

View Article Online View Journal

ChemComm

Accepted Manuscript

This article can be cited before page numbers have been issued, to do this please use: S. Premaletha, A. Ghosh, S. Joseph, S. R. Yetra and A. Biju, *Chem. Commun.*, 2017, DOI: 10.1039/C6CC08640C.

This is an Accepted Manuscript, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about Accepted Manuscripts in the **author guidelines**.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard <u>Terms & Conditions</u> and the ethical guidelines, outlined in our <u>author and reviewer resource centre</u>, still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this Accepted Manuscript or any consequences arising from the use of any information it contains.

rsc.li/chemcomm

Published on 03 January 2017. Downloaded by University of Newcastle on 03/01/2017 12:38:28

COVAL SOCIETY

Journal Name

COMMUNICATION

Facile synthesis of *N*-acyl 2-aminobenzothiazoles by NHCcatalyzed direct oxidative amidation of aldehydes

Received 00th January 20xx, Accepted 00th January 20xx DOI: 10.1039/x0xx00000x

Sethulekshmi Premaletha,^a Arghya Ghosh,^{a,b} Sumi Joseph,^a Santhivardhana Reddy Yetra,^{*,a,b} and Akkattu T. Biju^{*,a,b}

www.rsc.org/

A mild, general, and high yielding synthesis of *N*-acyl 2aminobenzothiazoles has been demonstrated by the Nheterocyclic carbene (NHC)-organocatalyzed direct amidation of aldehydes with 2-aminobenzothiazoles proceeding via the acyl azolium intermediates. The carbene generated from the triazolium salt under oxidative conditions was the key for the success of this reaction. The method was subsequently applied to the synthesis of various biologically important *N*-acyl 2-aminobenzothiazoles.

Functionalized 2-aminobenzothiazoles are an important class of heterocyclic scaffolds due to the presence of these motifs in numerous biologically active natural products and several pharmaceuticals.¹ For example, Riluzole (A) is an important drug belonging to this group, employed for the treatment of amyotrophic lateral sclerosis (ALS), a lethal neurodegenerative disease (Figure 1).² Specifically, 2aminobenzothiazoles substituted on the endocyclic nitrogen are known to exhibit potential biological properties.³ Among the functionalized N-acyl 2-aminobenzothiazoles, the 4methoxy benzamide derivative of type **B** acts as 17β hydroxysteroid dehydrogenase type 1 inhibitors.⁴ Moreover, the 4-fluoro benzamide of type **C** exhibits non-xanthine based A_{2B} adenosine receptor antagonist activity,⁵ 4-nitro benzamide derivative of the type **D** acts as raf-1 inhibitor,⁶ and 4-chloro benzamide of type E is known to be potent and selective inhibitors of Candida albicans N-myristoyltransferase.⁷ Since this class of compounds exhibit wide range of biological properties, developing simple and facile synthetic strategies towards functionalized 2-aminobenzothiazoles has attracted much attention from organic chemists.

Traditionally, the *N*-acyl 2-aminobenzothiazoles have been synthesized by the reaction of 2-aminobenzothiazoles with the corresponding carboxylic acids/derivatives.⁸ However, in most

cases, the reaction needs a coupling reagent and a stoichiometric byproduct will be formed at the end of the reaction. In this context, we envisioned the N-heterocyclic carbene (NHC)^{9,10} organocatalyzed direct oxidative amidation of aldehydes with 2-aminobenzothiazoles as a straightforward route to access N-acyl 2-aminobenzothiazoles. Notably, NHCcatalyzed redox-amidation of α -functionalized aldehydes with amines has been independently reported by the Rovis¹¹ and Bode¹² groups.¹³ In 2010, the Studer group uncovered the oxidative amidation of aldehydes using hexafluoroisopropanol (HFIP) as the acyl transfer agent.¹⁴ Very recently, the Brown group disclosed the flow process for the NHC-mediated anodic oxidative amidation of aldehydes with amines.¹⁵ Herein, we report the NHC-catalyzed direct oxidative amidation of aldehydes with 2-aminobenzothiazoles.^{16,17} The reaction works under mild conditions without the aid of coupling agent or acyl transfer agent and the present method is extended to the synthesis of several drug analogs.

Figure 1. Biologically important 2-aminobenzothiazole derivatives

The present study commenced with the treatment of 4chlorobenzaldehyhe **1a** and 2-aminobenzothiazole **2a** with the triazolium salt **4** in presence of oxidant **5** and Cs_2CO_3 as the base. Delightfully, under these conditions, a facile reaction occurred leading to the formation of the expected *N*-acyl 2aminobenzothiazole **3a** in 83% yield (Table 1, entry 1). As anticipated, the reaction did not work at all in the absence of the triazolium salt **4** (entry 2). The performed reactions using

^a Organic Chemistry Division, CSIR-National Chemical Laboratory (CSIR-NCL), Dr. Homi Bhabha Road, Pune-411008, India. E-mail: * at.biju@ncl.res.in; v.santhivardhna@ncl.res.in

^cAcademy of Scientific and Innovative Research (AcSIR), New Delhi 110020, India Electronic Supplementary Information (ESI) available: Details on experimental procedure, characterization data of all compounds See DOI: 10.1039/x0xx00000x

Published on 03 January 2017. Downloaded by University of Newcastle on 03/01/2017 12:38:28

DOI: 10.1039/C6CC08640C Journal Name

common NHCs derived from precursors **6-8** returned reduced yield of **3a** (entries 3-5), whereas, NHC derived from **9** furnished **3a** in comparable yield (entry 6). The reaction resulted in similar outcome when performed in DBU instead of Cs_2CO_3 (entry 7), whereas the other bases, such as DMAP, KOt-Bu and, K_2CO_3 furnished inferior results (entries 8-10). A quick solvent screening revealed that, solvents such as DME, 1,4-dioxane and toluene gave reduced yields (entries 11-13). Interestingly, the use of CH_2Cl_2 improved the yield of **3a** to 93% (entry 14). Moreover, decreasing the amount of the carbene precursor **4** resulted in reduced yield of the product (entry 15). Thus, the use of triazolium salt **4** (20 mol %) and Cs_2CO_3 as base (1.2 equiv) in CH_2Cl_2 at 25 °C with **5** as the oxidant was found to be the optimal conditions for this reaction (entry 14).

 a Standard conditions: 1a (0.50 mmol), 2a (0.25 mmol), 4 (20 mol %), Cs_2CO_3 (1.2 equiv), 5 (2.0 equiv), THF (2.0 mL), 25 °C and 12 h. b Isolated yield after column chromatography.

With the optimized reaction conditions, we evaluated the substrate scope of this NHC-catalyzed amidation reaction. First, tolerance of this reaction with various aldehydes has been tested (Scheme 1). Aldehydes bearing electron-donating and -withdrawing groups at the *para*-position of the aryl ring were well tolerated, resulting in the synthesis of *N*-acyl 2-aminobenzothiazoles in high yields of >80% in all cases (**3a-3e**).

Additionally, substitution at the meta-position as well as orthoposition of aryl ring of 1 resulted in the smooth conversion to the desired product in good yield (3f-3h). Furthermore, polycyclic aromatic aldehydes such as naphthyl and pyrene carboxaldehydes afforded the desired product (3i, 3j) in good yields. Moreover, interesting aldehydes such as ferrocene carboxaldehyde and thiophene 2-carboxaldehyde also furnished the corresponding products in good yields, further expanding the scope of this direct amidation reaction (3k, 3l). Notably, α , β -unsaturated aldehydes with aromatic as well as aliphatic groups at the β -position underwent smooth amidation reaction to form the products in moderate to good yields (3m, 3n). Interestingly, citral can also be used as a coupling partner and the corresponding amide (3o) was isolated in 80% yield, demonstrating the versatility of this reaction.

Scheme 1. Substrate Scope for the Direct Amidation of Aldehydes: Variation of Aldehydes. Reaction conditions: **1** (1.0 mmol), **2a** (0.5 mmol), **4** (20 mol %), **5** (2.0 equiv), Cs_2CO_3 (1.2 equiv), CH_2CI_2 (4.0 mL), 25 °C and 12 h. Given are yields of isolated products after silica gel flash column chromatography.

Next, we focused our attention on the variation of 2aminobenzothiazoles (Scheme 2). 2-aminobenzothiazoles with electron-donating and -withdrawing groups at 6-position of aryl ring underwent efficient amidation reaction with 4chlorobenzaldehyde to afford the desired benzamide products (**3p-3t**) in good yields. Moreover, difluoro substitution in aryl ring of benzothiazole furnished the amide **3u** in 75% yield. Interestingly, 2-amino thiazole can also be used as coupling partner, and the target product **3v** was formed in 42% yield. Published on 03 January 2017. Downloaded by University of Newcastle on 03/01/2017 12:38:28

Journal Name

Scheme 2. Variation of 2-Aminobenzothiazoles. Reaction conditions: 1a (1.0 mmol), 2 (0.5 mmol), 4 (20 mol %), 5 (2.0 equiv), Cs₂CO₃ (1.2 equiv), CH₂Cl₂ (4.0 mL), 25 °C and 12 h. Given are yields of isoalted products after silica gel flash column chromatography.

Then, we turned our attention on application of the present method for the synthesis of various biologically active N-acyl 2-aminobenzothiazoles (Scheme 3). The direct amidation of benzaldehyde with 2-aminobenzothiazole under optimized reaction conditions afforded benzamide 3w in 74% yield. The compound **3w** is known to exhibit anti-infective and herbicidal activity.³ The reaction of 4-toluadehyde with 2a furnished the benzamide 3x in 67% yield, and 3x is known to act as inhibitors of protein-protein interaction between KRS and a laminin receptor.¹⁸ The benzamide **3y**, derived from 3,4dichlobenzaldehyde and 2a in 93% yield is known to bind to the nuclear hormone receptors.¹⁹ The α , β -unsaturated amide 3z was synthesized from cinnamaldehyde and 2a in 70% yield and $\boldsymbol{3z}$ possesses antioxidant and anticonvulsant activity. 20 Moreover, the reaction of 4-chloro benzaldehyde and 6-nitro 2-aminobenzothiazole afforded the antitubercular agent 3aa in 78% yield.²¹ Finally, the benzamide **3ab** was synthesized from 4-chlorobenzaldehyde and 6-methoxy 2-amino benzothiazole in 61% yield, and is useful in targeted cancer therapy.²²

To get insight into the mechanism of this reaction, we have carried out mechanistic experiments. When the reaction was

performed under optimized conditions in the absence of **5** using 2-bromoenal **10**, the unsaturated benzamide **3z** was formed in 65% yield (Scheme 4, eq 1). This indicates the intermediacy of NHC-bound acyl azolium **11** in the present reaction. Moreover, mixing **1a** with **2a** in the absence of NHC precatalyst **4** did not afford the amide product **3a** as well as the imine **12**, and the unreacted **1a** and **2a** were quantitatively recovered (eq 2). It may be mentioned that the absence of imine formation rules out the amide formation directly from imines under oxidative conditions.^{23,24}

DOI: 10.1039/C6CC08640C

COMMUNICATION

Scheme 4. Mechanistic Experiments

The tentative mechanism of this NHC-catalyzed amidation reaction is shown in Scheme 5. The NHC generated from **4** under basic conditions undergoes nucleophilic attack on the aldehyde **1** followed by a proton transfer generating the nucleophilic Breslow intermediate **I**.²⁵ In the presence of **5**, **I** undergoes oxidation to generate **II**, which is the key acylazolium intermediate. Nucleophilic **1**,2 addition of the amine **2a** on to intermediate **II** will form the aminal intermediate **III**. The intermediate **III**, upon regeneration of carbene affords the desired amide **3**.

Scheme 5. Proposed Mechanism of the Reaction

In conclusion, we have demonstrated the NHC-catalyzed oxidative amidation route for the synthesis of *N*-acyl 2-

DOI: 10.1039/C6CC08640C

Journal Name

COMMUNICATION

aminobenzothiazoles. The reaction proceeds via the generation of the NHC-bound acyl azolium intermediates. Mild reaction conditions without the aid of a coupling/acyl transfer agent, good functional group compatibility, high yields of products, convenient synthesis of drug analogs are the notable features of the present reaction.

Generous financial support from Board of Research in Nuclear Sciences (BRNS), Government of India (Grant No.37(2)/14/49/2014-BRNS/) has been kindly acknowledged. A. G. and S. R. Y thank CSIR, New Delhi for the research fellowships. We thank Dr. P. R. Rajamohanan for the excellent NMR support, Dr. B. Santhakumari for the HRMS data.

Notes and references

Published on 03 January 2017. Downloaded by University of Newcastle on 03/01/2017 12:38:28

- (a) R. Chikhale, S. Menghani, R. Babu, R. Bansode, G. Bhargavi, N. Karodia, M. V. Rajasekharan, A. Paradkar and P. Khedekar, *Eur. J. Med. Chem.*, 2015, **96**, 30; (b) V. Namani, B. B. K. Goud, Y. B. Kumari, R. Kumbham, K. Balakrishna and B. Bhima, *Asian J. Chem.*, 2015, **27**, 4575; (c) H. Y. Cho, A. U. Mushtaq, J. Y. Lee, D. G. Kim, M. S. Seok, M. Jang, B. W. Han, S. Kim and Y. H. Jeon, *FEBS Lett.*, 2014, **588**, 2851.
- (a) P. Jimonet, F. Audiau, M. Barreau, J.-C. Blanchard, A. Boireau, Y. Bour, M.-A. Cole'no, A. Doble, G. Doerflinger, C. D. Huu, M.-H. Donat, J. M. Duchesne, P. Ganil, C. Gue're'my, E. Honore', B. Just, R. Kerphirique, S. Gontier, P. Hubert, P. M. Laduron, J. L. Blevec, M. Meunier, J.-M. Miquet, C. Nemecek, M. Pasquet, O. Piot, J. Pratt, J. Rataud, M. Reibaud, J.-M. Stutzmann and S. Mignani, *J. Med. Chem.* 1999, **42**, 2828; (b) A. Doble, *Neurology*, 1996, **47**. S233.
- 3 D. Fajkusova, M. Pesko, S. Keltosova, J. Guo, Z. Oktabec, M. Vejsova, P. Kollar, A. Coffey, J. Csollei, K. Kralova and Jampilek, *Bioorg. Med. Chem.*, 2012, 20, 7059.
- 4 R. Hartmann, M. Frotscher, S. Marchais-Oberwinkler, A. Oster, and A. Spadaro, PCT Int. Appl., WO 2012025638, Mar 1, 2012.
- 5 A. W.-H. Cheung, J. Brinkman, F. Firooznia, A. Flohr, J. Grimsby, M. L. Gubler, K. Guertin, R. Hamid, N. Marcopulos, R. D. Norcross, L. Qi, G. Ramsey, K. J. Tan, Y. Wen and R. Sarabu, *Bioorg. Med. Chem. Lett.*, 2010, **20**, 4140.
- 6 E. Y. Song, N. Kaur, M.-Y. Park, Y. Jin, K. Lee, G. Kim, K. Y. Lee, J. S. Yang, J. H. Shin, K.-Y. Nam, K. T. No and G. Han, *Eur. J. Med. Chem.*, 2008, **43**, 1519.
- 7 K. Yamazaki, Y. Kaneko, K. Suwa, S. Ebara, K. Nakazawa and K. Yasuno, *Bioorg. Med. Chem.*, 2005, **13**, 2509.
- 8 For selected reviews, see: (a) R. M. de Figueiredo, J.-S. Suppo and J.-M. Campagne, *Chem. Rev.*, 2016, 116, DOI: 10.1021/acs.chem rev.6b00237; (b) V. Pattabiraman and J. W. Bode, *Nature*, 2011, **480**, 471; (c) E. Valeur and M. Bradley, *Chem. Soc. Rev.*, 2009, **38**, 606; (d) C. A. G. N. Montalbetti and V. Falque, *Tetrahedron*, 2005, **61**, 10827; (e) S.-Y. Han and Y.-A. Kim, *Tetrahedron*, 2004, **60**, 2447.
- 9 For recent reviews on NHC catalysis, see: (a) M. H. Wang and K. A. Scheidt, Angew. Chem., Int. Ed., 2016, 55, 14912; (b) D. M. Flanigan, F. Romanov-Michailidis, N. A. White and T. Rovis, Chem. Rev., 2015, 115, 9307; (c) R. S. Menon, A. T. Biju and V. Nair, Chem. Soc. Rev., 2015, 44, 5040; (d) S. R. Yetra, A. Patra and A. T. Biju, Synthesis, 2015, 47, 1357; (e) M. N. Hopkinson, C. Richter, M. Schedler and F. Glorius, Nature, 2014, 510, 485; (f) J. Mahatthananchai and J. W. Bode, Acc. Chem. Res., 2014, 47, 696; (g) S. J. Ryan, L. Candish and D. W. Lupton, Chem. Soc. Rev., 2013, 42, 4906; (h) A. Grossmann and D. Enders, Angew. Chem., Int. Ed., 2012, 51, 314; (i) X. Bugaut and F. Glorius, Chem. Soc. Rev., 2012, 41, 351; (j) J. Izquierdo, G. E. Hutson, D. T. Cohen and K. A. Scheidt,

Angew. Chem., Int. Ed., 2012, **51**, 11686; (k) D. T. Cohen and K. A.Scheidt, *Chem. Sci.*, 2012, **3**, 53; (l) A. T. Biju, N. Kuhl and F. Glorius, *Acc. Chem. Res.*, 2011, **44**, 1182; (m) V. Nair, R. S. Menon, A. T. Biju, C. R. Sinu, R. R. Paul, A. Jose and V. Sreekumar, *Chem. Soc. Rev.*, 2011, **40**, 5336; (n) D. Enders, O. Niemeier and A. Henseler, *Chem. Rev.*, 2007, **107**, 5606.

- For reviews on oxidative NHC-catalysis, see: (a) S. De Sarkar, A. Biswas, R. C. Samanta and A. Studer, *Chem. Eur. J.*, 2013, **19**, 4664; (b) H. U. Vora, P. Wheeler and T. Rovis, *Adv. Synth. Catal.*, 2012, **354**, 1617; (c) C. E. I. Knappke, A. Imami and A. Jacobi von Wangelin, *ChemCatChem.*, 2012, **4**, 937.
- 11 H. U. Vora and T. Rovis, J. Am. Chem. Soc., 2007, **129**, 13796.
- 12 J. W. Bode and S. S. Sohn, J. Am. Chem. Soc., 2007, **129**, 13798.
- 13 For the NHC-catalyzed amidation of unactivated esters with amino alcohols, see: M. Movassaghi and M. A. Schmidt, *Org. Lett.*, 2005, **7**, 2453.
- 14 (a) S. De Sarkar and A. Studer, Org. Lett., 2010, 12, 1992; See also: (b) S. De Sarkar, S. Grimme and A. Studer, J. Am. Chem. Soc., 2010, 132, 1190; (c) R. C. Samanta, S. De Sarkar, R. Fröhlich, S. Grimme and A. Studer, Chem. Sci., 2013, 4, 2177; (d) D. L. Cramer, S. Bera, and A. Studer, Chem. Eur. J., 2016, 22, 7403.
- 15 R. A. Green, D. Pletcher, S. G. Leach and R. C. D. Brown, Org. Lett., 2016, 18, 1198. A stoichiometric amounts of NHC was used in this method.
- 16 For the NHC-catalyzed oxidative amidation of aldehydes proceeding via the acyl anion equivalents, see: A. Alanthadka and C. U. Maheswari, *Adv. Synth. Catal.*, 2015, **357**, 1199.
- 17 For the NHC-catalyzed kinetic resolution of sulfoximines using oxidative amidation, see: S. Dong, M. Frings, H. Cheng, J. Wen, D. Zhang, G. Raabe and C. Bolm, J. Am. Chem. Soc., 2016, **138**, 2166; For related racemic report see: (b) A. Porey, S. Santra and J. Guin, Asian. J. Org. Chem., 2016, **5**, 870.
- 18 (a) K. Waisser, J. Kuneš and Ž. Odlerová, *Collect. Czech. Chem. Commun.*, 1991, **56**, 2978; (b) Y. Hur, D.-H. Kim, E.-K. Kim, J.-H. Park, J.-E. Joo, H.-W. Kang, S.-W. Oh, D.-K. Kim and K.-K. Ahn, PCT Int. Appl., 2013043001, Mar 28, 2013.
- 19 S. Kerwin, L. H. Hurley, M. R. DeLuca and B. M. Moore, III. PCT Int. Appl., 9748694, Dec 24, 1997.
- 20 (a) N. D. Amnerkar, and K. P. Bhusari, *Eur. J. Med. Chem.*, 2010, **45**, 149; (b) S. Durgamma, P. R. Reddy, V. Padmavathi and A. Padmaja, *J. Het. Chem.*, 2016, **53**, 738.
- 21 A. Kamal, R. V. C. R. N. C. Shetti, P. Swapna, S. Azeeza, A. M. Reddy, I. A. Khan, S. T. Abdullah, S. Sharma and N. P. Kalia, Indian Pat. Appl., 2010DE02179, Mar 16, 2012.
- 22 J. M. Ready, D. Nijhawan, S. S. Gonzales, and P. Theodoropoulos, PCT Int. Appl., 2015035051, Mar 12, 2015.
- 23 E. S. Devi, A. Alanthadka, A. Tamilselvi, S. Nagarajan, V. Sridharana and C. U. Maheswari, *Org. Biomol. Chem.*, 2016, 14, 8228.
- 24 Competition carried 2experiments out between aminobenzothiazole and benzyl alcohol with 4chlorobenzaldehyde under the present reaction conditions revealed that the benzyl alcohol reacted ~2 times faster (leading to the formation of the corresponding benzyl ester) compared amidation to reaction using 2aminobenzothiazole.
- 25 R. Breslow, J. Am. Chem. Soc., 1958, 80, 3719.