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Diastereoselective addition of some carbanions to an optically active
trifluoromethyl imine derivative
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A B S T R A C T

Optically active trifluoromethyl 2-ethoxy-1-phenylethyl-1-imine can react with various carbanions

diastereoselectively, and in hetero Diels–Alder addition and in Mannich reaction, it can be derived to the

corresponding products with high optical purity.
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1. Introduction

In recent years, various fluorinated compounds have been
studied and developed in the field of pharmaceuticals [1].

Particularly, the interest for fluorinated a- or b-amino acids has
increased due to its importance for peptide synthesis [2,3].

Optically active trifluoromethylated b-amino acids or its
derivatives were prepared by diastereoselective addition reac-
tions of optically active imide or imine compounds with various
carbanions. For example, the Mannich reaction of optically
active trifluoromethyl tert-butylsulphinimide [4] and the
Strecker reaction of optically active trifluoromethyl 2-meth-
oxy-1-phenylmethyl-1-imine derived from optically active 2-
methoxy-1-phenylethyl-1-amine (with optically active phenyl-
glycinol as an ingredient) and trifluoroacetaldehyde [5] have
been studied.

This paper presents a study on highly diastereoselective
hetero Diels–Alder reaction and Mannich reaction by using
optically active trifluoromethyl-2-ethoxy-1-phenylethyl-1-im-
ine that is prepared from trifluoroacetaldehyde hydrate (2,2,2-
trifluoroethanediol) and optically active phenyglycinol in high
yield (Fig. 1).
* Corresponding author. Tel.: +81 834 62 1300; fax: +81 834 62 1303.
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2. Results and discussion

2.1. Hetero Diels–Alder addition of the trifluoromethyl imine (S)-1

The reaction of the optically active trifluoromethyl imine (S)-1
and 4-methoxy-2-trimethylsililoxy-1,3-butadiene (Danishefsky’s
diene) were reacted in the presence of Lewis acid, however in the
case of Yb(OTf)3 or BF3-OEt2 low diastereoselectivity was observed.

On the other hand, when ZnCl2, ZnBr2, or ZnI2 was used, the
reaction proceeded with high diastereoselectivity and with
moderate yield in non-polar solvents such as CH2Cl2, as shown
in Table 1. However, in those cases, the absolute configuration of
the 6-position on piperidine ring was reversed in the case of using
Yb(OTf)3.

Table 2 shows the influence of the reaction temperature and the
amount of Lewis acid for the case of ZnBr2. No improvement of
diastereoselectivity was observed in a temperature interval from
�40 8C to 40 8C. Moreover, when varying the amount of the Lewis
acid, yield and diastereoselectivity showed the best result at
50 mol% of ZnBr2.

2.2. Mannich reaction of the trifluoromethyl imine (S)-1

As for the reaction of the optically active trifluoromethyl imine
(S)-1 with corresponding lithium enolates prepared from various
ester derivatives, the b-lactam derivatives 5 were obtained
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Fig. 1. Preparation of the optically active trifluoromethyl imine derivative (S)-1.

Table 1
Hetero Diels–Alder addition of the optically active trifluoromethyl imine (S)-1.

OMe

TMSO

+
Lewis acid

N CF3

OTMS

MeO N CF3

O

H
+

N

EtO

CF3

EtO EtO

(S)-1 32

Danishefsky's 

diene(2.0mol),

solvent

.

Ent. Lewis acid Solventa Condition Yield (%) Selectivity (de %)

1 Yb(OTf)3 (10 mol%) CH3CN 0 8C � 24 h 60 11b

2 Yb(OTf)3 (10 mol%) THF �20 8C � 24 h 49 21b

3 Yb(OTf)3 (100 mol%) THF �40 8C � 16 h 41 21b

4 BF3�OEt2 (100 mol%) CH2Cl2 �80 8C � 16 h 8 9b

5 BF3�OEt2 (100 mol%) Tol �80 8C � 16 h Trace –

6 BF3�OEt2 (100 mol%) THF �40 8C � 16 h 62 27b

7 ZnCl2 (100 mol%)c THF �20 8C � 16 h 8 22

8 ZnCl2 (150 mol%)c CH2Cl2 0 8C � 16 h 21 50

9 ZnCl2 (150 mol%)c Tol �20 8C � 16 h 7 31

10 ZnCl2 (150 mol%) CH2Cl2 �40 8C � 16 h 22 87

11 ZnCl2 (150 mol%) CH2Cl2 rt � 16 h 39 96

12 ZnBr2 (150 mol%) CH2Cl2 rt � 16 h 39 94

13 ZnI2 (150 mol%) CH2Cl2 rt � 16 h 41 94

a The imene (S)-1 (1.30 mmol) in solvent(6 ml).
b Anti-form comformation.
c Used a solution of ZnCl2 in THF (0.5 M).

Table 2
Influence of the reaction temperature and of a Lewis acid’s amount.

OMe

TMSO

+
Lewis acid

N CF3

OTMS

MeO N CF3

O

H
+

N

EtO

CF3

EtO EtO

(S)-1 32

Danishefsky's 

diene(2.0mol),

solvent

.

Ent. Lewis acid Solvent Condition Yield (%) Selectivity (de %)

14 ZnBr2 (150 mol%) CH2Cl2 �10 8C � 16 h 35 96

15 ZnBr2 (150 mol%) CH2Cl2 0 8C � 16 h 32 91

16 ZnBr2 (150 mol%) CH2Cl2 rt � 16 h 39 94

17 ZnBr2 (150 mol%) CH2Cl2 40 8C � 16 h 30 97

18a ZnBr2 (150 mol%) CH2Cl2 rt � 16 h 39 95

19b ZnBr2 (150 mol%) CH2Cl2 rt � 16 h 37 96

20 ZnBr2 (100 mol%) CH2Cl2 rt � 16 h 44 97

21 ZnBr2 (80 mol%) CH2Cl2 rt � 16 h 41 97

22 ZnBr2 (50 mol%) CH2Cl2 rt � 16 h 46 98

23 ZnBr2 (20 mol%) CH2Cl2 rt � 16 h 33 96

a 2.0 volume of CH2Cl2 was used.
b 1.5 eq. of Danishefsky’s diene was used.
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Table 3
Mannich reaction of the optically active trifluoromethyl imine (S)-1.

+N

EtO

CF3

(S)-1 (1.30 mmol)

R2
O

OLi

R3R1 N
H

EtO
CF3

CO2R
3

R2R1
N

EtO

O

CF3

R1
R2

+

5 6

-78 Co x 4hrs, 

THF(6 ml)
4 (1.56 mmol)

a R1 = R2 = H, R3 = tBu

b R
1
 = R

2
 = H, R

3
 =

 i
Pr

c R1 = H, R2 = Cl, R3 = Me

a R1 = R2 = H

b R
1
 = Me, R

2
 = H

c R1 = OPh, R2 = H

.

Ent. R1 R2 R3 Yield (%) Selectivity (de %) 2S/2R 3S/3R

5 6 5 6 5 6

26 H H tBu 86 0 >99 – – –

30 H H iPr 56 23 98 >99 – –

28 H Cl Me 11 0 >99 – 87/13 –

25 H H Me 0 57 – 95 – –

24 H Me Me 0 68 – >99 – 80/20

29 H PhO Et 3 72 – >99 – 14/86
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Fig. 2. Transition state models in Hetero Diels–Alder addition.
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Fig. 3. Transition state model for stereoselectivity in Mannich reaction.
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diastereoselectively as main products when the ester part was a
methyl or an ethyl group (Table 3). In contrast, in case of tert-butyl
ester, open chain b-amino acid derivatives 5 were obtained
diastereoselectively. On the other hand, when the iso-propyl ester
was used as substrate, a mixture of b-lactam derivatives 6 and
open chain b-amino acid derivatives 5 was obtained. In the case of
the reaction of the lithium enolate prepared from methyl
propionate, the corresponding b-lactam derivative 6 was obtained
with high diastereoselectivity in 68% yield, and the (3S, 4S)-
configurated product was formed mainly.

3. Discussion

3.1. Hetero Diels–Alder addition of the trifluoromethyl imine (S)-1

In the case of the hetero Diels–Alder reaction using Yb(OTf)3 or
BF3-OEt2 as a Lewis acid, the low selectivity might be explained by
metal chelation only on a lone pair of the nitrogen, so the EtOCH2

group does weakly shield the a-face of the transition state.
On the other hand, when the zinc halide is used as the Lewis

acid, the reason of high selectivity is considered that zinc was
chelated on a lone pair of the nitrogen and a lone pare of oxygen as
a five-membered ring system, so the phenyl group was strongly
shielded at the b-face of the transition state (Fig. 2).

3.2. Mannich reaction of the trifluoromethyl imine (S)-1

As for the Mannich reaction, the high selectivity due to a six-
membered transition state of the imine (S)-1 and the enolate 4, b-
lactam derivatives 6 were produced from lithium amide of open
chain b-amino acid 5. In the case of open chain b-amino acid
derivatives as reactants, syn/anti (S/R) selectivity of the product is
considered to originate from generation of E/Z mixture of the
enolate anion (Fig. 3). But in the case of b-lactam derivative 6, the
configuration of 3-position on the b-lactam ring was migrated to
stable conformation by the lithium amide of the product 6.
Therefore, the trans-configuration of the 3- and 4-position on b-
lactam was mainly produced.

The progress of cyclization to the b-lactam is depended on R2

and R3 groups. For example, because the distance between anions
on the nitrogen and carbon atom in the carbonyl group increases
when both of R2 and R3 are bulky groups, the production of cyclic
compounds is prohibited.

4. Conclusions

In hetero Diels–Alder addition and in Mannich reaction,
optically active trifluoromethyl 2-ethoxy-1-phenylethyl-1-imine
can react with high diastereoselectively.

Appendix A. Supplementary data

Supplementary data associated with this article can be found, in the

online version, at http://dx.doi.org/10.1016/j.jfluchem.2013.03.019.
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