by Peter Grundt^a), Fernando Martinez-Bermejo^b), John W. Lewis^a), Stephen M. Husbands*^a)

^a) Department of Pharmacy and Pharmacology, University of Bath, Bath, BA27AY, UK ^b) School of Chemistry, University of Bristol, Bristol, BS81TS, UK

In a limited number of cases, 14-alkenylcodeinones (=14-alkenyl-7,8-didehydro-4,5-epoxy-3-methoxy-17methylmorphinan-6-ones) can be obtained by formic acid treatment of thevinols (=4,5-epoxy-3,6-dimethoxy- α ,17-dimethyl-6,14-ethenomorphinan-7-methanols), but under these conditions the equivalent 14-alkenyl-7,8-dihydrocodeinones undergo further rearrangement (*Scheme 1* and *Table*). Introduction of a 5 β -methyl group allows the 18,19-dihydrothevinol precursors to be rearranged to 14-alkenyl-7,8-dihydrocodeinones, but similar manipulation of the vinylogues of these thevinols is generally unable to prevent full rearrangement to 5,14-bridged thebainone derivatives.

Introduction. – The indolomorphinan-3,14-diol structure **1** provided the first nonpeptide δ -selective opioid receptor antagonist naltrindole (**1a**) and the selective δ -partial agonist oxymorphindole (**1b**) [1][2]. Following investigations of 14-(alkylamino) and 14-(acylamino) derivatives [3], our interest in 14-substituted indolomorphinan-3-ols turned to 14-alkyl derivatives, of which only one **6a** has been reported (**6a** = NIH 10889); it had high affinity for δ -opioid receptors and good selectivity for δ over μ and κ [4].

The thevinols (=4,5-epoxy-3,6-dimethoxy- α ,17-dimethyl-6,14-ethenomorphinan-7methanols) **2**, orvinols **3**, and their 18,19-dihydro analogues **4** and **5** are important series of opioid ligands from which etorphine (**3a**), a veterinary immobilizing agent, and buprenorphine (**5b**), a clinical analgesic and agent for treatment of opioid abuse, have been developed [5][6]. The 14-alkenylcodeinones (=14-alkenyl-7,8-didehydro-4,5epoxy-3-methoxy-17-methylmorphinan-6-ones) **9** (see below, *Scheme 1*), which were among several sets of acid-catalyzed-rearrangement products of the thevinols **7** [7][8], provided the precursor **9c** for **6a** and also the precursor **9a** for the 3-methoxyindolomorphinan **6b** [9]. Though other syntheses of 14-alkyl-7,8-dihydrocodeinones have been reported [10][11], they are long and low-yielding. From the reaction of thevinols with formic acid, only three alkenylcodeinones, **9a**-**c**, have been reported [7][12], so that opportunities for the synthesis of 14-alkylindolomorphinans have been limited.

The major problem limiting the availability of stable 14-alkenylcodeinones is that they are prone to further acid-catalyzed rearrangement, which, in the case of the 7,8dihydrocodeinone analogues **15** (see *Scheme 1*), prohibits their isolation; the products of formic acid treatment of the dihydrothevinols **13b,c** were 5,14-bridged dihydrothebainone derivatives **17b,c** (see *Scheme 1*) [7]. We hypothesized that introduction of a 5β -methyl group into the dihydrothevinols such as in **14a** – **c** should suppress cyclization

of the 14-alkenyl side chain to C(5) and allow the isolation of the 14-alkenyldihydrocode inones 16a - c rather than 18a - c (*Scheme 1*).

The only other the vinol to have produced an alkenylcode inone structure is vinylthe vinol **7d**, giving in this case the 14-dienylcode inone **9d** on brief heating with formic acid. This base was rapidly converted in cold 2N HCl to the furanocodide **19a** and, in hot HCl solution, to the bridged the bain one derivative **11d** [13] (*Scheme 1*). It was, thus, of interest to prepare further examples of the vinylthe vinols, particularly the secondary alcohol analogue, in the hope of giving access to a range of 14-

a R¹ = H, R² = Ph; b R¹ = Me, R² = Ph; c R¹ = R² = Me; d R¹ = Me, R² = CH₂=CH; e R¹ = H, R² = CH₂=CH; f R¹ = H, R² = MeCH=CH; g R¹ = H, R² = Me₂C=CH; h R¹ = H, R² = PhCH=CH; i R¹ = Ph, R² = H

2288

^a) See Table for obtained products.

dienylcodeinones and, thence, to 14-alkyldihydrocodeinones. Again, for this purpose, 14β -methyl-substituted thevinols **8** should give precursors **10** rather than the bridged **12** (*Scheme 1*).

Results and Discussion. - Scheme 2 shows the chemistry used for the preparation of the new the vinols and the vinol analogues. The starting materials were the baine $((5\alpha)$ -6,7,8,14-tetradehydro-4,5-epoxy-3,6-dimethoxy-17-methylmorphinan; **20**) and 5β methylthebaine (21) [14], which were treated with prop-2-enal to give the Diels-Alder adducts 22 ($R^1 = H$) and 23 ($R^1 = H$). Analogous Diels-Alder reactions with methyl vinyl ketone afforded 22 ($R^1 = Me$) and 23 ($R^1 = Me$) [15]. Adducts 22 ($R^1 =$ H) and 23 ($R^1 = H$, Me) were hydrogenated to give the corresponding 18,19-dihydro derivatives 24. Reaction of the vinone 22 ($R^1 = Me$) with Grignard reagents (R^2MgBr) was shown by *Bentley et al.* [16] to be stereoselective, giving single diastereoisomers 7 $(R^1 = Me)$. Though similar stereoselectivity was claimed for the formation of the secondary the vinols 7 ($R^1 = H$) from the *Grignard* reaction with aldehyde 22 ($R^1 = H$), no experimental details were given [16]. In our hands, the reported general procedure with 24 $(R^1 = R^3 = H)$ and PhMgBr gave approximately equal quantities of the diastereoisomers 13a ($R^1 = R^3 = H, R^2 = Ph$) and 13i ($R^1 = Ph, R^2 = R^3 = H$). However, we found that, by conducting the reaction of 23 or 24 at -78° , single diastereoisomers of the secondary alcohols, *i.e.* **7e**-**g**, **8a**, **c**, **f**, **g**, and **14a**, **c** were produced in moderate to very good yields (*Table*). Their configurations at the exocyclic $C(\alpha)$ were defined by analogy with the previous work [16]. The benzylidene-substituted secondary alcohols 7h and 8h were prepared from thevinones 22 and 23 (Scheme 3) by base-catalyzed condensation with benzaldehyde via the benzylidene ketones 25 and 26, respectively, which were reduced by L-Selectride.

In the present investigation of the action of formic acid on the thevinols and analogues, the standard conditions used were to reflux the substrate with anhydrous formic acid until all had been transformed (TLC monitoring). This reaction time was eventually standardized as four hours. In the case of the secondary vinyl alcohol **7e**, the

i) CH2=CHCHO or CH2=CHC(O)Me. ii) H2, Pd/C. iii) R2MgBr or PhLi.

Table. Yields of Thevinols 7, 8, and 14 from Thevinals and of Products from Their Treatment with Formic Acid

Thevinols ^a)				Yield [%]	Product(s) ^b)				Yield [%]
	\mathbb{R}^1	R ²	R ³			\mathbb{R}^1	\mathbb{R}^2	R ³	
7e	Н	CH ₂ =CH	Н	56	27a	CH ₂ =CH	-	_	61
7f	Н	MeCH=CH	Н	84	11f (19b)	Н	MeCH=CH	Н	34 (29)
7g	Н	$Me_2C = CH$	Н	81	11g	Н	$Me_2C = CH$	Н	59
7h	Н	PhCH=CH	Н	^c)	11ĥ	Н	PhCH=CH	Н	71
8f	Н	MeCH=CH	Me	75	10f	Н	MeCH=CH	Me	43
8g	Н	$Me_2C = CH$	Me	81	12g	Н	$Me_2C = CH$	Me	63
8h	Н	PhCH=CH	Me	c)	12h (10h)	Н	PhCH=CH	Me	42 (12)
8a	Н	Ph	Me	91	10a	Н	Ph	Me	78
14a	Н	Ph	Me	46	16a	Н	Ph	Me	54
8c	Me	Me	Me	84	10c	Me	Me	Me	65
14c	Me	Me	Me	86	16c	Me	Me	Me	54
a) Fr	om the	vinals. ^b) From	thevino	ls and HCOC	OH. ^c) Formed	d by an altern	ative route, see	Scheme	23.

only product was the formate ester 27a. Though secondary theyinols, e.g., 2c and 4c, gave only formate esters when reacted with formic acid [17], nepenthol (7a) was converted to nepenthene (9a) in good yield under these conditions [12] due to the ease of formation of the intermediate benzylic carbocation 28a. A similar facilitation of ring opening of **7e** via the allylic carbocation **28b** might have been expected. The propenyl alcohol 7f rearranged in the presence of formic acid to a mixture of the pyranoderivative **19b** and the thebainone derivative **11f** (*Table*), isomeric with the rearrangement products 19a and 11d from vinylthevinol 7d [13]. Further substitution of the vinyl group such as in 7g increased the reactivity with formic acid resulting in conversion to the thebainone derivative 11g in good yield; this also applied to the benzylidene analogue **7h** (*Table*). Thus, the secondary vinylogous the vinols 7e - h proved not to be a good source of 14-dienylcode inones 9e-h. The only success in suppressing the formation of the 4-hydroxy derivatives in this series was in the case of the 5β -methylsubstituted propenyl alcohol 8f, which gave 43% of the dienylcodeinone 10f. The principal products from 8g and 8h were 12g and 12h, respectively, but, in the latter case, a small amount of the dienylcodeinone 10h was also isolated (Table).

The 5 β -methylnepenthol (8a) and 5 β ,20-dimethylthevinol (8c) gave with formic acid good yields of the 5 β -methylalkenylcodeinones 10a and 10c, respectively, as

expected since nepenthol (7a) and methylthevinol (7c) behaved similarly [7][12]. However, the 18,19-dihydro analogues 14a and 14c both gave over 50% yields of the 5β -methylalkenyldihydrocodeinones 16a and 16c (*Table*), respectively, whereas 13a and 13c yielded only the 4-hydroxy derivatives 17a and 17c, respectively [7].

Comparison of the reactivity on formic acid treatment of the vinylogous thevinols 7f - h with the equivalent thevinols 2c, 7c and 7a, respectively, shows that the vinylogues are substantially more active. Whereas 2c gave only the formate ester 27b [17], 7f was rearranged to 19b and 11f. Rearrangement of 7c stopped at the alkenylcodeinone stage [7], whereas 7g gave only the 4-hydroxy derivative 11g, and comparison of 7a with 7h is similar. The greater reactivity of the vinylogues was also manifested in the 5β -methyl series where introduction of the 5-methyl group did not prevent formation of the 4-hydroxy derivatives 12g and 12h from 8g and 8h, respectively.

The product-determining factor in these rearrangements is the reactivity of the 14alkenylcodeinones vs. the vinylogous dienylcodeinones. It was proposed by *Bentley et al.* [7] that conversion of the 14-alkenylcodeinones $9\mathbf{a} - \mathbf{c}$ to the bridged thebainones $11\mathbf{a} - \mathbf{c}$ was initiated by protonation of the epoxy O-atom followed by fission of the epoxy bridge and *Markownikov* addition of the C(5) carbocation 29 (R³ = H) to the alkenyl-side-chain C=C bond (*Scheme 4*). The greater reactivity of the dienylcodeinones can, thus, be attributed to the greater migratory aptitude of the dienyl side chain in 9g,h related to the greater stability of the 5,14-bridged carbocations 30b,d.

The effect of introducing a 5 β -methyl group into the alkenyl codeinones 9a,c (R³ = H) and dienylcodeinones 9b,d (R³ = H) on the reaction sequence shown in *Scheme 4*

would not be inhibitory. Indeed, the tertiary carbocation **29** ($\mathbb{R}^3 = \mathbb{M}e$), if formed as a discrete species in the epoxy-bridge opening, would be stabilized compared to the secondary carbocation **29** ($\mathbb{R}^3 = \mathbb{H}$) formed from **9**, which would have a rate-enhancing effect. If however, the epoxy opening and formation of the 5,14-bridge were concerted processes, so that the new bridge was formed from the β -face as the epoxy bridge was fissioned, the steric inhibitory effect of the 5 β -methyl group would be a greater factor. It is possible that the mechanisms for converting the dienylcodeinones and alkenylcodeinones into the bridged thebainones are different. The ionic mechanism in *Scheme 4* could be dominant for the more extensively conjugated dienyl series whereas for the alkenyl series the concerted mechanism could be of greater importance.

This view is supported by the effect of the 5β -methyl group in allowing the isolation of 14-alkenyldihydrocodeinones **16a** and **16c** from the acid-catalyzed rearrangement of the dihydrothevinols. It is evident that the factors governing acid-catalyzed rearrangements in these bridged-ring systems are very finely balanced.

This work was supported by NIDA Grants DA 00254 and DA 07315.

Experimental Part

1. *General.* Anh. THF, DMF, CH₂Cl₂, and MeOH were purchased from *Aldrich*, HPLC-solvent-grade CHCl₃ and MeOH from *Merck*, and all other solvents used were GPR (general-purpose reagent) grade and from *Merck* or *Fisher Scientific*. Chemicals were purchased from *Aldrich*, *Fluka*, *Lancaster*, and *Across* chemical companies. Column chromatography (CC): silica gel 60 (35–70 µm); FC=flash chromatography. NMR Spectra: *Jeol* 270 (270 (¹H) and 67.8 MHz (¹³C)). *Jeol Lambda-300* (300 (¹H) and 75 MHz (¹³C)), or *Jeol EX-400* (400 (¹H) and 101 MHz (¹³C)) spectrometers; chemical shifts (δ) in ppm, coupling constants *J* in Hz. MS: electron ionization (EI) at 70 eV, *VG AutoSpec* instrument, equipped with a *Fisons* autosampler; HR = high resolution.

2. Carboxaldehydes and Ketones **22**–**24** and Methanols **13a**/**13i**. (5α , 6α , 7α , 14α)-4,5-Epoxy-3,6-dimethoxy-17-methyl-6,14-ethenomorphinan-7-carboxaldehyde (**22**; R¹ = R³ = H). Thebaine (**20**; 2.5 g, 8.0 mmol), prop-2enal (7.5 ml, 0.11 mol), and benzene (50 ml) were refluxed for 16 h. Benzene and unreacted prop-2-enal were evaporated and the crude white-yellow foam was purified by CC (MeOH/CH₂Cl₂ 95 :5): **22** (R¹ = H) (quant.). Light yellow solid. $R_{\rm f}$ (MeOH/CH₂Cl₂ 90 :10) 0.69. IR (CHCl₃): 1722. ¹H-NMR (270 MHz, CDCl₃): 1.48 (dd, J = 5.3, 13.1, H_a–C(8)); 2.38 (s, MeN); 2.75 (m, H_β–C(7)); 2.83 (dd, J = 9.5, 13.1, H_β–C(8)); 3.61 (s, MeO–C(6)); 3.82 (s, MeO–C(3)); 4.64 (d, J = 1.4, H–C(5)); 5.58 (d, J = 8.6, H–C(19)); 5.88 (d, J = 8.6, H–C(18)); 6.55 (d, J = 8.2, H–C(1)); 6.64 (d, J = 8.2, H–C(2)); 9.41 (d, J = 3.8, CHO–C(7)). ¹³C-NMR (67.8 MHz, CDCl₃): 22.5; 26.6; 33.1; 42.9; 43.4; 45.4; 47.3; 49.7; 52.6; 56.5; 60.0; 80.8; 93.4; 113.4; 119.5; 126.6; 127.9; 133.6; 137.0; 141.9; 147.9; 201.6. EI-MS: 367 (100, M^+). HR-EI-MS: 367.1783 (C₂₂H₂₅NO⁴; calc. 367.1783).

(5a,6a,7a,14a)-4,5-*Epoxy*-18,19-dihydro-3,6-dimethoxy-17-methyl-6,14-ethenomorphinan-7-carboxalde-hyde (**24**; R¹ = R³ = H). A soln. of **22** (R¹ = R³ = H) (1.31 g, 3.58 mmol) in EtOH (20 ml) was added to 10% Pd/C in EtOH (3 ml), and the mixture hydrogenated under 1 atm at r.t. for 1 h. The catalyst was removed by filtration through *Celite* and the solvent evaporated: **24** (R¹ = R³ = H) (quant.). White solid. R_f (AcOEt/hexane 7.2 :2.5) 0.35, R_f (MeOH/CH₂Cl₂ 90 :10) 0.58. IR (CHCl₃): 1721s (CH=O). ¹H-NMR (270 MHz, CDCl₃): 2.32 (*s*, MeN); 3.12 (*d*, *J* = 18.5, H_β-C(10)); 3.48 (*d*, *J* = 4.6, H_a-C(9)); 3.51 (*s*, MeO-(6)); 3.88 (*s*, MeO-C(3)); 4.59 (*d*, *J* = 2.2, H-C(5)); 6.61 (*d*, *J* = 8.1, H-C(1)); 6.73 (*d*, *J* = 8.1, H-C(2)); 9.91 (*d*, *J* = 3.8, 1 H, CHO-C(7)). ¹³C-NMR (67.8 MHz, CDCl₃): 19.9; 22.0; 26.6; 28.5; 35.1; 35.5; 43.5; 45.2; 48.6; 51.6; 56.7; 61.4; 77.4; 92.2; 114.0; 119.3; 128.3; 132.1; 141.8; 146.7; 203.0. EI-MS: 369 (100, *M*⁺). HR-EI-MS: 369.1936 (C₂₂H₂₇NO₄⁺; calc. 369.1940).

 $(\alpha S, 5\alpha, 6\alpha, 7\alpha, 14\alpha)$ - and $(\alpha R, 5\alpha, 6\alpha, 7\alpha, 14\alpha)$ -4,5-*Epoxy*-18,19-dihydro-3,6-dimethoxy-17-methyl- α -phenyl-6,14-ethenomorphinan-7-methanol (13a and 13i, resp.). At r.t., 24 ($R^1 = R^3 = H$) (1.30 g, 3.54 mmol) was treated with phenylmagnesium bromide in toluene for 24 h. The crude product was purified by CC (MeOH/ CH₂Cl₂ 98:2): 13i (0.72 g, 45%) and 13a (0.56 g, 35%).

2292

Data of **13a**: $R_{\rm f}$ (MeOH/CH₂Cl₂ 95 : 5) 0.63. IR (CHCl₃): 3401 (br., OH). ¹H-NMR (270 MHz, CDCl₃): 2.17 (*s*, Me–N); 3.05 (*d*, J = 18.7, H_{β}–C(10)); 3.62 (*s*, MeO–C(6)); 3.88 (*s*, MeO–C(3)); 4.55 (*d*, J = 1.3, H–C(5)); 4.75 (*d*, J = 8.9, H–C(α)); 5.70 (*s*, OH–C(α)); 6.58 (*d*, J = 8.1, H–C(1)); 6.73 (*d*, J = 8.1, H–C(2)); 7.37 (*m*, Ph). ¹³C-NMR (67.8 MHz; CDCl₃): 17.7; 21.9; 32.2; 35.3; 41.8; 43.3; 45.1; 52.5; 56.8; 61.2; 70.2; 79.9; 94.8; 114.1; 115.3; 119.2; 125.3; 127.3; 128.1; 128.4; 129.3; 132.4; 141.8; 142.2; 146.6. EI-MS: 447 (88, M^+). HR-EI-MS: 447.2404 (C₂₈H₃₁NO₄⁺; calc. 447.2409).

Data of **13i**: R_i (MeOH/CH₂Cl₂ 5:95) 0.50. IR (CHCl₃): 3411 (br., OH–C(α)). ¹H-NMR (270 MHz, CDCl₃): 2.28 (*s*, MeN); 3.05 (*d*, *J* = 18.7, H_β–C(10)); 3.51 (*s*, MeO–C(6)); 3.86 (*s*, MeO–C(3)); 4.20 (*d*, *J* = 2.0, H–C(5)); 5.92 (*s*, OH–C(α)); 6.58 (*d*, *J* = 8.1, H–C(1)); 6.74 (*d*, *J* = 8.1, H–C(2)); 7.35 (*m*, Ph). ¹³C-NMR (67.8 MHz; CDCl₃): 17.6; 20.3; 25.6; 32.2; 35.3; 35.9; 42.4; 43.4; 45.3; 50.9; 56.5; 61.1; 70.0; 79.9; 92.5; 113.6; 115.0; 118.9; 119.1; 126.8; 127.7; 128.0; 128.2; 132.0; 141.7; 144.8; 147.0. EI-MS: 447 (100, *M*⁺). HR-EI-MS: 447.2402 (C₂₈H₃₁NO₄⁺; calc. 447.2409).

(5a,6a,7a,14a)-4,5-*Epoxy*-18,19-dihydro-3,6-dimethoxy-5,17-dimethyl-6,14-ethenomorphinan-7-carboxaldehyde (**24**; R¹ = H, R³ = Me). A mixture of (5a,6a,7a,14a)-4,5-epoxy-3,6-dimethoxy-5,17-dimethyl-6,14ethenomorphinan-7-carboxaldehyde (**23**; R¹ = H, R³ = Me) [18] (2.02 g, 7.04 mmol) in AcOEt (150 ml) and 10% Pd/C (0.51 g) was refluxed under 11 atm of H₂ for 30 h. After filtration over *Celite* and solvent evaporation, the residue was purified by recrystallization from EtOH: 1.04 g (51%) of **24** (R¹ = H, R³ = Me). Solid. R_f (AcOEt) 0.45. IR (CHCl₃): 1722. ¹H-NMR (270 MHz, CDCl₃): 0.77 (*td*, *J* = 11.9, 3.4, 1 H); 1.06 – 1.27 (*m*, 2 H); 1.59 (*m*, H_a-C(8)); 1.65 (*s*, Me – C(5)); 1.85 (*m*, 1 H); 2.01 – 2.22 (*m*, 2 H); 2.24 – 2.56 (*m*, 4 H); 2.32 (*s*, MeN); 2.67 – 2.78 (*m*, H – C(7)), H_b–C(8)); 3.10 (*d*, *J* = 9.5, 1 H); 3.47 (*s*, MeO – C(6)); 3.85 (*s*, MeO – C(3)); 6.56 (*d*, *J* = 8.0, H – C(1)); 6.71 (*d*, *J* = 8.2, H – C(2)); 9.98 (*s*, CHO – C(7)). ¹³C-NMR (75 MHz, CDCl₃): 16.3; 19.3; 2.2.; 25.6; 28.0; 29.5; 36.8; 43.4; 45.1; 46.3; 51.5; 52.5; 56.6; 61.9; 78.9; 98.2; 113.5; 118.8; 128.7; 133.4; 141.3; 145.5; 204.8 (CHO – C(7)). EI-MS: 383 (50, *M*⁺). HR-EI-MS: 383.2081 (C₂₃H₂₉NO₄⁺; calc. 383.2096).

 $\begin{array}{l} 1-[(5a,6a,7a,14a)-4,5-Epoxy-18,19-dihydro-3,6-dimethoxy-5,17-dimethyl-6,14-ethenomorphinan-7-yl]ethanone (24; R¹ = R³ = Me). A suspension of 3.3 g (8.4 mmol) 1-[(5a,6a,7a,14a)-4,5-epoxy-3,6-dimethoxy-5,17-dimethyl-4,5-epoxy-6,14-ethenomorphinan-7-yl]ethanone [18] (23; R¹ = R³ = Me) and 10% Pd/C (1.78 g) in EtOH (100 ml) was hydrogenated at 50° and 60 psi for 2 days. The catalyst was removed by filtration over$ *Celite*and the crude mixture purified by FC (AcOEt/CH₂Cl₂ gradient): 2.63 g (77%) of**24**(R¹ = R³ = Me). Solid.*R*_f (AcOEt) 0.26. IR (film): 1712. ¹H-NMR (270 MHz, CDCl₃): 0.71 (*m*, 1 H); 1.32 - 1.44 (*m*, 2 H); 1.59 (*dd*,*J*= 13.0, 2.4, 1 H); 1.65 (*s*, Me-C(5)); 1.70 (*dd*,*J*= 17.8, 4.6, 1 H); 1.74 (*m*, 1 H); 2.08 (*m*, 1 H); 2.22 - 2.33 (*m*, 2 H); 2.24 (*s*, 3 H); 2.28 (*s*, 3 H); 2.45 - 2.54 (*m*, 2 H); 2.68 (*d*,*J*= 6.6, 1 H); 3.07 - 3.16 (*m*, 2 H); 3.37 (*s*, 3 H); 3.85 (*s*, 3 H); 6.55 (*d*,*J*= 8.2, H-C(1)); 6.70 (*d*,*J*= 8.3, H-C(2)). ¹³C-NMR (67.8 MHz, CDCl₃): 16.27; 17.56; 22.30; 28.57; 29.77; 29.8; 34.17; 36.69; 43.43; 45.33; 46.97; 50.53; 52.21; 56.62; 61.89; 78.87; 98.49; 113.50; 118.74; 129.12; 133.63; 141.39; 145.66; 211.90 (COCH₃). EI-MS: 397 (100,*M*⁺). HR-EI-MS: 397.2252 (C₂₄H₃₁NO₄⁺; calc. 397.2253).

3. General Procedure for the Synthesis of the Alcohols **7**, **8**, and **14** Required as Starting Materials for the Acid-Catalyzed Rearrangements: $(\alpha S, 5\alpha, 6\alpha, 7\alpha, 14\alpha) - 4, 5$ -Epoxy-3,6-dimethoxy-5,17-dimethyl- α -phenyl-6,14-ethenomorphinan-7-methanol (**8a**). A soln. of 1.7M PhLi in cyclohexane (5.0 ml, 8.5 mmol) was added to a stirred soln. of $(5\alpha, 6\alpha, 7\alpha, 14\alpha) - 4, 5$ -epoxy-3,6-dimethoxy-5,17-dimethyl-6,14-ethenomorphinan-7-carboxalde-hyde (**23**; R¹ = H, R³ = Me) (0.68 g, 1.7 mmol) at -78° in anh. THF (35 ml), and the mixture was allowed to warm to r.t. within 16 h. The volatiles were removed *in vacuo*, and the residue was purified by FC (AcOEt/CH₂Cl₂ gradient). 701 mg (91%) of **8a** as a single isomer (¹H-NMR). $R_{\rm f}$ (AcOEt) 0.57. IR (film): 3445. ¹H-NMR (270 MHz, CDCl₃, selected signals): 1.29 (dd, J = 11.9, 5.3, 1 H); 1.63 (s, Me–C(5)); 1.89 (dd, J = 12.5, 5.9, 1 H); 2.29 (s, MeN); 3.09 (d, J = 6.6, 1 H); 3.21 (d, J = 18.5, 1 H); 3.80 (s, 3 H); 3.81 (s, 3 H); 5.27 (d, J = 1.3, CH–C(7)); 5.46 (d, J = 8.9, H–C(18)); 6.46 (d, J = 8.3, H–C(1)); 6.61 (d, J = 8.3, H–C(2)); 7.11–7.28 (m, Ph). ¹³C-NMR (67.8 MHz, CDCl₃): 16.26; 22.59; 24.89; 29.18; 43.39; 44.16; 45.54; 46.26; 48.43; 54.74; 56.76; 60.55; 71.08; 82.33; 100.36; 113.52; 118.74; 125.34; 125.91; 126.51; 127.98; 128.76; 135.64; 136.76; 141.44; 143.79. EI-MS: 459 (62, M^+), 352 (100). HR-EI-MS: 459.2423 ($C_{28}H_{33}NO_4^+$; calc. 459.2410).

(a\$, 5a, 6a, 7a, 14a)-4,5-*Epoxy*-18,19-dihydro-3,6-dimethoxy-5,17-dimethyl-a-phenyl-6,14-ethenomorphinan-7-methanol (14a) [18]. From PhLi and (5a, 6a, 7a, 14a)-4,5-epoxy-18,19-dihydro-3,6-dimethoxy-5,17-dimethyl-6,14-ethenomorphinan-7-carboxaldehyde (24; R¹ = H, R³ = Me): 14a (46%). $R_{\rm f}$ (AcOEt) 0.59. IR (CHCl₃): 3437. ¹H-NMR (400 MHz, CDCl₃): 0.69 (m, 1 H); 1.26 (m, 1 H); 1.51 (m, 1 H); 1.55 (s, Me-C(5)); 1.70 (m, 1 H); 1.76 (m, 2 H); 1.95 (td, J = 12.7, 5.9, 1 H); 2.08 (dd, J = 11.7, 5.9, 1 H); 2.18-2.29 (m, 3 H); 2.26 (s, MeN); 2.38 (m, 1 H); 2.65 (d, J = 6.4, 1 H); 3.07 (d, J = 18.1, 1 H); 3.53 (s, 3 H); 3.86 (s, 3 H); 5.37 (s, CH-C(7)); 6.52 (d, J = 7.9, H-C(1)); 6.69 (d, J = 8.3, H-C(2)); 7.18-7.38 (m, Ph). ¹³C-NMR (101 MHz,

 $\begin{array}{l} CDCl_3): 16.32; 18.56; 22.26; 25.80; 29.21; 29.81; 37.02; 43.45; 45.14; 45.43; 46.82; 52.46; 56.72; 62.18; 70.90; 77.97; \\ 99.51; 113.5; 118.44; 125.89; 126.71; 128.15; 129.30; 133.95; 141.27; 145.59; 146.03. EI-MS: 461 (85). HR-EI-MS: 461.2561 (C_{29}H_{35}NO_4^+; 461.2566). \end{array}$

(aR,5a,6a,7a,14a)-4,5-Epoxy-a-ethenyl-3,6-dimethoxy-17-methyl-6,14-ethenomorphinan-7-methanol (**7e**). From ethenylmagnesium bromide and <math>(5a,6a,7a,14a)-4,5-epoxy-3,6-dimethoxy-17-methyl-6,14-ethenomorphinan-7-carboxaldehyde (**22**; R¹ = R³ = H): **7e** (56%). $R_{\rm f}$ (AcOEt) 0.39. IR (film): 3458. ¹H-NMR (270 MHz, CDCl₃): 1.14 (*dd*, *J* = 12.9, 7.3, 1 H); 1.84 (*m*, 1 H); 1.99 (*m*, 1 H); 2.06 (*m*, 1 H); 2.31–2.56 (*m*, 3 H); 2.37 (*s*, MeN); 2.76 (*dd*, *J* = 12.8, 9.2, 1 H); 3.14–3.25 (*m*, 2 H); 3.66 (*s*, 3 H); 3.82 (*s*, 3 H); 4.35 (*m*, CH–C(7)); 4.56 (*d*, *J* = 1.0, H–C(5)); 5.06 (*dt*, *J* = 10.6, 1.7, H_{trans} of CH₂=CH); 5.20 (*ddd*, *J* = 17.2, 2.0, 1.7, H_{cis} of CH₂=CH) 5.45 (*d*, *J* = 8.9, H–C(19)); 5.79 (*ddd*, *J* = 17.2, 10.6, 5.3, CH₂=CH); 5.86 (*d*, *J* = 8.6, H–C(18)); 6.51 (*d*, *J* = 8.3, H–C(2)); 6.62 (*d*, *J* = 7.9, H–C(1)). ¹³C-NMR (67.8 MHz, CDCl₃): 22.35; 26.92; 33.64; 42.53; 42.98; 43.54; 45.59; 47.43; 53.61; 56.78; 60.07; 71.71; 81.54; 96.30; 113.79; 114.56; 119.27; 126.37; 128.38; 134.2; 135.78; 138.90; 141.84; 148.29. EI-MS: 395 (43). HR-EI-MS: 395.2104 (C₂₄H₂₉NO₄⁺; calc. 395.2097).

(aR,5a,6a,7a,14a)-4,5-*Epoxy*-3,6-*dimethoxy*-17-*methyl*-a-(*prop*-1-*enyl*)-6,14-*ethenomorphinan*-7-*methanol* (**7f**). From (prop-1-enyl)magnesium bromide and **22** ($R^1 = R^3 = H$): **7f** (84%), 1:1 mixture of (*E*)- and (*Z*)-isomers. R_f (AcOEt) 0.28. ¹H-NMR (400 MHz, CDCl₃; selected signals): 1.67 (*m*, 3 H); 3.38 (*s*, 3 H); 3.65, 3.69 (2*s*, 3 H); 3.82 (*s*, 3 H); 4.31, 4.72 (2*m*, 1 H); 4.56, 4.57 (2*s*, 1 H); 5.44, 5.45 (2*d*, *J* = 8.8, H–C(19)); 5.84, 5.85 (2*d*, *J* = 8.8, H–C(18)); 6.52 (*d*, *J* = 8.3, H–C(1)); 6.62 (*d*, *J* = 8.3, H–C(2)). ¹³C-NMR (101 MHz, CDCl₃): 13.39; 17.74; 22.26; 26.77; 26.98; 33.57; 33.64; 42.55; 42.59; 42.89; 42.94; 43.52; 45.57; 47.38; 53.34; 53.41; 56.63; 60.01; 60.03; 66.20; 71.36; 81.35; 81.59; 95.88; 113.49; 119.20; 125.39; 126.11; 126.41; 126.46; 128.3; 131.15; 131.82; 134.13; 135.63; 135.86; 141.74; 141.76; 148.20. EI-MS: 409 (100, *M*⁺), 338 (58). HR-EI-MS: 409.2253 (C₂₅H₃₁NO₄⁺; calc. 409.2253).

(aR,5a,6a,7a,14a)-4,5-Epoxy-3,6-dimethoxy-17-methyl-a-(2-methylprop-1-enyl)-6,14-ethenomorphinan-7-methanol (**7g**). From (2-methylprop-1-enyl)magnesium bromide and**22**(R¹ = R³ = H):**7g**(81%). R₁ (AcOEt) 0.34. IR (film): 3484. ¹H-NMR (270 MHz, CDCl₃): 1.67–1.69 (m, Me₂C); 1.83 (m, 1 H); 1.94–2.08 (m, 2 H); 2.34–2.47 (m, 2 H); 2.40 (s, MeN); 2.54 (m, 1 H); 2.76 (dd,*J*= 12.7, 9.4, 1 H); 3.17–3.26 (m, 2 H); 3.67 (s, 3 H); 3.82 (s, 3 H); 4.58 (d,*J*= 1.0, 1 H); 4.66 (d,*J*= 8.9, 1 H); 5.17 (d,*J*= 9.2, 1 H); 5.46 (d,*J*= 8.9, H–C(19)); 5.84 (d,*J*= 8.9, H–C(18)); 6.53 (d,*J*= 7.9, H–C(1)); 6.63 (d,*J*= 7.9, H–C(2)). ¹³C-NMR (101 MHz, CDCl₃): 18.36; 22.33; 25.96; 26.70; 33.64; 42.54; 43.02; 43.59; 45.68; 47.43; 53.19; 56.67; 60.15; 67.08; 81.35; 95.54; 113.49; 119.23; 125.65; 126.75; 128.31; 133.97; 134.19; 135.79; 141.84; 148.29. EI-MS: 423 (100,*M*⁺). HR-EI-MS: 423.2410 (C₂₆H₃₃NO₄⁺; calc. 423.2410).

(aR,5a,6a,7a,14a)-4,5-*Epoxy*-3,6-*dimethoxy*-5,17-*dimethyl*-a-(2-*methylprop*-1-*enyl*)-6,14-*ethenomorphinan*-7-*methanol* (**8g**). From (2-methylprop-1-enyl)magnesium bromide and **23** (R¹ = H, R³ = Me): **8g** (81%). R_f (AcOEt) 0.21. IR (film): 3419. ¹H-NMR (270 MHz, CDCl₃, selected signals): 1.06 (*dd*, J = 12.9, 6.7, 1 H); 1.60 (s, 3 H); 1.62 (d, J = 1.2, 3 H); 1.65 (d, J = 1.2, 3 H); 1.99 (m, 1 H); 2.16 (m, 1 H); 2.36 (s, MeN); 2.52 (m, 1 H); 2.73 (m, 1 H); 3.73 (s, 3 H); 3.78 (s, 3 H); 3.82 (d, J = 7.2, 1 H); 4.52 (dd, J = 9.4, 2.2, 1 H); 5.08 (dt, J = 9.4, 1.3, 1 H); 5.38 (d, J = 8.9, 1 H); 6.02 (d, J = 8.9, 1 H); 6.45 (d, J = 8.2, 1 H); 6.58 (d, J = 8.2, 1 H). ¹³C-NMR (67.8 MHz, CDCl₃): 16.26; 18.29; 22.52; 25.91; 26.88; 29.36; 43.48; 43.94; 44.14; 45.68; 48.38; 54.62; 56.62; 60.52; 68.46; 83.58; 100.40; 113.21; 118.63; 125.41; 125.99; 128.74; 133.44; 135.50; 135.67; 141.35; 147.54. EI-MS: 437 (65, M^+), 352 (100), 248 (99). HR-EI-MS: 437.2564 ($C_{27}H_{35}NO_4^+$; calc. 437.2566).

(aR,5a,6a,7a,14a)-4,5-Epoxy-3,6-dimethoxy-5,17-dimethyl-a-(prop-1-enyl)-6,14-ethenomorphinan-7methanol (**8f**). From (prop-1-enyl)magnesium bromide and **23** (R¹ = H, R³ = Me): **8f** (75%), 1:1 mixture of (*E*)- and (*Z*)-isomers. R_f (AcOEt) 0.31. ¹H-NMR (400 MHz, CDCl₃, selected signals): 1.61 (*m*, 3 H); 2.36 (*s*, 3 H); 3.72, 3.74 (2*s*, 3 H); 3.80 (*s*, 3 H); 4.19, 4.61 (2*m*, 1 H); 5.39 (*d*, *J* = 8.8, 1 H); 5.40 (*d*, *J* = 9.8, 1 H); 5.46, 5.51 (2*m*, 1 H); 6.01 (*d*, *J* = 8.8, 1 H); 6.02 (*d*, *J* = 9.3, 1 H); 6.47 (*d*, *J* = 8.3, 1 H); 6.58, 6.59 (2*d*, *J* = 8.3, 1 H). ¹³C-NMR (101 MHz, CDCl₃): 13.23; 16.14; 16.17; 17.63; 22.41; 22.43; 26.91; 27.09; 29.19; 29.27; 30.20; 43.35; 43.74; 43.79; 45.53; 48.23; 48.25; 54.47; 56.52; 60.37; 60.47; 67.41; 72.84; 83.62; 83.77; 100.18; 100.22; 113.16; 118.55; 118.57; 124.92; 125.20; 125.33; 125.42; 128.55; 131.39; 132.06; 135.21; 135.31; 135.34; 135.6; 141.22; 141.24; 147.39. EI-MS: 423 (51, *M*⁺), 352 (70), 234 (100). HR-EI-MS: 423.2407 (C₂₆H₃₃NO₄⁺; calc. 423.2410).

(5a,6a,7a,14a)-4,5-*Epoxy*-3,6-dimethoxy-a,5,17-trimethyl-6,14-ethenomorphinan-7-methanol (**8c**). From methylmagnesium bromide and **23** (R¹ = R³ = Me) at r.t.: **8c** (84%). R_t (AcOEt) 0.32. IR (film): 3494 (OH). ¹H-NMR (270 MHz, CDCl₃): 0.77 (*dd*, *J* = 12.9, 7.6, 1 H); 0.99 (s, 3 H); 1.05 (s, 3 H); 1.67 (s, 3 H); 1.70 (m, 1 H); 1.96 (*dd*, *J* = 12.9, 5.9, 1 H); 2.17 (*d*, *J* = 8.4, 1 H); 2.32 - 2.45 (m, 2 H); 2.37 (s, MeN); 2.55 (*dd*, *J* = 11.6, 5.0, 1 H); 2.82 (*dd*, *J* = 12.9, 9.6, 1 H); 3.06 (*d*, *J* = 6.6, 1 H); 3.24 (*d*, *J* = 18.8, 1 H); 3.76 (s, 3 H); 3.79 (s, 3 H); 4.94 (s, 1 H); 5.36 (*d*, *J* = 8.9, 1 H); 6.01 (*d*, *J* = 8.9, 1 H); 6.48 (*d*, *J* = 8.0, 1 H); 6.61 (*d*, *J* = 8.2, 1 H). ¹³C-NMR (67.8 MHz, CDCl₃): 16.39; 22.47; 25.49; 28.79; 29.64; 30.72; 43.38; 43.76; 45.57; 47.77; 48.19; 54.58; 56.59; 60.39;

73.58; 86.11; 100.40; 113.27; 118.61; 124.84; 128.65; 134.50; 135.47; 141.28; 147.45. EI-MS: 412 (23), 411 (72), 353 (33), 352 (84), 222 (100). HR-EI-MS: 411.2426 ($C_{25}H_{33}NO_{4}^{+}$; calc. 411.2410).

(5a,6a,7a,14a)-4,5-*Epoxy-18,19-dihydro-3,6-dimethoxy-a-5,17-trimethyl-6,14-ethenomorphinan-7-methanolmorphinan* (14c). From methylmagnesium bromide and 24 ($R^1 = R^3 = Me$) at r.t.: 14c (86%). R_r (AcOEt) 0.29. IR (film): 3422. ¹H-NMR (400 MHz, CDCl₃); 0.79 (m, 1 H); 1.24–1.42 (m, 2 H); 1.26 (s, 3 H); 1.36 (s, 3 H); 1.71 (s, 3 H); 1.97–2.07 (m, 3 H); 2.27 (m, 1 H); 2.55 (m, 1 H); 2.84–2.96 (m, 2 H); 3.04–3.11 (m, 2 H); 3.24 (d, J = 19.0, 1 H); 3.49–3.62 (m, 3 H); 3.52 (s, 3 H); 3.87 (s, 3 H); 4.87 (s, 1 H); 6.65 (d, J = 8.2, 1 H); 6.80 (d, J = 7.8, 1 H); 9.98 (br. s, 1 H). ¹³C-NMR (67.8 MHz, CDCl₃): 16.69; 17.62; 24.96; 25.39; 28.09; 30.15; 30.31; 32.44; 37.69; 42.90; 45.56; 46.21; 46.81; 52.18; 56.66; 63.62; 74.18; 81.22; 98.37; 114.97; 119.49; 123.87; 130.92; 142.59; 146.35. EI-MS: 414 (54), 413 (75), 419 (51), 380 (39), 355 (37), 354 (100). HR-EI-MS: 413.2572 ($C_{25}H_{35}NO_4^+$; calc. 413.2566).

4. Alcohols **7h** and **8h** from **25** and **26**, resp. $1 - [(5\alpha, 6\alpha, 7\alpha, 14\alpha) - 4, 5 - Epoxy - 3, 6 - dimethoxy - 17 - methyl-6, 14 - ethenomorphinan -7 - yl] -3 - phenylprop -2 - en -1 - onae$ **(25)**. A soln. of**22** $(R¹ = Me, R³ = H) (1.18 g, 3.1 mmol) in anh. THF (25 ml) was added at <math>-78^{\circ}$ to a soln. of lithium diisopropylamide (LDA; 0.34 g, 3.2 mmol) was added to the soln. and the mixture was stirred overnight at r.t. The volatiles were evaporated, and the residue was purified by FC (AcOEt/CH₂Cl₂ 1:5): 598 mg (41%) of **25**. Colorless solid. R_t (AcOEt) 0.81. IR (film): 1682. ¹H-NMR (270 MHz, CDCl₃): 1.53 (dd, J = 19.5, 12.9, 1 H); 1.89 (m, 1 H); 2.05 (m, 1 H); 2.37 (s, MeN); 2.40–2.53 (m, 3 H); 2.99 (dd, J = 12.7, 9.4, 1 H); 3.19 (dd, J = 9.6, 6.6, 1 H); 3.21 (m, 1 H); 3.26 (d, J = 10.9, 1 H); 3.59 (s, 3 H); 3.83 (s, 3 H); 4.65 (d, J = 13.8, 1 H); 7.35 - 7.40 (m, 3 H); 7.51 - 7.57 (m, 3 H). ¹³C-NMR (678 MHz, CDCl₃): 22.52; 30.28; 33.58; 43.51; 45.55; 47.46; 49.33; 53.65; 56.79; 60.08; 81.89; 95.64; 113.91; 119.39; 126.15; 126.38; 128.33; 128.77; 128.83; 130.20; 134.21; 134.91; 135.67; 141.77; 141.91; 148.19; 199.36. EL-MS: 470 (26), 469 (81), 454 (12), 338 (29), 311 (42), 294 (35), 131 (100), 103 (45). HR-EI-MS: 469.2246 ($C_{30}H_{31}NO_{4}^+$; calc. 469.2253).

(aR, 5a, 6a, 7a, 14a)-4,5-*Epoxy*-3,6-*dimethoxy*-17-*methyl*-a-(2-*phenylethenyl*)-6,14-*ethenomorphinan*-7-*methanol* (**7h**). A soln of 1M *L*-Selectride in THF (0.75 ml, 0.75 mmol) was added at -78° to a soln of **25** (347 mg, 0.73 mmol) in anh. THF (20 ml), and the mixture was stirred at -78° for 2 h. The mixture was treated with sat. NH₄Cl soln. (10 ml) and extracted with CHCl₃ (3 × 10 ml). The combined org. extract was dried (MgSO₄) and evaporated and the residue purified by FC (AcOEt): 323 mg (91%) of **7h** as a single isomer (¹H-NMR). $R_{\rm f}$ (AcOEt) 0.24. IR (film): 3425. ¹H-NMR (270 MHz, CDCl₃): 0.89 (*m*, 1 H); 1.87 (*dd*, *J* = 12.9, 2.0, 1 H); 2.46 (*s*, MeN); 2.44 - 2.69 (*m*, 2 H); 2.84 (*dd*, *J* = 3.2, 9.3, 1 H); 3.18 (*d*, *J* = 18.9, 1 H); 3.16 - 3.27 (*m*, 2 H); 3.48 (*s*, 3 H); 3.70 (*s*, 3 H); 4.04 (*t*, *J* = 8.2, 1 H); 4.62 (*d*, *J* = 1.3, 1 H); 4.98 (br. *s*, 1 H); 5.54 (*d*, *J* = 8.9, 1 H); 5.99 (*d*, *J* = 8.6, 1 H); 6.12 (*dd*, *J* = 15.8, 7.6, 1 H); 6.50 - 6.58 (*m*, 2 H); 6.65 (*d*, *J* = 7.92, 1 H); 7.16 - 7.32 (*m*, 3 H); 7.38 (*m*, 2 H). EI-MS: 471 (100, *M*⁺). HR-EI-MS: 472.2410 (C₃₀H₃₃NO₄⁺; calc. 471.2422).

$$\begin{split} &I-[(5a,6a,7a,14a)-4,5-Epoxy-3,6-dimethoxy-5,17-dimethyl-6,14-ethenomorphinan-7-yl]-3-phenylprop-2-\\ &en-1-one~(\textbf{26}). As described for$$
25with**23**(R¹ = R³ = Me) and benzaldehyde:**26**(78%). R_f (AcOEt) 0.35. IR (film): 1685. ¹H-NMR (270 MHz, CDCl₃): 1.57 (*dd*,*J*= 13.0, 5.4, 1 H); 1.69 (*m*, 1 H); 1.73 (*s*, 3 H); 2.05 (*m*, 1 H); 2.35 (*s*, MeN); 2.39 - 2.61 (*m*, 3 H); 2.78 (*dd*,*J*= 12.7, 9.7, 1 H); 3.14 - 3.24 (*m*, 3 H); 3.61 (*s*, 3 H); 3.79 (*s*, 3 H); 5.54 (*d*,*J*= 8.9, 1 H); 6.05 (*d*,*J*= 8.9, 1 H); 6.50 (*d*,*J*= 8.2, 1 H); 6.62 (*d*,*J*= 8.2, 1 H); 6.85 (*d*,*J*= 16.1, 1 H); 7.33 - 7.38 (*m*, 3 H); 7.46 (*d*,*J*= 15.9, 1 H); 7.54 (*m*, 2 H). ¹³C-NMR (67.8 MHz, CDCl₃): 16.15; 22.61; 28.49; 28.98; 43.31; 44.05; 45.44; 48.09; 50.05; 54.53; 56.49; 60.46; 83.67; 99.6; 113.26; 118.58; 124.34; 127.52; 127.94; 128.45; 128.49; 129.70; 134.89; 135.11; 135.57; 140.43; 141.35; 147.19; 199.62. EI-MS: 483 (46,*M*⁺), 294 (75), 131 (100). HR-EI-MS: 483.2399 (C₃₁H₃₃NO⁴; calc. 483.2410).

(aR,5*a*,6*a*,7*a*,14*a*)-4,5-*Epoxy*-3,6-dimethoxy-5,17-dimethyl-*a*-(2-phenylethenyl)-6,14-ethenomorphinan-7methanol (**8h**). As described for **7h**, with **26** and *L*-Selectride: **8h** 87%. R_f (AcOEt) 0.37. IR (film): 3431. ¹H-NMR (270 MHz, CDCl₃): 0.83 (*dd*, *J* = 13.4, 5.3, H_a-C(8)); 1.65 (*s*, Me-C(5)); 1.67 (*m*, H_a-C(16)); 2.01 (*ddd*, *J* = 12.8, 5.9, H_b-C(16)); 2.10 (*m*, H_β-C(7)); 2.31 (*s*, MeN); 2.34–2.42 (*m*, H_a-C(10), H_a-C(15)); 2.51 (*dd*, *J* = 11.4, 5.1, H_b-C(15)); 2.65 (*dd*, *J* = 13.4, 9.7, H_b-C(8)); 3.02 (*d*, *J* = 6.6, 1 H); 3.21 (*d*, *J* = 18.7, H-C(9)); 3.79 (*s*, 3 H); 3.81 (*s*, 3 H); 3.98 (*m*, CH-(7)); 5.36 (*s*, OH); 5.51 (*d*, *J* = 9.2, H-C(19)); 6.06–6.12 (*m*, H-C(18), PhCH=CH); 6.48–6.51 (*m*, H-C(1), PhCH=CH); 6.62 (*d*, *J* = 8.1, H-C(2)); 7.21 (*m*, 1 H); 7.29 (*m*, 2 H); 7.37 (*m*, 2 H). ¹H,¹H-NOESY (CDCl₃, selected cross-peaks): 0.83 (H_a-C(8))/3.98 (CH-C(7)); 0.83 (H_a-C(8))/6.06–6.12 (H-C(18), PhCH=CH); 2.10 (*m*, H_β-C(7))/2.65 (H_b-C(8)); 2.65 (H_b-C(8))/ 6.06–6.12 (H-C(18), PhCH=CH); 3.98 (CH-C(7))/6.48–6.51 (H-C(1), PhCH=CH). ¹³C-NMR (67.8 MHz, CDCl₃): 16.52; 22.52; 28.91; 29.07; 43.43; 43.62; 44.24; 45.54; 47.71; 55.03; 56.58; 60.47; 76.30; 86.48; 100.14; 113.10; 118.92; 124.77; 126.58; 127.50; 128.42; 128.48; 129.91; 132.35; 135.68; 136.83; 136.87; 141.52; 147.00. EI-MS: 485 (75, M^+), 352 (100), 296 (93). HR-EI-MS: 485.2551 ($C_{31}H_{35}NO_4^+$; calc. 485.2566).

5. General Procedure for the Acid-Catalyzed Rearrangements: $(5\alpha,14\beta)$ -7,8-Didehydro-4,5-epoxy-3methoxy-5,17-dimethyl-14-[(2E,4E)-5-phenylpenta-2,4-dienyl]morphin-2-en-6-one (10h) and $(5\beta,14\beta,18E)$ -7,8-Didehydro-4-hydroxy-3-methoxy-5,17-dimethyl-18-(3-phenylprop-2-enylidene)-5,14-ethanomorphinan-6-one (12h) from 8h. A soln. of 8h (0.49 g, 1.0 mmol) in formic acid (5 ml) was heated to 100° for 4 h. After this time, most of the volatiles were evaporated. The residue was basified with ammonia and extracted with CHCl₂ (3 × 10 ml). The combined extract was washed with H₂O (10 ml) and brine (10 ml) and dried (MgSO₄) and the crude mixture purified by FC (AcOEt/CH₂Cl₂ 1:5, then AcOEt gradient): 54 mg (12%) of 10h and 190 mg (42%) of 12h.

Data of **10h**: R_t (AcOEt) 0.69. IR (film): 1678. ¹H-NMR (270 MHz, CDCl₃, selected signals): 1.50 (*m*, 1 H); 1.70 (*s*, 3 H); 2.11 (*m*, 1 H); 2.37 (*s*, MeN); 2.60 (*m*, 1 H); 3.05–3.16 (*m*, 2 H); 3.78 (*s*, MeO–C(3)); 5.74 (*m*, 1 H); 6.06 (*d*, J = 10.4, H–C(8)); 6.25–6.80 (*m*, 9 H); 7.17–7.39 (*m*, 4 H). ¹³C-NMR (67.8 MHz, CDCl₃): 17.49 (*q*, Me–C(5)); 21.29 (*t*); 25.89 (*t*); 39.92 (*t*); 42.82 (*q*, MeN); 44.53 (*s*); 45.87 (*t*); 47.25 (*s*); 56.37; 58.85; 92.75 (*s*, C(5)); 113.31 (*d*); 119.25 (*d*); 126.20 (*d*); 126.36 (*d*); 126.46 (*d*); 127.44 (*s*); 127.57 (*d*); 128.58 (*d*); 128.70 (*d*); 131.44 (*d*); 132.65 (*s*); 134.76 (*d*); 137.16 (*s*); 142.00 (*s*); 143.85 (*s*); 155.50 (*d*, C(8)); 196.89 (*s*, C(6)). EI-MS: 453 (100, M^+). HR-EI-MS: 453.2305 (C₃₀H₃₁NO⁺₃; calc. 453.2304).

Data of **12h**: $R_{\rm f}$ (AcOEt) 0.58. IR (film): 3504, 1678. ¹H-NMR (270 MHz, CDCl₃; selected signals): 1.90 (*s*, Me-C(5)); 2.11 (*td*, J = 12.2, 3.6, 1 H); 2.38 (*s*, MeN); 2.46 (*m*, 1 H); 2.78 (*dd*, J = 18.8, 5.9, 1 H); 3.26 (*d*, J = 18.5, 1 H); 3.80 (*s*, MeO-C(3)); 5.70 (*d*, J = 9.6, H-C(7)); 6.05 (*s*, OH-C(4)); 6.40 (*d*, J = 10.9, 2.0, PhCH=CHCH); 6.49 (*d*, J = 15.5, PhCH=CHCH); 6.59 (*d*, J = 8.6, H-C(2)); 6.62 (*d*, J = 8.3, H-C(1)); 6.76 (*d*, J = 9.9, H-C(8)); 6.85 (*dd*, J = 15.1, 10.9, PhCH=CHCH); 7.16–7.27 (*m*, Ph). ¹³C-NMR (67.8 MHz, CDCl₃): 15.04 (*q*, Me-C(5)); 25.81 (*t*); 29.51 (*t*); 33.47 (*t*); 42.99 (*q*, MeN); 46.04 (*t*, C(16)); 50.17 (*s*); 54.27 (*s*); 56.10; 56.42; 65.96 (C(5)); 108.33 (*d*); 118.33 (*d*); 126.30 (*s*); 126.55 (*d*); 127.35 (*d*); 128.33 (*d*); 128.59 (*d*); 128.84 (*d*); 132.01 (*s*); 132.16 (*d*); 137.69 (*s*); 143.66 (*s*); 144.69 (*s*); 146.64 (*s*); 153.35 (*d*, C(8)); 196.57 (*s*, C(6)). EI-MS: 453 (100, M^+). HR-EI-MS: 453.2304 (C₃₀H₃₁NO₃⁺; calc. 453.2304) 453.2299.

(aR,5a,6a,7a,14a)-4,5-*Epoxy-a-ethenyl-3,6-dimethoxy-17-methyl-6,14-ethenomorphinan-7-methanol Formate* (27a) from 7e. Yield 61 %. $R_{\rm f}$ (AcOEt) 0.67. IR (film): 1723. ¹H-NMR (270 MHz, CDCl₃): 1.85 (m, 1 H); 1.93–2.04 (m, 2 H); 2.31–2.62 (m, 3 H); 2.40 (s, MeN); 2.82 (m, 1 H); 3.18–3.25 (m, 2 H); 3.62 (s, 3 H); 3.82 (s, 3 H); 4.52 (d, J = 0.98, 1 H); 5.17 (d, J = 7.8, 1 H); 5.20 (d, J = 14.2, 1 H); 5.41 (d, J = 8.8, 1 H); 5.62–5.82 (m, 3 H); 6.52 (d, J = 8.3, H - C(1)); 6.62 (d, J = 8.3, H - C(2)); 7.99 (s, OCHO). ¹³C-NMR (75.5 MHz, CDCl₃): 22.39 (t); 26.69 (t); 33.49 (t); 41.00 (d); 42.62 (s); 43.52 (q); 45.63 (t); 47.09 (s); 53.23 (q); 56.64 (q); 60.11 (d); 72.18 (d); 79.63 (s); 95.81 (d, C(5)); 113.52 (d); 116.55 ($t, CH = CH_2$); 119.26 (d); 126.62 (d); 127.96 (s); 134.03 (s); 134.04 (d); 134.91 (d); 141.83 (s); 148.2 (s); 160.4 (d, OCHO). EI-MS: 423 (100, M^+), 338 (94), 248 (90). HR-EI-MS: 423.2043 ($C_{25}H_{29}NO_5^+$; calc. 423.2046).

 $(5\beta, 14\beta, 18E)$ -7,8-Didehydro-4-hydroxy-3-methoxy-17-methyl-18-(3-methylbut-2-enylidene)-5,14-ethanomorphinan-6-one (**11g**) from **7g**. Yield 59%. $R_{\rm f}$ (AcOEt): 0.61. IR (film): 3268, 1678. ¹H-NMR (270 MHz, CDCl₃): 1.27 (*m*, 1 H); 1.75 (*s*, 3 H); 1.78 (*s*, 3 H); 1.90 (*m*, 1 H); 2.05 (*m*, 1 H); 2.20 (*d*, J = 16.8, H_a-C(16)); 2.37 (*s*, MeN); 2.41 (*m*, 1 H); 2.71 (*m*, 1 H); 3.11 – 3.21 (*m*, 2 H); 3.42 (*m*, H_b-C(16)); 3.80 (*s*, MeO-(3)); 4.27 (*s*, H-C(5)); 5.69 (*dd*, J = 9.7, 1.5, H-C(7)); 5.73 (br. *s*, OH-C(4)); 5.84 (*d*, J = 11.5, Me₂C=CHCH); 6.55 – 6.64 (*m*, H-C(1), H-C(2), Me₂C=CHCH); 6.80 (*d*, J = 9.6, H-C(8)). ¹H,¹H-NOESY (CDCl₃: selected crosspeaks): 2.20 (H_a-C(16))/5.84 (Me₂C=CHCH); 3.42 (H_b-C(16))/5.84 (Me₂C=CHCH); 4.27 (H-C(5))/6.55 – 6.64 (H-C(1), H-C(2), Me₂C=CHCH). ¹³C-NMR (101 MHz, CDCl₃): 18.35; 24.80; 26.28; 30.76; 32.37; 43.18; 45.91; 49.29; 49.55; 55.88; 56.60; 67.13 (*s*, C(5)); 108.44 (*d*, Me₂C=CHCH); 118.03 (*d*, C(2)); 122.46 (*d*, Me₂C=CHCH); 125.21 (*d*, C(1)); 125.69 (*s*); 128.52 (*d*, C(7)); 131.00 (*s*); 135.51 (*s*); 135.72 (*s*); 143.12 (*s*); (144.55 (*s*); 154.98 (*d*, C(8)); 196.94 (*s*, C(6)). EI-MS: 391 (100, *M*⁺), 230 (71). HR-EI-MS: 391.2153 (C₂₅H₂₉NO₄⁺; calc. 391.2147).

 $(5\beta, 14\beta, 18E)$ -7,8-Didehydro-4-hydroxy-3-methoxy-17-methyl-18-(but-2-enylidene)-5,14-ethanomorphinan-6-one (**11f**) and $(5\alpha, 6\alpha, 7\alpha, 14\alpha)$ -6,7-Didehydro-6,7-dihydro-3-methoxy-6',17-dimethyl-6'H-pyrano[2',3':6,7]-6,14-ethenomorphinan (**19b**) from **7f**. Data of **11f**: Yield 34%. R_t (AcOEt) 0.62. IR (film): 3432 (OH), 1673 (C=O). ¹H-NMR (270 MHz, CDCl₃): 1.47 (m, 1 H); 1.75 (m, 3 H); 1.89 (m, 1 H); 2.05 (m, 1 H); 2.21 (d, J = 16.6, H_a -C(19)); 2.37 (s, MeN); 2.41 (m, 1 H); 2.71 (m, 1 H, H_a -C(10)); 3.11–3.19 (m, H–C(9), H_b -C(10)); 3.43 (m, H_b -C(19)); 3.78 (s, MeO–C(3)); 4.22 (s, H–C(5)); 5.62–5.73 (m, H–C(7), MeCH=CHCH); 5.75 (s, OH–C(4)); 6.08 (ddd, J = 15.1, 10.8, 1.5, MeCH=CHCH); 6.38 (d, J = 10.8, MeCH=CHCH); 6.56–6.62 (m, H–C(1), H–C(2)); 6.81 (d, J = 9.8, H–C(8)). ¹³C-NMR (67.8 MHz, CDCl₃): 18.38 (q, Me-C(5)); 24.76 (t, C(10)); 30.69 (t); 32.34 (t); 43.13 (q, MeN); 45.85 (t); 49.26 (s); 49.54 (s); 55.85 (q, MeO); 56.53 (d, C(9));

2296

 $\begin{array}{l} 66.86 \ (d, {\rm C}(5); 108.45 \ (d, {\rm C}(2)); 117.99 \ (d, {\rm C}(1)); 125.59 \ (s); 128.51 \ (d); 128.66 \ (d); 128.88 \ (d); 129.40 \ (d); 130.93 \ (s); 136.06 \ (s); 143.08 \ (s); 144.52 \ (s); 154.93 \ (d, {\rm C}(8)); 196.78 \ (s, {\rm C=O}). \\ \mbox{EI-MS: 377} \ (100, M^+), 230 \ (54). \\ \mbox{HR-EI-MS: 377.1989} \ (C_{24}{\rm H}_{27}{\rm NO}_3^+; \ {\rm calc. 377.1991}). \end{array}$

Data of **19b**: Yield 29%. R_f (AcOEt) 0.57. ¹H-NMR (400 MHz, CDCl₃): 0.94 (*dd*, J = 12.5, 6.9, H–C(8)); 1.36 (*d*, J = 6.9, Me–C(6)); 1.85 (*m*, 1 H); 2.00 (*dd*, J = 4.0, 2.0, 1 H); 2.23 (*m*, H–C(7)); 2.35–2.44 (*m*, 2 H); 2.37 (*s*, MeN); 2.51 (*m*, 1 H); 3.07–3.24 (*m*, H_b–C(8), H–C(9), H_b–C(10)); 3.83 (*s*, MeO–C(3)); 4.38 (*d*, J = 1.3, H–C(5)); 4.51 (*m*, H–C(6')); 5.41 (*d*, J = 8.9, H–C(19)); 5.48 (*m*, H–C(5')); 5.61 (*m*, H–C(4')); 5.80 (*d*, J = 8.9, H–C(18)); 6.49 (*d*, J = 7.9, H–C(1)); 6.62 (*d*, J = 7.9, H–C(2)). ¹³C-NMR (67.8 MHz, CDCl₃): 22.34 (*t*, C(10)); 23.05 (*Me*–C(6')); 32.41 (*d*, C(7)); 32.77 (*t*, C(8)); 33.57 (*t*); 42.68 (*s*); 43.58 (*q*, MeN), 45.67 (*t*); 46.92 (*s*); 56.93 (*q*, MeO–C(3)); 60.09 (*d*, C(9)); 68.65 (*d*, C(6')); 76.62 (*s*); 96.74 (*d*, C(5)); 114.04 (C(2)); 118.93 (C(1)); 128.21 (*s*); 128.54 (C(5')); 128.93 (C(4')); 130.15 (C(18)); 134.51 (*s*); 135.73 (C(19)); 141.89 (*s*); 148.77 (*s*). EI-MS: 377 (100), 362 (29), 202 (78). HR-EI-MS: 377.1997 (C₂₄H₂₇NO³⁺, calc. 377.1991).

 $(5\beta, 14\beta, 18\text{E}) - 7,8-Didehydro-4-hydroxy-3-methoxy-5, 17-dimethyl-18-(3-methylbut-2-enylidene)-5, 14-ethanomorphinan-6-one ($ **12g**) from**8g** $. Yield 63%. <math>R_{\rm f}$ (AcOEt) 0.58. IR (film): 3511 (OH), 1678 (C=O). ¹H-NMR (400 MHz, CDCl₃): 1.54 (*m*, 1 H); 1.75 (*s*, 3 H); 1.78 (*s*, 3 H); 1.82 (*m*, 1 H); 1.87 (*s*, 3 H); 2.05 (*td*, *J* = 12.2, 3.4, 1 H); 2.26 (*dd*, *J* = 16.6, 1.5, 1 H, $H_{\rm a}$ -C(16)); 2.37 (*s*, MeN); 2.42 (*m*, 1 H); 2.79 (*dd*, *J* = 18.6, 5.9, 1 H); 3.08 (*d*, *J* = 5.9, 1 H); 3.19 (*d*, *J* = 18.6, 1 H); 3.58 (*d*, *J* = 16.1, $H_{\rm b}$ -C(16)); 3.78 (*s*, MeO-C(3)); 5.67 (*d*, *J* = 9.3, H-C(7)); 5.87 (*m*, H-C(19)); 6.07 (br. *s*, OH-C(4)); 6.41 (*m*, H-C(16)); 6.57 (*d*, *J* = 8.3, H-C(1)); 6.62 (*d*, *J* = 7.8, H-C(2)); 6.72 (*d*, *J* = 9.8, H-C(8)). ¹³C-NMR (67.8 MHz, CDCl₃): 15.19 (*q*); 18.41 (*q*); 25.71 (*t*); 26.39 (*q*); 29.39 (*t*); 33.02 (*t*); 43.01 (*q*, MeN); 46.04 (*t*, C(16)); 50.02 (*s*); 54.14 (*s*); 56.00; 56.31; 65.51 (*s*, C(5)); 108.09 (*d*, C(2)); 118.21 (*d*, C(1)); 122.70 (*d*); 124.46 (*d*); 126.40 (*s*); 128.66 (*d*); 132.09 (*s*); 135.45 (*s*); 142.29 (*s*); 143.57 (*s*); 144.54 (*s*); 153.47 (C(8)); 197.22 (C(6)). EI-MS: 405 (100, *M*⁺), 230 (56). HR-EI-MS: 405.2306 (C₂₆H₃₁NO₃⁺; calc. 405.2304).

 $(5a, 14\beta)-4, 5$ -Epoxy-3-methoxy-5, 17-dimethyl-14-(3-methylbut-2-enyl)morphinan-6-one (16c) from 14c. Yield 54%. $R_{\rm f}$ (AcOEt) 0.67. IR (film): 1720 (C=O). ¹H-NMR (270 MHz, CDCl₃): 1.29 (m, 1 H); 1.41 (m, 1 H); 1.54 (m, 1 H); 1.63 (s, 3 H); 1.72 (m, 1 H); 1.74 (s, 3 H); 1.76 (s, 3 H); 2.11 (m, 1 H); 2.17–2.29 (m, 3 H); 2.31 (s, MeN); 2.51–2.62 (m, 2 H); 2.81 (d, J = 5.1, 1 H); 3.04 (d, J = 18.3, 1 H); 3.57 (dd, J = 14.1, 79, 1 H, Me₂C=CHCH₂); 3.88 (s, MeO-C(3)); 5.17 (m, Me₂C=CHCH₂); 6.58 (d, J = 8.1, H–C(1)); 6.65 (d, J = 8.1, H–C(2)). ¹³C-NMR (101 MHz, CDCl₃): 17.56 (q); 18.07 (q); 20.03 (t); 25.96 (t); 26.23 (q); 26.55 (t); 26.63 (t); 35.79 (t); 41.09 (s); 43.04 (q, MeN); 45.82 (t, C(16)); 49.88 (s); 56.39; 59.44; 95.46 (s, C(5)); 113.33 (d, C(2)); 119.00 (d); 119.44 (d); 126.86 (s); 131.18 (s); 134.79 (s); 142.42 (s); 144.40 (s); 212.36 (s, C(6)). EI-MS: 381 (100), 244 (99), 189 (39). HR-EI-MS: 381.2305 ($C_{24}H_{31}NO_{3}^+$; calc. 381.2304).

 $(5a,14\beta)$ -7,8-Didehydro-4,5-epoxy-3-methoxy-5,17-dimethyl-14-(3-methylbut-2-enyl)morphinan-6-one (10c) from 8c. Yield: 65%. R_i (AcOEt) 0.68. IR (film): 1678 (C=O). ¹H-NMR (270 MHz, CDCl₃): 1.46 (m, 1 H); 1.66 (s, 3 H); 1.72 (s, 3 H); 1.73 (s, 3 H); 2.00 $(dd, J = 12.9, 72, 1 \text{ H}, Me_2C=CHCH_2)$; 2.19–2.31 (m, 3 H); 2.35 (s, MeN); 2.58 (m, 1 H); 3.07–3.12 (m, 2 H); 3.64 $(dd, J = 12.5, 8.9, 1 \text{ H}, Me_2C=CHCH_2)$; 3.79 (s, MeO-C(3)); 5.11 $(t, J = 7.9, Me_2C=CHCH_2)$; 6.03 (d, J = 10.2, H-C(7)); 6.56 (d, J = 8.2, H-C(1)); 6.63 (d, J = 8.2, H-C(2)); 6.70 (d, J = 10.2, H-C(8)). ¹³C-NMR (101 MHz, CDCl₃): 17.50 (q); 17.97 (q); 21.25 (t); 25.85 (t); 26.05 (q); 35.09 (t); 42.85 (q, MeN); 44.41 (s); 45.85 (t); 47.26 (s); 56.36; 58.81; 92.85 (s, C(5)); 113.24 (d); 118.37 (d); 119.13 (d); 126.58 (s); 130.66 (d, C(7)); 132.87 (s); 135.66 (s); 141.96 (s); 143.85 (s); 156.24 (d, C(8)); 196.91 (s, C(6)). EI-MS: 379 (100). HR-EI-MS: 379.3147 $(C_{24}H_{29}NO_3^+; \text{ calc}.379.2147)$.

 $(5a, 14\beta)$ -7,8-Didehydro-4,5-epoxy-14-(hexa-2,4-dienyl)-3-methoxy-5,17-dimethylmorphinan-6-one (10f) from 8f. Yield 43%. R_i (AcOEt) 0.57. IR (film): 1679 (C=O). ¹H-NMR (270 MHz, CDCl₃): 1.46 (m, 1 H); 1.70 (s, 3 H); 1.74 (d, J = 8.8, 3 H); 2.05 (dd, J = 12.2, 7.3, 1 H, MeCH=CHCH=CHCH₂); 2.19–2.33 (m, 3 H); 2.36 (s, MeN); 2.57 (m, 1 H); 3.09–3.14 (m, 2 H); 3.67 (dd, J = 12.3, 8.5, 1 H, MeCH=CHCH=CHCH₂); 3.79 (s, MeO–C(5)); 5.47 (m, MeCH=CHCH=CHCH₂); 5.64 (m, MeCH=CHCH=CHCH₂); 6.02 – 6.14 (m, H–C(7), MeCH=CHCH=CHCH₂); 6.56 (d, J = 8.3, H–C(1)); 6.62 (d, J = 8.3, H–C(2)); 6.66 (dd, J = 10.2, 3.4, H–C(8)). ¹³C-NMR (75 MHz, CDCl₃): 17.35 (q); 17.94 (q); 21.14 (t); 25.74 (t); 39.5 (t); 42.66 (q); 44.28 (s); 45.74 (t); 47.08 (s); 56.23 (d); 58.61 (q); 92.64 (s, C(5)); 113.11 (d, C(2)); 119.09 (d, C(1)); 124.78 (d, C(19)); 126.39 (d, MeCH=CHCH=CHCH₂); 128.41 (d); 130.74 (d); 131.09 (d); 132.59 (s); 134.54 (d); 141.84 (s); 143.71 (s); 155.61 (d, C(8)); 196.76 (s, C(6)). EI-MS: 391 (100, M^+), 244 (99), 243 (93). HR-EI-MS: 391.2148 (C₂₅H₂₉NO⁺₃; calc. 391.2147).

 $(5\beta, 14\beta, 18\text{E})$ -7,8-Didehydro-4-hydroxy-3-methoxy-17-methyl-18-(3-phenylprop-2-enylidene)morphinan-6one (11h) from 7h. Yield 71%. R_{f} (AcOEt) 0.69. IR (film): 3340 (OH), 1678 (C=O). ¹H-NMR (270 MHz, CDCl₃): 1.51 (*m*, 1 H); 1.92 (*m*, 1 H); 2.07 (*m*, 1 H); 2.35 (*m*, 1 H); 2.39 (*s*, MeN); 2.43 (*m*, 1 H); 2.73 (*dd*, J = 18.6, 5.8, 1 H); 3.15 (*m*, 1 H); 3.19 (*d*, J = 12.2, 1 H); 3.56 (*dd*, J = 16.7, 2.1, 1 H); 3.78 (*s*, MeO); 4.34 (s, H–C(5)); 5.71 (dd, J = 9.6, H–C(7)); 5.79 (s, OH–C(4)); 6.49 (d, J = 15.5, PhCH=CHCH); 6.55–6.64 (m, H–C(1), H–C(2), PhCH=CHCH); 6.76–6.88 (m, H–C(8), PhCH=CHCH); 7.14–7.40 (m, Ph). ¹H, ¹H-NOESY (CDCl₃; selected crosspeaks): 4.34 (s, H–C(5))/6.55–6.64 (H–C(1), H–C(2), PhCH=CHCH). ¹³C-NMR (67.8 MHz, CDCl₃): 24.79 (t); 30.82 (t); 32.82 (t); 43.12 (q, MeN); 45.85 (t, C(16)); 49.45 (s); 49.59 (s); 55.90 (q, MeO); 56.57 (d, C(10)); 67.41 (d, C(5)); 108.62 (d); 118.06 (d); 125.53 (s); 126.24 (d); 126.31 (d); 127.38 (d); 128.55 (d); 128.63 (d); 128.76 (d); 130.91 (s); 132.05 (d); 137.55 (s); 140.05 (s); 143.14 (s); 144.61 (s); 154.92 (d); 196.24 (s, C(6)). EI-MS: 439 (100, M^+). HR-EI-MS: 439.2155 ($C_{29}H_{29}NO_3^+$; calc. 439.2147).

 $(5a, 14\beta)$ -7,8-Didehydro-4,5-epoxy-3-methoxy-5,17-dimethyl-14-(3-phenylprop-2-enyl)morphinan-6-one (10a) from 8a. Yield 78%. $R_{\rm f}$ (AcOEt) 0.64. IR (film): 1678 (C=O). ¹H-NMR (270 MHz, CDCl₃): 1.51 (m, 1 H); 1.74 (s, 3 H); 2.16–2.38 (m, 3 H); 2.36 (m, 1 H,PhCH=CHC H_2); 2.40 (s, MeN); 2.62 (m, 1 H); 3.14 (d, J=18.7, 1 H); 3.19 (d, J=5.3, 1 H); 3.80 (s, MeO); 3.85 (m, 1 H, PhCH=CHC H_2); 6.09 (d, J=10.1, H-C(7)); 6.17 ($m, \text{PhCH}=CHCH_2$); 6.51 ($d, J=15.8, \text{PhCH}=CCHCH_2$); 6.56 (d, J=8.3, H-C(1)); 6.63 (d, J=8.3, H-C(2)); 6.71 (d, J=10.1, H-C(8)); 7.20–7.37 (m, Ph). ¹³C-NMR (67.8 MHz, CDCl₃): 17.50 (q, Me-C(5)); 21.38 (t); 26.00 (t); 40.08 (t); 42.83 (q, MeN), 44.61 (s); 45.96 (t); 47.39 (s); 56.58; 58.99; 92.81 (s, C(5)); 113.76 (d, C(2)); 119.29 (d, C(1)); 124.34 (d); 126.12 (d); 126.55 (s); 127.42 (d); 128.61 (d); 131.13 (d); 132.79 (s); 134.24 (d); 137.22 (s); 144.21 (s); 144.03 (s); 155.32 (d, C(8); 196.88 (s, C(6))). EI-MS: 427 (100), 244 (58), 243 (82). HR-EI-MS: 427.2156 ($C_{28}H_{29}NO_{7}^{+}$; calc. 427.2147).

 $(5a, 14\beta)-4, 5$ -Epoxy-3-methoxy-5,17-dimethyl-14-(3-phenylprop-2-enyl)morphinan-6-one (**16a**) from **14a**. Yield 54%. R_f (CH₂Cl₂/MeOH 90:10) 0.79. IR (CHCl₃): 1721 (C=O). ¹H-NMR (300 MHz, CDCl₃): 1.65 (*s*, Me-C(5)); 2.42 (*s*, MeN); 2.50 (*dd*, J = 8.2, 13.5, 1 H, PhCH=CHCH₂); 3.00 (*d*, J = 6.8, H–C(9)); 3.10 (*d*, J = 18.3, H_b-C(10)); 3.78 (*dd*, J = 7.6, 13.5, 1 H, PhCH=CHCH₂); 3.86 (*s*, MeO-C(3)); 6.25 (*m*, PhCH=CHCH₂); 6.55 (*d*, J = 15.4, PhCH=CHCH₂); 6.62 (*d*, J = 8.3, H–C(1)); 6.67 (*d*, J = 8.3, H–C(2)); 7.35 (*m*, Ph). ¹³C-NMR (75 MHz, CDCl₃): 17.5 (*Me*-C(5); 20.2; 25.9; 26.5; 31.6; 35.4; 41.1; 43.0; 46.0; 49.6; 56.4; 59.7; 95.3 (C(5)); 113.5; 119.1; 125.4; 126.0; 127.3; 128.6; 130.8; 133.3; 137.3; 142.5; 144.4; 212.0 (C(6)). EI-MS: 429 (100). HR-EI-MS: 429.2291 (C₂₈H₃₁N₁O₃⁺; calc. 429.2303).

REFERENCES

- [1] P. S. Portoghese, M. Sultana, H. Nagase, A. E. Takemori, J. Med. Chem. 1988, 31, 281.
- [2] P. S. Portoghese, D. L. Larson, M. Sultana, A. E. Takemori, J. Med. Chem. 1992, 35, 4325.
- [3] P. Grundt, A. J. Jales, J. R. Traynor, J. W. Lewis, S. M. Husbands, J. Med. Chem. 2003, 43, 1563.
- [4] M. D. Aceto, E. R. Bowman, L. S. Harris, E. L. May, NIDA Res. Monogr. 1999, 179, 333; J. H. Woods, G. Winger, J. R. Traynor, F. Medzihradsky, C. B. Smith, NIDA Res. Monogr. 1999, 179, 365.
- [5] J. W. Lewis, K. W. Bentley, A. Cowan, Ann. Rev. Pharmacol. 1971, 11, 241.
- [5] J. W. Lewis, K. W. Benney, A. Cowan, Ann. Rev. 1 narmacol. 1971, 11, 241.
- [6] A. Cowan, J. W. Lewis, 'Buprenorphine: Combatting Drug Abuse with a Unique Opioid', Wiley-Liss, Inc., New York, 1995, p. 326.
- [7] K. W. Bentley, D. G. Hardy, B. Meek, J. Am. Chem. Soc. 1967, 89, 3293.
- [8] K. W. Bentley, D. G. Hardy, C. F. Howell, W. Fulmor, J. E. Lancaster, J. J. Brown, G. O. Morton, R. A. Hardy Jr., J. Am. Chem. Soc. 1967, 89, 3303.
- [9] X. Tian, C. M. Dersch, K. McCullough, R. Horel, R. B. Rothman, K. C. Rice, NIDA Res. Monogr. 1999, 179, 247.
- [10] W. Fleischhacker, B. Richter, Chem. Ber. 1979, 112, 2539.
- [11] L. Revesz, R. A. Siegel, H. H. Buescher, M. Magdo, R. Maurer, H. Meigel, Helv. Chim. Acta 1990, 73, 326.
- [12] K. W. Bentley, J. C. Ball, J. Org. Chem., 1958, 23, 1720.
- [13] K. W. Bentley, D. G. Hardy, B. Meek, J. B. Taylor, J. J. Brown, G. O. Morton, J. Chem. Soc. C 1969, 2229.
- [14] R. M. Boden, M. Gates, S. P. Ho., P. Sundaraman, J. Org. Chem. 1982, 47, 1347.
- [15] K. W. Bentley, D. G. Hardy, J. Am. Chem. Soc. 1967, 89, 3267.
- [16] K. W. Bentley, D. G. Hardy, B. Meek, J. Am. Chem. Soc. 1967, 89, 3273.
- [17] K. Grivas, Ph.D Thesis, University of Bristol, 1995.
- [18] R. H. Woudenberg, T. S. Lie, L. Maat, Recl. Trav. Chim. Pays-Bas 1990, 109, 353.

Received October 28, 2002