 (d, J = 8.2 Hz, 1H), 6.70 (d, J = 7.7 Hz, 1H), 5.42 (s, 1H), 4.58 (s, 1H), 3.29 – 3.22 (m, 4H), 3.10 – 2.88 (m, 3H), 2.82 – 2.57 (m, 3H), 1.74 – 1.57 (m, 1H). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 173.3, 170.0, 162.0, 151.0, 145.8, 145.7, 135.7, 131.9, 131.1, 129.6, 128.4, 127.0, 126.4, 123.4, 121.7, 121.0, 116.6, 110.7, 105.2, 101.5, 88.7, 26.8. HRMS (ESI) *m/z*: [M+H]⁺ Calcd for C₂₈H₂₆N₃O₃ 452.1969; found 452.1966. IR (cm⁻¹): 1731.80, 1633.81, 1605.33, 1461.92, 1256.61, 1011.51, 750.08, 710.09. Purified by chromatography on silica gel, eluting with

petroleum ethyl/acetate ether 2:1 (v/v);

tert-butyl 4-(1'-methyl-3-methylene-2'-oxo-3Hspiro[benzofuran-2,3'-indolin]-4'-vl)piperazine-1-carboxvlate (6e) 58.3 mg, yield: 65%, light yellow soild, mp 240°C. ¹H NMR (400 MHz, CDCl₃) δ 7.48 – 7.44 (m, 1H), 7.36 (t, J = 8.0Hz, 1H), 7.30 – 7.25 (m, 1H), 7.02 – 6.97 (m, 1H), 6.94 (d, J= 8.1 Hz, 1H), 6.81 (d, J = 7.9 Hz, 1H), 6.68 (d, J = 7.5 Hz, 1H), 5.40 (d, J = 1.2 Hz, 1H), 4.56 (d, J = 1.2 Hz, 1H), 3.22 (s, 3H), 3.00 - 2.88 (m, 4H), 2.88 - 2.74 (m, 2H), 2.65 - 2.57 (m, 2H), 1.41 (s, 9H). ${}^{13}C{}^{1}H{}$ NMR (101 MHz, CDCl₃) δ 173.3, 162.0, 154.4, 151.5, 145.7, 145.6, 131.7, 131.0, 126.3, 123.0, 121.6, 120.9, 116.5, 110.6, 104.8, 101.3, 88.7, 79.5, 52.4, 44.0, 43.0, 28.3, 26.6. HRMS (ESI) m/z: [M+H]⁺ Calcd for C₂₆H₃₀N₃O₄ 448.2231; found 448.2227. IR (cm⁻¹): 2975.79, 2818.02, 1733.77, 1691.66, 1605.01, 1462.59, 1422.60, 1365.35, 1252.62, 1170.48, 1126.78, 1014.36, 738.04. Purified by chromatography on silica gel, eluting with petroleum ethyl/acetate ether 5:1 (v/v);

benzyl 4-(1'-methyl-3-methylene-2'-oxo-3H-spiro[benzofuran-2,3'-indolin]-4'-yl)piperazine-1-carboxylate (6f) 55.0 mg, yield: 57%, yellow soild, mp 196°C. ¹H NMR (400 MHz, CDCl₃) δ 7.46 (d, J = 7.6 Hz, 1H), 7.37 – 7.29 (m, 6H), 7.27 – 7.24 (m. 1H), 6.99 (t. J = 7.4 Hz, 1H), 6.93 (d. J = 8.1 Hz, 1H), 6.80 (d, J = 8.2 Hz, 1H), 6.68 (d, J = 7.7 Hz, 1H), 5.40 (s, 1H),5.11 - 5.02 (m, 2H), 4.56 (s, 1H), 3.22 (s, 3H), 3.10 - 3.00 (m, 2H), 2.98 - 2.83 (m, 4H), 2.64 (s, 2H). ¹³C{¹H} NMR (101 MHz, CDCl₃) & 173.2, 161.9, 154.9, 151.3, 145.7, 145.6, 136.6, 131.8, 131.0, 128.4, 127.9, 127.8, 126.3, 123.1, 121.6, 120.9, 116.5, 110.6, 104.9, 101.3, 88.6, 67.0, 52.3, 43.7, 26.6. HRMS (ESI) m/z: $[M+H]^+$ Calcd for C₂₉H₂₈N₃O₄ 482.2074; found 482.2071. IR (cm⁻¹): 2936.07, 1732.99, 1700.27, 1604.71, 1463.31, 1430.30, 1246.84, 1123.84, 1013.85, 749.95, 699.21. Purified by chromatography on silica gel, eluting with petroleum ethyl/acetate ether 4:1 (v/v);

4-(6'-fluoro-1'-methyl-3-methylene-2'-oxo-3Htert-butvl *spiro[benzofuran-2,3'-indolin]-4'-yl)piperazine-1-carboxylate* (6g) 59.7 mg, yield: 64%, white soild, mp 80°C. ¹H NMR (400 MHz, CDCl₃) δ 7.46 (d, J = 7.6 Hz, 1H), 7.32 – 7.25 (m, 1H), 7.00 (t, J = 7.5 Hz, 1H), 6.94 (d, J = 8.1 Hz, 1H), 6.50 – 6.44 (m, 1H), 6.41 (dd, J = 8.1, 2.2 Hz, 1H), 5.41 (s, 1H), 4.56 (s, 1H), 3.20 (s, 3H), 3.02 – 2.90 (m, 4H), 2.88 – 2.79 (m, 2H), 2.68 -2.59 (m, 2H), 1.41 (s, 9H). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 173.3, 165.3 (d, J = 249.5 Hz), 161.7, 154.3, 153.0 (d, J = 9.5 Hz). 147.2 (d. J = 13.8 Hz). 145.0. 131.1. 126.1. 121.8. 121.0. 117.1 (d, J = 3.2 Hz), 110.7, 102.6 (d, J = 22.5 Hz), 101.6, 93.3 (d, J = 28.0 Hz), 88.3, 79.6, 55.8, 52.2, 28.3, 26.7. ¹⁹F NMR (376 MHz, CDCl₃) δ -106.27. HRMS (ESI) *m/z*: [M+H]⁺ Calcd for $C_{26}H_{29}FN_{3}O_{4}$ 466.2137; found 466.2134. IR (cm⁻¹): 2976.49, 1740.33, 1693.03, 1608.51, 1454.66, 1420.51, 1252.16, 1170.89, 1130.03, 1017.39, 749.89. Purified by chromatography on silica gel, eluting with petroleum ethyl/acetate ether 11:2 (v/v);

2

3

4 5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24 25 26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

57

58 59

60

tert-butvl 4-(6'-chloro-1'-methyl-3-methylene-2'-oxo-3Hspiro[benzofuran-2,3'-indolin]-4'-yl)piperazine-1-carboxylate (6h) 71.4 mg, yield: 74%, yellow soild, mp 74°C. ¹H NMR (400 MHz, CDCl₃) δ 7.46 (d, J = 7.5 Hz, 1H), 7.31 – 7.25 (m, 1H), 7.00 (t, J = 7.5 Hz, 1H), 6.94 (d, J = 8.1 Hz, 1H), 6.76 (d, J =1.8 Hz, 1H), 6.67 (d, J = 1.8 Hz, 1H), 5.41 (s, 1H), 4.56 (s, 1H), 3.21 (s, 3H), 3.02 - 2.89 (m, 4H), 2.87 - 2.77 (m, 2H), 2.67 -2.58 (m, 2H), 1.41 (s, 9H). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 173.1, 161.7, 154.3, 152.1, 146.7, 145.0, 137.4, 131.2, 126.1, 121.8, 121.0, 120.4, 116.5, 110.7, 105.3, 101.6, 88.2, 79.6, 52.2, 43.1, 28.3, 26.8. HRMS (ESI) m/z: [M+H]⁺ Calcd for C₂₆H₂₉ClN₃O₄ 482.1841; found 482.1837. IR (cm⁻¹): 2975.25, 1739.79, 1692.77, 1597.92, 1460.81, 1422.51, 1251.12, 1170.49, 1015.81, 976.03, 748.22. Purified by chromatography on silica gel, eluting with petroleum ethyl/acetate ether 6:1 (v/v);

tert-butvl 4-(6'-bromo-1'-methyl-3-methylene-2'-oxo-3Hspiro[benzofuran-2,3'-indolin]-4'-yl)piperazine-1-carboxylate (6i) 53.7 mg, yield: 51%, yellow soild, mp 94°C. ¹H NMR (400 MHz, CDCl₃) δ 7.46 (d, J = 7.5 Hz, 1H), 7.32 – 7.25 (m, 2H), 7.01 (t, J = 7.5 Hz, 1H), 6.96 – 6.90 (m, 2H), 6.84 – 6.81 (m, 1H), 5.41 (s, 1H), 4.56 (s, 1H), 3.21 (s, 3H), 3.00 - 2.89 (m, 4H), 2.87 - 2.76 (m, 2H), 2.67 - 2.57 (m, 2H), 1.41 (s, 9H). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 173.0, 161.7, 154.3, 152.3, 146.8, 145.0, 131.2, 126.1, 125.3, 121.8, 121.1, 119.6, 110.7, 108.2, 101.7, 88.3, 79.7, 52.3, 43.7, 28.4, 26.8. HRMS (ESI) m/z: [M+H]⁺ Calcd for C₂₆H₂₉BrN₃O₄ 526.1336; found 526.1335. IR (cm⁻¹): 2975.48, 1739.96, 1692.78, 1592, 28, 1460.68, 1422.78, 1250.94, 1170.387, 1014.91, 973.10, 749.50. Purified by chromatography on silica gel, eluting with petroleum ethyl/acetate ether 6:1 (v/v);

tert-butvl 4-(1'-methyl-3-methylene-2'-oxo-6'-46 (trifluoromethyl)-3H-spiro[benzofuran-2,3'-indolin]-4'-47 vl)piperazine-1-carboxylate (6j) 48.6 mg, yield: 47%, yellow 48 oil. ¹H NMR (400 MHz, CDCl₃) δ 7.48 (d, J = 7.5 Hz, 1H), 7.33 49 -7.28 (m, 1H), 7.06 (s, 1H), 7.02 (t, J = 7.5 Hz, 1H), 6.96 (d, J50 = 8.1 Hz, 1H), 6.88 (s, 1H), 5.44 - 5.42 (m, 1H), 4.58 - 4.5551 (m, 1H), 3.26 (s, 3H), 3.03 - 2.93 (m, 4H), 2.88 - 2.79 (m, 2H),52 2.70 - 2.63 (m, 2H), 1.41 (s, 9H). ¹³C{¹H} NMR (101 MHz, CDCl₃) & 172.9, 161.8, 154.2, 151.6, 146.5, 144.9, 134.0 (q, J 53 = 32.5 Hz, 131.3, 126.0, 123.5 (q, J = 272.8 Hz), 122.0, 121.1, 54 113.6 (q, J = 3.5 Hz), 110.8, 101.7, 101.3 (q, J = 3.6 Hz), 88.0, 55 79.7, 52.2, 43.6, 43.0, 28.3, 26.8. ¹⁹F NMR (376 MHz, CDCl₃) 56 δ -62.84. HRMS (ESI) m/z: [M+H]⁺ Calcd for C₂₇H₂₉F₃N₃O₄ 516.2105; found 516.2101. IR (cm⁻¹): 2977.05, 1740.84, 1693.46, 1616.90, 1454.73, 1420.71, 1286.83, 1251.74, 1167.82, 1128.31, 1016.96, 860.20, 749.19. Purified by chromatography on silica gel, eluting with petroleum ethyl/acetate ether 6:1 (v/v);

methyl 4'-(4-(tert-butoxycarbonyl)piperazin-1-yl)-1'-methyl-3methylene-2'-oxo-3H-spiro[benzofuran-2,3'-indoline]-6'carboxylate (**6k**) 58.8 mg, yield: 58%, yellow soild, mp 64°C. ¹H NMR (400 MHz, CDCl₃) δ 7.55 – 7.52 (m, 1H), 7.47 (d, J = 7.5 Hz, 1H), 7.34 – 7.27 (m, 2H), 7.02 (t, J = 7.5 Hz, 1H), 6.96 (d, J = 8.1 Hz, 1H), 5.41 (s, 1H), 4.54 (s, 1H), 3.95 (s, 3H), 3.28 (s, 3H), 3.02 – 2.92 (m, 4H), 2.88 – 2.79 (m, 2H), 2.69 – 2.60 (m, 2H), 1.41 (s, 9H). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 173.0, 166.2, 161.9, 154.3, 151.3, 145.9, 145.2, 133.6, 131.2, 127.5, 126.1, 121.9, 121.1, 118.4, 110.8, 105.4, 101.6, 88.3, 79.6, 52.4, 28.4, 26.9. HRMS (ESI) *m*/z: [M+H]⁺ Calcd for C₂₈H₃₂N₃O₆ 506.2286; found 506.2282. IR (cm⁻¹): 2925.50, 1726.41, 1693.27, 1447.02, 1251.86, 1171.47, 1016.60, 750.59. Purified by chromatography on silica gel, eluting with petroleum ethyl/acetate ether 4:1 (v/v);

4-(1',6'-dimethyl-3-methylene-2'-oxo-3Htert-butyl spiro[benzofuran-2,3'-indolin]-4'-yl)piperazine-1-carboxylate (61) 59.2 mg, yield: 64%, yellow oil. ¹H NMR (400 MHz, $CDCl_3$) δ 7.45 (d, J = 7.5 Hz, 1H), 7.26 (t, J = 7.7 Hz, 1H), 6.98 (t, J = 7.5 Hz, 1H), 6.93 (d, J = 8.1 Hz, 1H), 6.60 (s, 1H), 6.50(s, 1H), 5.39 (s, 1H), 4.56 (s, 1H), 3.20 (s, 3H), 3.00 – 2.88 (m, 4H), 2.87 - 2.76 (m, 2H), 2.65 - 2.56 (m, 2H), 2.37 (s, 3H), 1.41 (s, 9H). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 173.5, 161.9, 154.3, 151.2, 145.7, 145.6, 142.3, 130.9, 126.3, 121.5, 120.9, 119.7, 116.8, 110.6, 105.6, 101.2, 88.7, 79.4, 52.3, 43.9, 43.1, 28.3, 26.6, 22.1. HRMS (ESI) m/z: [M+H]+ Calcd for C₂₇H₃₂N₃O₄ 462.2387; found 462.2382. IR (cm⁻¹): 2975.35, 2816.56, 1734.09, 1692.74, 1614.38, 1460.03, 1365.82, 1252.21, 1170.72, 1127.32, 1016.09, 862.53, 749.81. Purified by chromatography on silica gel, eluting with petroleum ethyl/acetate ether 5:1 (v/v);

10-butyl-10b-methyl-11-methylene-10b,11-dihydro-6Hisoindolo[2,1-a]indol-6-one (**8**) 14.0 mg, yield: 23%, yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 7.73 (t, *J* = 8.0 Hz, 2H), 7.54 – 7.49 (m, 1H), 7.47 (d, *J* = 7.6 Hz, 1H), 7.43 (t, *J* = 7.6 Hz, 1H), 7.38 (t, *J* = 7.7 Hz, 1H), 7.14 (t, *J* = 7.4 Hz, 1H), 5.59 (s, 1H), 5.40 (s, 1H), 3.09 – 2.92 (m, 2H), 1.84 (s, 3H), 1.77 – 1.71 (m, 2H), 1.58 – 1.46 (m, 2H), 1.02 (t, *J* = 7.3 Hz, 3H). ¹³C{¹H}

2

3

4

5

6

7

8 9

10 11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29 30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57 58 59

60

NMR (101 MHz, CDCl₃) δ 168.3, 148.4, 146.2, 140.3, 138.2, 134.5, 134.0, 133.1, 130.1, 129.0, 124.7, 122.8, 121.4, 117.8, 105.6, 75.8, 34.3, 33.3, 28.6, 23.0, 14.0. HRMS (ESI) *m/z*: [M+H]⁺ Calcd for C₂₁H₂₂NO 304.1692; found 304.1696. IR (cm⁻¹): 2958.48, 2928.22, 2869.18, 1712.81, 1603.45, 1465.03, 1310.00, 1139.21, 760.03. Purified by chromatography on silica gel, eluting with petroleum ethyl/acetate ether 25:1 then petroleum ethyl/dichloromethane 1:1 (v/v);

10b-methyl-11-methylene-10-(piperazin-1-yl)-10b,11-dihydro-6H-isoindolo[2,1-a]indol-6-one (9) 48.5 mg, yield: 73%, white soild, mp 232°C. ¹H NMR (400 MHz, CDCl₃) δ 7.78 – 7.71 (m, 2H), 7.70 – 7.66 (m, 1H), 7.54 – 7.46 (m, 2H), 7.37 (td, *J* = 7.7, 1.2 Hz, 1H), 7.14 (td, J = 7.6, 1.1 Hz, 1H), 6.09 (s, 1H), 5.66 (s, 1H), 3.30 - 3.13 (m, 6H), 3.07 - 2.99 (m, 2H), 1.87 (s, 3H), 1.29 - 1.22 (m, 1H). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 168.6, 149.4, 147.9, 146.2, 140.7, 134.2, 133.2, 130.2, 130.0, 129.7, 124.7, 123.3, 121.3, 117.5, 105.9, 75.5, 54.0, 45.4, 29.8. HRMS (ESI) m/z: [M+H]⁺ Calcd for C₂₁H₂₂N₃O 332.1755; found 332.1757. IR (cm⁻¹): 2925.32, 2851.85, 1709.67, 1601.36, 1464.84, 1352.72, 1301.03, 1132.96, 761.83, 734.39. Purified chromatography gel, hv on silica eluting with dichloromethane/methanol 15:1 (v/v);

10b,11-dimethyl-10-(piperidin-1-yl)-10b,11-dihydro-6Hisoindolo[2,1-a]indol-6-one (10) 44.0 mg, yield: 66%, white soild, mp 208°C. ¹H NMR (400 MHz, CDCl₃) δ 7.72 (d, *J* = 7.3 Hz, 1H), 7.63 (d, *J* = 7.7 Hz, 1H), 7.58 (d, *J* = 7.8 Hz, 1H), 7.47 (t, *J* = 7.6 Hz, 1H), 7.31 – 7.25 (m, 1H), 7.19 – 7.15 (m, 1H), 7.11 (t, *J* = 7.4 Hz, 1H), 3.36 (q, *J* = 7.1 Hz, 1H), 2.96 – 2.87 (m, 2H), 2.87 – 2.78 (m, 2H), 1.87 – 1.73 (m, 7H), 1.71 – 1.59 (m, 2H), 1.57 (s, 3H). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 167.1, 151.0, 148.0, 141.7, 138.4, 134.6, 129.7, 128.5, 127.7, 124.6, 123.8, 122.3, 116.8, 76.5, 55.6, 43.8, 26.2, 24.0, 20.6, 12.6. HRMS (ESI) *m/z*: [M+H]⁺ Calcd for C₂₂H₂₅N₂O 333.1959; found 333.1961. IR (cm⁻¹): 2932.66, 2851.99, 2800.38, 1702.99, 1480.00, 1367.12, 1309.73, 762.32. Purified by chromatography on silica gel, eluting with petroleum ethyl/acetate ether 14:1 (v/v);

((1R,4S,4aS,8bR)-1,2,3,4,4a,8b-hexahydro-1,4-

methanobiphenylen-5-yl)(3-methyl-1H-indol-1-yl)methanone (12) 21.9 mg, yield: 25%, white soild, mp 128°C. ¹H NMR (400 MHz, CDCl₃) δ 8.41 (d, J = 8.2 Hz, 1H), 7.55 – 7.51 (m, 1H), 7.47 (d, J = 7.9 Hz, 1H), 7.41 – 7.30 (m, 3H), 7.19 (d, J = 7.3 Hz, 1H), 7.09 (d, J = 1.4 Hz, 1H), 3.27 (s, 2H), 2.35 – 2.29 (m, 1H), 2.27 – 2.23 (m, 4H), 1.63 – 1.47 (m, 2H), 1.22 – 1.05 (m, 2H), 1.03 - 0.84 (m, 2H). ${}^{13}C{}^{1}H}$ NMR (101 MHz, CDCl₃) δ 166.9, 147.3, 146.0, 136.1, 131.9, 129.2, 127.7, 127.3, 125.0, 124.9, 124.4, 123.6, 118.8, 117.7, 116.5, 50.9, 50.6, 36.6, 36.5, 32.1, 27.6, 27.6, 9.6. HRMS (ESI) *m/z*: [M+H]⁺ Calcd for C₂₃H₂₂NO 437.2224; found 437.2218. IR (cm⁻¹): 3053.08, 2955.97, 2870.19, 1682.46, 1605.13, 1451.00, 1349.21, 1263.49, 1188.50, 1065.59, 769.44, 750.33. Purified by chromatography on silica gel, eluting with petroleum ethyl/acetate ether 100:1 (v/v);

ASSOCIATED CONTENT

SUPPORTING INFORMATION

Crystallographic data for compound 3a (CIF)

Crystallographic data for compound 3b (CIF)

Crystallographic data for compound 3c (CIF)

Crystallographic data for compound **4c** (CIF)

Crystallographic data for compound 6a (CIF)

Experimental procedures, compound characterization, and NMR spectra (PDF)

This material is available free of charge via the Internet at http://pubs.acs.org.

AUTHOR INFORMATION

Corresponding Author

*liangym@lzu.edu.cn

ORCID

Yong-Min Liang: 0000-0001-8280-8211

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENT

We thank the National Natural Science Foundation of China (NSF 21532001 and 21772075) for their financial support. We thank ACS Chem Worx Authoring Services for providing linguistic assistance during the preparation of this manuscript.

REFERENCES

(1) (a) Chen, C.-C.; Hsin, W.-C.; Ko, F.-N.; Huang, Y.-L.; Ou, J.-C.; Teng, C.-M. Antiplatelet Arylnaphthalide Lignans from Justicia procumbens. J. Nat. Prod. 1996, 59, 1149-1150; (b) Kuehne, M. E.; Seaton, P. J. Studies in biomimetic alkaloid syntheses. 13. Total syntheses of racemic aspidofractine, pleiocarpine, pleiocarpinine, kopsinine, N-methylkopsanone, and kopsanone. J. Org. Chem. 1985, 50, 4790-4796; (c) Magnus, P.; Brown, P. Total synthesis of (-)-kopsinilam, (-)-kopsinine, and the bis-indole alkaloids (-)norpleiomutine and (-)-pleiomutine. J. Chem. Soc., Chem. Commun. 1985, 184-186; (d) Magnus, P.; Gallagher, T.; Brown, P.; Huffman, J. C. Synthesis of (.+-.)-10,22-dioxokopsane and (.+-.)kopsanone, heptacyclic indole alkaloids. Synthetic and mechanistic studies. J. Am. Chem. Soc. 1984, 106, 2105-2114; (e) Navarro, E.; Alonso, S. J.; Trujillo, J.; Jorge, E.; Pérez, C. General Behavior, Toxicity, and Cytotoxic Activity of Elenoside, a Lignan from Justicia hyssopifolia. J. Nat. Prod. 2001, 64, 134-135; (f) Ono, M.; Kung, M.-P.; Hou, C.; Kung, H. F. Benzofuran derivatives as Aβ-aggregate-specific imaging agents for Alzheimer's disease. Nucl. Med. Biol. 2002, 29, 633-642; (g) Ruiz-Sanchis, P.; Savina, S. A.; Albericio, F.; Álvarez, M. Structure, Bioactivity and Synthesis of Natural Products with Hexahydropyrrolo[2,3-b]indole. Chem. Eur. J. 2011, 17, 1388-1408; (h) Yang, Z.; Hon, P. M.; Chui, K. Y.; Xu, Z. L.; Chang, H. M.; Lee, C. M.; Cui, Y. X.; Wong, H. N. C.; Poon, C. D.; Fung, B. M. Naturally occurring benzofuran: isolation, structure elucidation and total synthesis of 5-(3-hydroxypropyl)-7-/ / methoxy-2-(3 -methoxy-4 -hydroxyphenyl)-3benzo[b]furancarbaldehyde, a novel adenosine A1 receptor ligand isolated from salvia miltiorrhiza bunge (danshen). Tetrahedron Lett. 1991, 32, 2061-2064; (i) Zhang, H.; Boonsombat, J.; Padwa, A. Total Synthesis of (±)-Strychnine via a [4 + 2]-Cycloaddition/Rearrangement Cascade. Org. Lett. 2007, 9, 279-282.

12 (2) (a) Blackman, A. J.; Hambley, T. W.; Picker, K.; Taylor, W. C.; 13 Thirasasana, N. Hinckdentine-a: A novel alkaloid from the marine 14 bryozoan hincksinoflustra denticulata. Tetrahedron Lett. 1987, 28, 15 5561-5562; (b) Douki, K.; Ono, H.; Taniguchi, T.; Shimokawa, J.; 16 Kitamura, M.; Fukuyama, T. Enantioselective Total Synthesis of 17 (+)-Hinckdentine A via a Catalytic Dearomatization Approach. J. 18 Am. Chem. Soc. 2016, 138, 14578-14581; (c) Higuchi, K.; Sato, Y.; 19 Tsuchimochi, M.; Sugiura, K.; Hatori, M.; Kawasaki, T. First Total 20 Synthesis of Hinckdentine A. Org. Lett. 2009, 11, 197-199; (d) Lee, 21 J.; Panek, J. S. Total Synthesis of (+)-Isatisine A. Org. Lett. 2011, 13, 502-505; (e) Liu, J.-F.; Jiang, Z.-Y.; Wang, R.-R.; Zheng, Y.-T.; 22 23 Chen, J.-J.; Zhang, X.-M.; Ma, Y.-B. Isatisine A, a Novel Alkaloid with an Unprecedented Skeleton from Leaves of Isatis indigotica. 24 Org. Lett. 2007, 9, 4127-4129; (f) Zhang, X.; Mu, T.; Zhan, F.; Ma, 25 L.; Liang, G. Total Synthesis of (-)-Isatisine A. Angew. Chem. Int. 26 Ed. 2011, 50, 6164-6166. 27

(3) (a) Iyengar, R.; Schildknegt, K.; Morton, M.; Aubé, J. Revisiting
a Classic Approach to the Aspidosperma Alkaloids: An
Intramolecular Schmidt Reaction Mediated Synthesis of (+)Aspidospermidine. J. Org. Chem. 2005, 70, 10645-10652; (b)
Marino, J. P.; Rubio, M. B.; Cao, G.; de Dios, A. Total Synthesis of
(+)-Aspidospermidine: A New Strategy for the Enantiospecific
Synthesis of Aspidosperma Alkaloids. J. Am. Chem. Soc. 2002,
124, 13398-13399.

35 (4) (a) Han, J.; Wang, J.; Shen, K.; Wang, G.; Li, Y.; Zhao, D. 36 Synthesis of novel photochromic spiropyran dyes containing 37 quaternary ammonium salt or cinnamoyl moiety and their properties as photoinitiators. J. Appl. Polym. Sci. 2012, 126, 30-38 37; (b) Fan, J.; Bao, B.; Wang, Z.; Xu, R.; Wang, W.; Yu, D. High tri-39 stimulus response photochromic cotton fabrics based on 40 spiropyran dye by thiol-ene click chemistry. Cellulose 2020, 27, 41 493-510. 42

(5) (a) Grandner, J. M.; Cacho, R. A.; Tang, Y.; Houk, K. N.
Mechanism of the P450-Catalyzed Oxidative Cyclization in the Biosynthesis of Griseofulvin. ACS Catal. 2016, 6, 4506-4511; (b) Taub, D.; Kuo, C. H.; Slates, H. L.; Wendler, N. L. A total synthesis of griseofulvin and its optical antipode. Tetrahedron 1963, 19, 1-17.

48 (6) (a) Gao, S.; Yang, C.; Huang, Y.; Zhao, L.; Wu, X.; Yao, H.; Lin, A. 49 Pd(II)-catalyzed intramolecular oxidative Heck dearomative 50 reaction: approach to thiazole-fused pyrrolidinones with a C2-51 azaquarternary center. Org. Biomol. Chem. 2016, 14, 840-843; (b) 52 Liang, R. X.; Xu, D. Y.; Yang, F. M.; Jia, Y. X. A Pd-catalyzed domino 53 Larock annulation/dearomative Heck reaction. Chem. Commun. 54 2019, 55, 7711-7714; (c) Shen, C.; Liu, R. R.; Fan, R. J.; Li, Y. L.; Xu, T. F.; Gao, J. R.; Jia, Y. X. Enantioselective Arylative 55 Dearomatization of Indoles via Pd-Catalyzed Intramolecular 56 Reductive Heck Reactions. J. Am. Chem. Soc. 2015, 137, 4936-57

4939; (d) Wang, H.; Wu, X. F. Palladium-Catalyzed Carbonylative Dearomatization of Indoles. Org. Lett. 2019, 21, 5264-5268; (e) Wu, K. J.; Dai, L. X.; You, S. L. Palladium(0)-catalyzed intramolecular dearomative arylation of pyrroles. Chem. Commun. 2013, 49, 8620-8622; (f) Wu, K.-J.; Dai, L.-X.; You, S.-L. Palladium(0)-Catalyzed Dearomative Arylation of Indoles: Convenient Access to Spiroindolenine Derivatives. Org. Lett. 2012, 14, 3772-3775; (g) Bai, L.; Liu, J.; Hu, W.; Li, K.; Wang, Y.; Х. Palladium/Norbornene-Catalyzed Luan. C-H Alkylation/Alkyne Insertion/Indole Dearomatization Domino Reaction: Assembly of Spiroindolenine-Containing Pentacyclic Frameworks. Angew. Chem. 2018, 130, 5245-5249; (h) Nan, J.; Yuan, Y.; Bai, L.; Liu, J.; Luan, X. Highly Chemoselective Construction of Spiro[4,5]decane-Embedded Polycyclic Scaffolds by a Palladium/Norbornene-Catalyzed C-H Activation/Arene Dearomatization Reaction. Org. Lett. 2018, 20, 7731-7734; (i) Zhou, Y.; Li, D.; Tang, S.; Sun, H.; Huang, J.; Zhu, Q. PhI(OAc)2mediated dearomative C - N coupling: facile construction of the spiro[indoline-3,2 ' -pyrrolidine] skeleton. Org. Biomol. Chem. **2018**, *16*, 2039-2042.

(7) (a) Bai, L.; Liu, J.; Hu, W.; Li, K.; Wang, Y.; Luan, X. Palladium/Norbornene-Catalyzed C-H Alkylation/Alkyne Insertion/Indole Dearomatization Domino Reaction: Assembly of Spiroindolenine-Containing Pentacyclic Frameworks. Angew. Chem. Int. Ed. 2018, 57, 5151-5155; (b) Fan, L.; Liu, J.; Bai, L.; Wang, Y.; Luan, X. Rapid Assembly of Diversely Functionalized Spiroindenes by a Three-Component Palladium-Catalyzed C-H Amination/Phenol Dearomatization Domino Reaction. Angew. Chem. 2017, 129, 14445-14449; (c) Li, X.; Zhou, B.; Yang, R. Z.; Yang, F. M.; Liang, R. X.; Liu, R. R.; Jia, Y. X. Palladium-Catalyzed Enantioselective Intramolecular Dearomative Heck Reaction. J. Am. Chem. Soc. 2018, 140, 13945-13951; (d) Zhao, L.; Li, Z.; Chang, L.; Xu, J.; Yao, H.; Wu, X. Efficient Construction of Fused Indolines with a 2-Quaternary Center via an Intramolecular Heck Reaction with a Low Catalyst Loading. Org. Lett. 2012, 14, 2066-2069; (e) Tang, S.; Wang, J.; Xiong, Z.; Xie, Z.; Li, D.; Huang, J.; Zhu, Q. Palladium-Catalyzed Imidoylative Cyclization of Tryptophan-Derived Isocyanides: Access to β-Carbolines. Org. Lett. 2017, 19, 5577-5580.

(8) (a) Chen, S.; Wu, X. X.; Wang, J.; Hao, X. H.; Xia, Y.; Shen, Y.; Jing, H.; Liang, Y. M. Palladium-Catalyzed Intramolecular Dearomatization of Indoles via Decarboxylative Alkynyl Termination. Org. Lett. 2016, 18, 4016-4019; (b) Liu, R. R.; Wang, Y. G.; Li, Y. L.; Huang, B. B.; Liang, R. X.; Jia, Y. X. Enantioselective Dearomative Difunctionalization of Indoles by Palladium-Catalyzed Heck/Sonogashira Sequence. Angew. Chem. Int. Ed. 2017, 56, 7475-7478; (c) Liu, R. R.; Xu, T. F.; Wang, Y. G.; Xiang, B.; Gao, J. R.; Jia, Y. X. Palladium-catalyzed dearomative arylalkynylation of indoles. Chem. Commun. 2016, 52, 13664-13667; (d) Petrone, D. A.; Kondo, M.; Zeidan, N.; Lautens, M. Pd(0)-Catalyzed Dearomative Diarylation of Indoles. Chem. Eur. J. 2016, 22, 5684-5691; (e) Petrone, D. A.; Yen, A.; Zeidan, N.; Lautens, M. Dearomative Indole Bisfunctionalization via a Diastereoselective Palladium-Catalyzed Arylcyanation. Org. Lett. 2015, 17, 4838-4841; (f) Wu, X.-X.; Shen, Y.; Chen, W.-L.; Chen, S.; Xu, P.-F.; Liang, Y.-M. Palladium-catalyzed dearomative cyclization by a norbornene-mediated sequence: a route to spiroindolenine derivatives. Chem. Commun. 2015, 51, 16798-16801; (g) Wang, H.; Wu, X.-F. Palladium-Catalyzed Carbonylative Dearomatization of Indoles. Org. Lett. 2019, 21, 5264-5268.

59 60

58

1

2

3

4

5

6

7

8

9

10

60

(9) (a) Adams, K.; Ball, A. K.; Birkett, J.; Brown, L.; Chappell, B.; Gill, 1 D. M.; Lo, P. K.; Patmore, N. J.; Rice, C. R.; Ryan, J.; Raubo, P.; 2 Sweeney, J. B. An iron-catalysed C-C bond-forming 3 spirocyclization cascade providing sustainable access to new 3D heterocyclic frameworks. Nat. Chem. 2017, 9, 396-401; (b) Liu, J.; 4 Peng, H.; Lu, L.; Xu, X.; Jiang, H.; Yin, B. Diastereospecific and 5 Access Dispirooxindoles Enantioselective to from 6 Furfurylcyclobutanols by Means of a Pd-Catalyzed Arylative 7 Dearomatization/Ring Expansion Cascade. Org. Lett. 2016, 18, 8 6440-6443; (c) Liu, J.; Peng, H.; Yang, Y.; Jiang, H.; Yin, B. 9 Regioselective and Stereoselective Pd-Catalyzed Intramolecular 10 Arylation of Furans: Access to Spirooxindoles and 5H-Furo[2,3-11 c]quinolin-4-ones. J. Org. Chem. 2016, 81, 9695-9706; (d) Liu, J.; 12 Xu, X.; Li, J.; Liu, B.; Jiang, H.; Yin, B. Palladium-catalyzed 13 dearomatizing 2,5-alkoxyarylation of furan rings: 14 diastereospecific access to spirooxindoles. Chem. Commun. 15 2016, 52, 9550-9553; (e) Yamaguchi, T.; Nakagawa, T.; Ozeki, T.; 16 Fukuda, M.; Morimoto, M.; Takami, S. Thermal decomposition 17 1,2-bis(2-methyl-1-benzofuran-3product of 18 yl)perfluorocyclopentene. Tetrahedron Lett. 2017, 58, 4447-4449; 19 (f) Yin, B.; Cai, C.; Zeng, G.; Zhang, R.; Li, X.; Jiang, H. A Novel Entry 20 to Functionalized Benzofurans and Indoles via Palladium(0)-21 Catalyzed Arylative Dearomatization of Furans. Org. Lett. 2012, 14, 1098-1101; (g) Yin, B.-L.; Lai, J.-Q.; Zhang, Z.-R.; Jiang, H.-F. A 22 23 Novel Entry to Spirofurooxindoles Involving Tandem Dearomatization of Furan Ring and Intramolecular Friedel-Crafts 24 Reaction. Adv. Synth. Catal. 2011, 353, 1961-1965. 25

- (10) (a) Catellani, M.; Frignani, F.; Rangoni, A. A complex catalytic 26 cycle leading to a regioselective synthesis of o,o'-disubstituted 27 vinylarenes. Angew. Chem. Int. Ed. 1997, 36, 119-122; (b) Catellani, 28 M.; Motti, E.; Della Ca', N. Catalytic Sequential Reactions Involving 29 Palladacycle-Directed Aryl Coupling Steps. Acc. Chem. Res. 2008, 30 41, 1512-1522; (c) Lautens, M.; Piquel, S. A new route to fused 31 aromatic compounds by using a palladium-catalyzed alkylation -32 Alkenylation sequence. Angew. Chem. Int. Ed. 2000, 39, 1045-33 1046; (d) Wang, J.; Dong, G. Palladium/Norbornene Cooperative 34 Catalysis. Chem. Rev. 2019, 119, 7478-7528.
- 35 (11) (a) Catellani, M.; Motti, E.; Baratta, S. A Novel Palladium-36 Catalyzed Synthesis of Phenanthrenes from ortho-Substituted 37 Aryl Iodides and Diphenyl- or Alkylphenylacetylenes. Org. Lett. 2001, 3, 3611-3614; (b) Chen, Z. Y.; Ye, C. Q.; Zhu, H.; Zeng, X. P.; 38 Yuan, J. J. Palladium/norbornene-mediated tandem C-H 39 amination/C-I alkenylation reaction of aryl iodides with 40 secondary cyclic O-benzoyl hydroxylamines and activated 41 terminal olefins. Chem. Eur. J. 2014, 20, 4237-4241; (c) Deledda, 42 S.; Motti, E.; Catellani, M. Palladium-catalysed synthesis of 43 nonsymmetrically disubstituted-1,1 ' -biphenyls from o-44 substituted aryl iodides through aryl coupling and delayed 45 hydrogenolysis. Can. J. Chem. 2005, 83, 741-747; (d) Ding, L.; Sui, 46 X.; Gu, Z. Enantioselective Synthesis of Biaryl Atropisomers via 47 Pd/Norbornene-Catalyzed Three-Component Cross-Couplings. 48 ACS Catal. 2018, 8, 5630-5635; (e) Dong, Z.; Lu, G.; Wang, J.; Liu, 49 P.; Dong, G. Modular ipso/ ortho Difunctionalization of Aryl 50 Bromides via Palladium/Norbornene Cooperative Catalysis. J. Am. 51 Chem. Soc. 2018, 140, 8551-8562; (f) Fan, X.; Gu, Z. 52 Palladium/Norbornene-Catalyzed Ortho-Acylation and Ipso-53 Selenation via C(O)-Se Bond Cleavage: Synthesis of alpha-54 Carbonyl Selane. Org. Lett. 2018, 20, 1187-1190; (g) Martins, A.; Lautens, M. Aromatic ortho-Benzylation Reveals an Unexpected 55 Reductant. Org. Lett. 2008, 10, 5095-5097; (h) Sun, F.; Li, M.; He, 56 C.; Wang, B.; Li, B.; Sui, X.; Gu, Z. Cleavage of the C(O)-S Bond of 57

Thioesters by Palladium/Norbornene/Copper Cooperative Catalysis: An Efficient Synthesis of 2-(Arylthio)aryl Ketones. *J. Am. Chem. Soc.* **2016**, *138*, 7456-7459; (i) Ye, J.; Lautens, M. Palladium-catalysed norbornene-mediated C-H functionalization of arenes. *Nat. Chem.* **2015**, *7*, 863-870; (j) Zhou, P.-X.; Ye, Y.-Y.; Liu, C.; Zhao, L.-B.; Hou, J.-Y.; Chen, D.-Q.; Tang, Q.; Wang, A.-Q.; Zhang, J.-Y.; Huang, Q.-X.; Xu, P.-F.; Liang, Y.-M. Palladium-Catalyzed Acylation/Alkenylation of Aryl Iodide: A Domino Approach Based on the Catellani–Lautens Reaction. *ACS Catal.* **2015**, *5*, 4927-4931.

(12) Dong, Z.; Dong, G. Ortho vs ipso: site-selective Pd and norbornene-catalyzed arene C-H amination using aryl halides. *J. Am. Chem. Soc.* **2013**, *135*, 18350-18353.

(13) (a) Brackmann, F.; de Meijere, A. Natural Occurrence, Syntheses, and Applications of Cyclopropyl-Group-Containing α-Amino Acids. 2. 3,4- and 4,5-Methanoamino Acids. Chem. Rev. 2007, 107, 4538-4583; (b) Chen, Z.; Liu, J.; Pei, H.; Liu, W.; Chen, Y.; Wu, J.; Li, W.; Li, Y. Directed Amination of Aryl Methyl Ethers Mediated by Ti(NMe2)4 at Room Temperature. Org. Lett. 2015, 17, 3406-3409; (c) Ruiz-Castillo, P.; Buchwald, S. L. Applications of Palladium-Catalyzed C-N Cross-Coupling Reactions. Chem. Rev. 2016, 116, 12564-12649; (d) Zhang, B. S.; Li, Y.; Zhang, Z.; An, Y.; Wen, Y. H.; Gou, X. Y.; Quan, S. Q.; Wang, X. G.; Liang, Y. M. Synthesis of C4-Aminated Indoles via a Catellani and Retro-Diels-Alder Strategy. J. Am. Chem. Soc. 2019, 141, 9731-9738; (e) Zhang, B.-S.; Li, Y.; An, Y.; Zhang, Z.; Liu, C.; Wang, X.-G.; Liang, Y.-M. Carboxylate Ligand-Exchanged Amination/C(sp3)-H Arylation Reaction via Pd/Norbornene Cooperative Catalysis. ACS Catal. 2018, 8, 11827-11833.

(14) (a) Jing, X.; Yu, F.; Lin, W. A PET-based lysosome-targeted turn-on fluorescent probe for the detection of H2S and its bioimaging application in living cells and zebrafish. *New J. Chem.* **2019**, *43*, 16796-16800; (b) Sarkar, A.; Chakraborty, S.; Lohar, S.; Ahmmed, E.; Saha, N. C.; Mandal, S. K.; Dhara, K.; Chattopadhyay, P. A Lysosome-Targetable Fluorescence Sensor for Ultrasensitive Detection of Hg(2+) in Living Cells and Real Samples. *Chem. Res. Toxicol.* **2019**, *32*, 1144-1150; (c) Tang, Y.; Kong, X.; Liu, Z. R.; Xu, A.; Lin, W. Lysosome-Targeted Turn-On Fluorescent Probe for Endogenous Formaldehyde in Living Cells. *Anal. Chem.* **2016**, *88*, 9359-9363; (d) Yu, H.; Xiao, Y.; Jin, L. A lysosome-targetable and two-photon fluorescent probe for monitoring endogenous and exogenous nitric oxide in living cells. *J. Am. Chem. Soc.* **2012**, *134*, 17486-17489.

(15) (a) Bai, P. Y.; Qin, S. S.; Chu, W. C.; Yang, Y.; Cui, D. Y.; Hua, Y. G.; Yang, Q. Q.; Zhang, E. Synthesis and antibacterial bioactivities of cationic deacetyl linezolid amphiphiles. Eur. J. Med. Chem. 2018, 155, 925-945; (b) Chuang, Y. C.; Lin, H. Y.; Chen, P. Y.; Lin, C. Y.; Wang, J. T.; Chang, S. C. Daptomycin versus linezolid for the treatment of vancomycin-resistant enterococcal bacteraemia: implications of daptomycin dose. Clin. Microbiol. Infec. 2016, 22, 890 e1-890 e7; (c) López-Hernández, I.; Delgado Valverde, M.; Batista Díaz, N.; Pascual, A. First report of linezolid dependence in methicillin-resistant Staphylococcus aureus. Clin. Microbiol. Infec. 2015, 21, 650.e1-650.e4; (d) Mohammed, S. A.; Eissa, M. S.; Ahmed, H. M. Simple protein precipitation extraction technique followed by validated chromatographic method for linezolid analysis in real human plasma samples to study its pharmacokinetics. J. Chromatogr. B 2017, 1043, 235-240; (e) Yin, L.; Feng, Y.; Tong, J.; Guo, Z.; Zhang, Y.; Zhang, Q.; Sun, Y.; Fawcett, J. P.; Gu, J. Ultrahigh-throughput absolute quantitative analysis of linezolid in human plasma by direct analysis in real time mass spectrometry without chromatographic separation and its application to a pharmacokinetic study. *Anal. Bionanl. Chem.* **2019**, *411*, 5139-5148.

2 3 (16) (a) Maskrey, T.; Kristufek, T.; LaPorte, M.; Nyalapatla, P.; Wipf, P. A New Synthesis of Gefitinib. Synlett 2018, 30, 471-476; (b) 4 Sharma, M. J.; Kumar, M. S.; Murahari, M.; Mayur, Y. C. Synthesis 5 of novel gefitinib-based derivatives and their anticancer activity. 6 Arch. Pharm. 2019, 352, 1800381; (c) Sun, H.; Wu, Y.; Pan, Z.; Yu, 7 D.; Chen, P.; Zhang, X.; Wu, H.; Zhang, X.; An, C.; Chen, Y.; Qin, T.; 8 Lei, X.; Yuan, C.; Zhang, S.; Zou, W.; Ouyang, H. Gefitinib for 9 Epidermal Growth Factor Receptor Activated Osteoarthritis 10 Subpopulation Treatment. EBioMedicine 2018, 32, 223-233; (d) 11 Tiwari, H.; Karki, N.; Pal, M.; Basak, S.; Verma, R. K.; Bal, R.; Kandpal, 12 N. D.; Bisht, G.; Sahoo, N. G. Functionalized graphene oxide as a 13 nanocarrier for dual drug delivery applications: The synergistic 14 effect of quercetin and gefitinib against ovarian cancer cells. 15 Colloid. Surface., B. 2019, 178, 452-459; (e) Yang, J.; Wu, W.; Wen, 16 J.; Ye, H.; Luo, H.; Bai, P.; Tang, M.; Wang, F.; Zheng, L.; Yang, S.; Li, 17 W.; Peng, A.; Yang, L.; Wan, L.; Chen, L. Liposomal honokiol 18 induced lysosomal degradation of Hsp90 client proteins and 19 protective autophagy in both gefitinib-sensitive and gefitinib-20 resistant NSCLC cells. Biomaterials 2017, 141, 188-198.

21 (17) (a) Cao, N.; Chen, H.; Bai, Y.; Yang, X.; Xu, W.; Hao, W.; Zhou, Y.; Chai, J.; Wu, Y.; Wang, Z.; Yin, X.; Wang, L.; Wang, W.; Liu, H.; 22 23 Fu, M. L. X. beta2-adrenergic receptor autoantibodies alleviated myocardial damage induced by beta1-adrenergic receptor 24 autoantibodies in heart failure. Cardiovasc. Res. 2018, 114, 1487-25 1498; (b) Christopher, J. A.; Brown, J.; Dore, A. S.; Errey, J. C.; Koglin, 26 M.; Marshall, F. H.; Myszka, D. G.; Rich, R. L.; Tate, C. G.; Tehan, B.; 27 Warne, T.; Congreve, M. Biophysical fragment screening of the 28 beta1-adrenergic receptor: identification of high affinity 29 arylpiperazine leads using structure-based drug design. J. Med. 30 Chem. 2013, 56, 3446-3455; (c) Engelhardt, S.; Hein, L.; Wiesmann, 31 F.; Lohse, M. J. Progressive hypertrophy and heart failure in 32 beta(1)-adrenergic receptor transgenic mice. P. Natl. Acad. Sci. 33 Usa. 1999, 96, 7059-7064; (d) Mewshaw, R. E.; Verwijs, A.; Shi, X.; 34 McGaughey, G. B.; Nelson, J. A.; Mazandarani, H.; Brennan, J. A.; 35 Marquis, K. L.; Coupet, J.; Andree, T. H. New generation 36 dopaminergic agents. 5. heterocyclic bioisosteres that exploit the 37 3-OH-N1-phenylpiperazine dopaminergic template. Bioorg. Med. Chem. Lett. 1998, 8, 2675-2680. 38

(18) (a) Alvarez-Lerma, F.; Grau, S.; Alvarez-Beltran, M. 39 Levofloxacin in the treatment of ventilator-associated 40 pneumonia. Clin. Microbiol. Infec. 2006, 12, 81-92; (b) 41 Ameeduzzafar; Imam, S. S.; Abbas Bukhari, S. N.; Ahmad, J.; Ali, A. 42 Formulation and optimization of levofloxacin loaded chitosan 43 nanoparticle for ocular delivery: In-vitro characterization, ocular 44 tolerance and antibacterial activity. Int. J. Biol. Macromol. 2018, 45 108, 650-659; (c) Bower, J. F.; Szeto, P.; Gallagher, T. Enantiopure 46 1,4-benzoxazines via 1,2-cyclic sulfamidates. Synthesis of 47 levofloxacin. Org. Lett. 2007, 9, 3283-3286; (d) Doan, V. P.; Yeh, J. 48 C.; Gulbis, A. M.; Aitken, S. L.; Ariza-Heredia, E.; Ahmed, S. 49 Levofloxacin versus Cefpodoxime for Antibacterial Prophylaxis in 50 Allogeneic Stem Cell Transplantation. Biol. Blood. Marrow. 2019, 51 25, 1637-1641; (e) Foroumadi, A.; Emami, S.; Mansouri, S.; 52 Javidnia, A.; Saeid-Adeli, N.; Shirazi, F. H.; Shafiee, A. Synthesis 53 and antibacterial activity of levofloxacin derivatives with certain bulky residues on piperazine ring. Eur. J. Med. Chem. 2007, 42, 54 985-992; (f) Lee, B. T.; Gabardi, S.; Grafals, M.; Hofmann, R. M.; 55 Akalin, E.; Aljanabi, A.; Mandelbrot, D. A.; Adey, D. B.; Heher, E.; 56 Fan, P. Y.; Conte, S.; Dyer-Ward, C.; Chandraker, A. Efficacy of 57

levofloxacin in the treatment of BK viremia: a multicenter, double-blinded, randomized, placebo-controlled trial. *Clin. J. Am. Soc. Nephr.* **2014**, *9*, 583-589; (g) Pradeep, A. R.; Singh, S. P.; Martande, S. S.; Naik, S. B.; N, P.; Kalra, N.; Suke, D. K. Clinical and microbiological effects of levofloxacin in the treatment of chronic periodontitis: a randomized, placebo-controlled clinical trial. *J. Invest. Clin. Dent.* **2015**, *6*, 170-178.

(19) (a) Kumar, G. P.; Phani, A. R.; Prasad, R. G.; Sanganal, J. S.; Manali, N.; Gupta, R.; Rashmi, N.; Prabhakara, G. S.; Salins, C. P.; Sandeep, K.; Raju, D. B. Polyvinylpyrrolidone oral films of enrofloxacin: film characterization and drug release. *Int. J. Pharm.* **2014**, *471*, 146-152; (b) Mourand, G.; Jouy, E.; Bougeard, S.; Dheilly, A.; Kerouanton, A.; Zeitouni, S.; Kempf, I. Experimental study of the impact of antimicrobial treatments on Campylobacter, Enterococcus and PCR-capillary electrophoresis single-strand conformation polymorphism profiles of the gut microbiota of chickens. *J. Med. Microbiol.* **2014**, *63*, 1552-1560; (c) Overby, D. R.; Bertrand, J.; Tektas, O.-Y.; Boussommier-Calleja, A.; Schicht, M.; Ethier, C. R.; Woodward, D. F.; Stamer, W. D.; Luetjen-Drecoll, E. Ultrastructural Changes Associated With Dexamethasone-Induced Ocular Hypertension in Mice. *Invest. Ophth. Vis. Sci.* **2014**, *55*, 4922-4933.

(20) (a) Fisher, M. J.; Backer, R. T.; Husain, S.; Hsiung, H. M.; Mullaney, J. T.; O'Brian, T. P.; Ornstein, P. L.; Rothhaar, R. R.; Zgombick, J. M.; Briner, K. Privileged structure-based ligands for melanocortin receptors - tetrahydroquinolines, indoles, and aminotetralines. *Bioorg. Med. Chem. Lett.* **2005**, *15*, 4459-4462; (b) Tominaga, M.; Yo, E.; Ogawa, H.; Yamashita, S.; Yabuuchi, Y.; Nakagawa, K. Studies on Positive Inotropic Agents. I. Synthesis of 3, 4-Dihydro-6-[4-(3, 4-dimethoxybenzoyl)-1-piperazinyl]-2 (1H)-quinolinone and Related Compounds. *Chem. Pharm. Bull.* **1984**, *32*, 2100-2110.

(21) Hoffman, T. J.; Carreira, E. M. Catalytic Asymmetric Intramolecular Hydroacylation with Rhodium/Phosphoramidite– Alkene Ligand Complexes. *Angew. Chem. Int. Ed.* **2011**, *50*, 10670-10674.

(22) Cano, R.; Yus, M.; Ramón, D. J. Environmentally friendly and regioselective C3-alkylation of indoles with alcohols through a hydrogen autotransfer strategy. *Tetrahedron Lett.* **2013**, *54*, 3394-3397.

(23) Fan, L.; Liu, J.; Bai, L.; Wang, Y.; Luan, X. Rapid Assembly of Diversely Functionalized Spiroindenes by a Three-Component Palladium-Catalyzed C-H Amination/Phenol Dearomatization Domino Reaction. *Angew. Chem. Int. Ed.* **2017**, *56*, 14257-14261. (24) Whyte, A.; Olson, M. E.; Lautens, M. Palladium-Catalyzed, Norbornene-Mediated, ortho-Amination ipso-Amidation: Sequential C-N Bond Formation. *Org. Lett.* **2018**, *20*, 345-348.

(25) CCDC 1966190, 1966189, 1966188, 1966191 and 1966187 (**3a**, **3b**, **3c**, **4c** and **6a**) contain the supplementary crystallographic data for this paper. These data can be obtained free of charge from the cambridge crystallographic data centre.

58