Reversal of Stereoselectivity in the Evans Aldol Reaction of α, α -Difluoro and α, α, α -Trifluoro Carbonyl Compounds

Katsuhiko Iseki,*,ª Satoshi Oishi,ª Takeo Taguchi^b and Yoshiro Kobayashi*,ª

^aMEC Laboratory, Daikin Industries, Ltd., Miyukigaoka, Tsukuba, Ibaraki 305, Japan and ^bTokyo College of Pharmacy, 1432-1 Horinouchi, Hachioji, Tokyo 192-03, Japan

Abstract: The Evans addol reaction of hexafluoroacetone and trifluoroacetaldehyde causes reversal of stereoselectivity. The boron enolate derived from oxazolidinone 1 reacts with trifluoroacetaldehyde to give anti and "non-Evans" syn aldols with stereoselectivities in the range, 7:3-17:3.

The synthesis of chiral trifluoromethylated molecules is an important aspect of organofluorine chemistry in relation to analytical and medicinal chemistry and opto-electric substances such as liquid crystals.¹ Optically active N-acyloxazolidinones have been applied to the stereocontrolled synthesis of chiral trifluoromethylated compounds.² This paper discusses the unexpected reversal of stereochemistry in the Evans aldol reaction of Nacyloxazolidinones with α, α -difluoro and α, α, α -trifluoro carbonyl compounds and applications of this finding to phenylglyoxal and ethyl glyoxylate.

 $R \underbrace{\bigvee_{i-Pr}}_{i-Pr} \underbrace{i) \operatorname{Bu}_{2}\operatorname{BOTf}(1.2eq), \operatorname{Et}_{3}\operatorname{N}(1.3eq)}_{ii) \operatorname{hexafluoroacetone}} \underbrace{\operatorname{HO}}_{CF_{3}} \underbrace{\bigvee_{i-Pr}}_{i-Pr} \underbrace{\operatorname{HO}}_{i-78^{\circ}\operatorname{C} \rightarrow -30^{\circ}\operatorname{C}} \underbrace{\operatorname{HO}}_{i-Pr} \underbrace{\operatorname{HO}}_{i-P$

Table1. Aldol Reactions of Imide 1 with Hexafluoroacetone

Entry	Imide	1	Product 2			
	R		% Yield ^{a)}	% De ^{b)}		
1	Ме	(1 a)	90	>99(R) ^{c)}	(2a)	
2	Bn	(1b)	86(94)	>99(R) ^{c)}	(2b)	
3	<i>n</i> -Bu	(1 c)	88(96)	95(R) ^{c)}	(2c)	

a) All yields are those of isolated compounds. Values in parentheses are conversion yields; b) Des were determined by capillary GC; c) Configuration of a new asymmetric center. Relative stereochemical assignments were definitely established based on X-ray structure analysis.

The reversal of stereoselectivity in the Evans aldol reaction (boron enolate of the chiral *N*-acyloxazolidinone with aldehyde) has been shown to be achieved on adding an excess of dibutylboron triflate $(Bu_2BOTf)^3$ or Lewis acids.⁴ As shown in Table 1, reactions of oxazolidinone 1 with hexafluoroacetone indicated normal Evans stereoselectivity to occur only to a limited extent even *in the absence of excess* Bu_2BOTf or Lewis acids.^{5,6} Table 2, entries 1-4, show aldol reactions of 1 with trifluoroacetaldehyde to proceed with similar reverse stereoselectivity to provide anti aldols (T₂) selectively along with "non-Evans"

Table2. Aldol Reactions of Imide 1 with Aldehydes

Entry	Entry Imide 1			Aldehyde 3		Product 4				
	R	R1		R ²				% Yield ^{a)}	$E_2: T_2: E_1: T_1^{b}$	
1	Ме	i-Pr	(1a)	CF ₃	(3a)			62(65)	15 ^e): 85 ^e): 0: 0	(4a)
2	Bn	i-Pr	(1b)	CF ₃	(3a)			64(75)	30 ^f):70 ^g):0:0	(4b)
3	<i>n</i> -Bu	i-Pr	(lc)	CF ₃	(3 a)			60(64)	19 ^{h)} : 81 ⁱ⁾ : 0 : 0	(4c)
4	Me	Bn	(1d)	CF ₃	(3a)			80	22j) : 78 ^{k)} : 0 : 0	(4d)
5c)	Me	i-Pr	(1a)	CF ₃	(3a)			83(88)	54:46:0:0	(4 a)
6d)	Me	i-Pr	(1 a)	Ph(CH	H2)3CF2	(3b)		33(56)	12 ^l): 82 ^m): 6 ⁿ): 0	(4e)
7d)	Me	i-Pr	(1a)	PhCO	(3c)			55(65)	42 ^{o)} : 54 ^{p)} : 4 ^{q)} : 0	(4f)
8d)	Me	i-Pr	(1a)	EtOC	0	(3d)		50(55)	35 ^r): 44 ^s): 20 ^t): 1 ^u)	(4g)

a) All yields are those of isolated compounds. Values in parentheses are conversion yields; b) Ratios were determined by capillary GC and isolated yields. Except for 4a, relative and absolute stereochemical assignments were made based on conversion to stereochemically confirmed compounds; c) The reaction was carried out in the presence of $TiCl_4$;⁷ d) The aldehyde was added at -5°C and the reaction mixture was stirred at the same temperature for 30min; e) Relative stereochemical assignments were confirmed based on X-ray structure analysis; f) Reduction with LiBH₄ and acetalization (PhCH(OMe)₂, TsOH) gave 5;⁹ g) 4b(T₂) was coverted to acetal 6.⁹ See footnote f; h) Reduction with LiBH₄ in THF gave 7;¹⁰ i) Reduction with LiBH₄ gave 8;¹⁰ j) Reduction with LiBH₄ and benzoylation gave 9 which was prepared from 4a(E₂) in the same manner. See footnote e; k) Reduction with LiBH₄ gave 12;¹¹ n) Reduction with LiBH₄ gave 11;¹¹ m) Reduction with LiBH₄ gave 12;¹¹ n) Reduction with LiBH₄ gave 11;¹² p) 4f(T₂) was converted to diol 14.¹² See footnote o; q) 4f(E₁) was converted to the enantiomer of 13.¹² See footnote 0; r) Ethanolysis (NaH in EtOH, 0°C) gave diester 15;¹³ s) Ethanolysis gave the enantiomer of 15.¹³ See footnote r; u) Ethanolysis gave the enantiomer of 16.¹³ See footnote r.

syn aldols (E₂).⁵ Anti-syn ratios ranged from 7:3 to 17:3. The addition of TiCl₄ to the boron enolate prior to the aldehyde⁷ resulted in loss of anti-syn selectivity (entry 5). With α,α -difluoroaldehyde 3b, a small amount of the normal Evans syn aldol (E₁) was formed. However, the anti aldol (T₂) was the major product (entry 6).

The reversal of facial selectivity of the boron enolate with hexafluoroacetone, trifluoroacetaldehyde and α, α -difluoroaldehyde 3b may possibly be related to the high electronegativity of fluorine atoms. Low Lewis basicity and high electrophilicity⁸ of α , α -difluoro and α , α , α -trifluoro carbonyl compounds prevent carbonyls from coordinating the boron and promote reactions via open transition states. With trifluoroacetaldehyde, open transition state 1 may be favorable for giving the anti aldol (T₂) (Scheme 1). TiCl₄ may lead to competition between transion states 1 and 2 (Scheme 1).

The above considerations were extended to phenylglyoxal and ethyl glyoxylate. As shown in entry 7, with phenylglyoxal, the Evans syn product (E_1) was produced only to a slight degree. Reaction with ethyl glyoxylate gave an $E_2:T_2:E_1:T_1$ ratio of 35:44:20:1 (entry 8). In both cases, reversal of facial selectivity was predominant.

Scheme 1.

The following experiment is representative for the present study: To a solution of oxazolidinone 1a (2mmol) in CH₂Cl₂ (4ml) at -78°C were added Bu₂BOTf (2.3mmol) and Et₃N (2.65mmol). The reaction mitxture was warmed to 0°C. After 45min at 0°C, the solution was recooled to -78°C, followed by adding gaseous trifluoroacetaldehyde (6mmol). After 30min at -78°C and warming to 0°C over 2h, the reaction was quenched with a mixture of phosphate buffer (pH 7), methanol and 30% H₂O₂. Flash chromatography gave the anti aldol (T₂) (52%), non-Evans syn aldol (E₂) (10%) and starting material 1a (5%).

In conclusion, the present results indicate the Evans aldol reaction of α, α -difluoro and α, α, α -trifluoro carbonyl compounds to cause reversal of facial selectivity. This finding was extended to phenylglyoxal and ethyl glyoxylate. Some carbonyl compounds having an electron-withdrawing group at the α -position may also lead to reversal of stereoselectivity.

Acknowledgement: The authors thank Prof. M. Shibasaki of Tokyo University for his valuable comments, Dr. M. Shiro of Rigaku Corporation for conducting the X-ray structure analysis and Mr. D. Asada and Miss M. Takahashi for their technical assistance.

References and Notes

- 1. Bravo, P.; Resnati, G. Tetrahedron: Asymmetry, 1990, 1, 661.
- a) Yamazaki, T.; Haga, J.; Kitazume, T. Chem. Lett. 1991, 2175; b) Iseki, K.; Nagai, T.; Kobayashi, Y. Tetrahedron Lett. 1993, 34, 2169.

- a) Danda, H.; Hansen, M. M.; Heathcock, C. H. J. Org. Chem. 1990, 55, 173; b) Heathcock, C. H. Aldrichimica Acta 1990, 23, 99; c) Hayashi, K.; Hamada, Y.; Shioiri, T. Tetrahedron Lett. 1991, 32, 7287.
- a) Walker, M. A.; Heathcock, C. H. J. Org. Chem. 1991, 56, 5747; b) Heathcock, C. H. Aldrichimica Acta 1990, 23, 99; c) Chibale, K.; Warren, S. Tetrahedron Lett. 1992, 33, 4369.
- 5. Each reaction was carried out according to the procedure of Gage, J. R.; Evans, D. A. Org. Synth. 1990, 68, 83.
- 6. The enantiomer of 2a was used to prepare a novel fluorinated vitamin D₂ analogue, 24-epi-26,26,26,27,27,27-hexafluoro-1α,25-dihydroxyvitamin D₂, with possible potential for treating bone diseases, osteoporosis. Preparation of the vitamin D₂ analogue and its biological properties will be reported in the future.
- 7. See general method A in ref. 4a.
- 8. Aldol reactions of the boron enolate derived from imide 1 with α, α, α -trifluoroacetone and acetone could not be successfully carried out.
- 9. Acetal 5 was prepared by the reduction of ethyl (2R,3R)-2-benzyl-4,4,4-trifluoro-3-hydroxybutanoate (Seebach, D.; Beck, A. K.; Renaud, P. Angew. Chem. Int. Ed. Engl. 1986, 25, 98) with LiAlH₄ and acetalization of the resultant diol. In the same manner, the enatiomer of 6 was obtained from ethyl (2S,3R)-2-benzyl-4,4,4-trifluoro-3-hydroxybutanoate.
- 10. Diol 7 and the enantiomer of 8 were prepared as follows. Crotylation of ethyl (R)-3-hydroxy-4,4,4-trifluorobutanoate (Seebach, D.; Renaud, P.; Schweizer, W. B.; Züger, M. F.; Brienne, M.-J. Helv. Chim. Acta 1984, 67, 1843) gave ethyl (2R,3R)-2-crotyl-4,4,4-trifluoro-3-hydroxybutanoate and its (2S,3R)-isomer. The former was converted to 7 by hydrogenation (H₂, Pd-C) and reduction (LiAlH₄). In the same manner, the enantiomer of 8 was obtained from the latter.
- 11. Diols 11 and 12 were prepared starting from methyl (S)-3-hydroxy-2-methylpropionate as follows. The (S)-propionate was converted to aldehyde 17 by benzylation (BnOC(=NH)CCl₃,, TsOH), reduction (LiAlH4) and Swern oxidation. Treatment of 17 with zinc and ethyl bromodifluoroacetate and methoxymethylation gave ester 18. Grignard reaction of 18 (Mg, Br(CH₂)₂Ph) and reduction wth LiAlH4 gave 19. Treatment of 19 with thiocarbonyldiimidazole, reduction (n-Bu₃SnH in toluene, reflux) and demethoxymethylation afforded alcohol 20. Finally, after the hydrogenolysis of 20 (H₂, Raney Ni), 11 and 12 were obtained. The relative stereochemistry of 12 was determined to be anti by ¹H NMR spectroscopy of acetal 21.

- 12. Tsukuda, T.; Kakisawa, H.; Painuly, P.; Shimizu, Y. Tetrahedron Lett. 1989, 30, 4245.
- a) Mori, K.; Iwasawa, H. Tetrahedron 1980, 36, 87; b) Akita, H.; Matsukura, H.; Oishi, T. Chem. Pharm. Bull. 1986, 34, 2656.

(Received in Japan 27 August 1993)