

View Article Online View Journal

Dalton Transactions

Accepted Manuscript

This article can be cited before page numbers have been issued, to do this please use: A. Hazari, L. K. Das, R. M. Kadam, A. Bauza, A. Frontera and A. Ghosh, *Dalton Trans.*, 2015, DOI: 10.1039/C4DT03446E.

This is an *Accepted Manuscript*, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about *Accepted Manuscripts* in the **Information for Authors**.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard <u>Terms & Conditions</u> and the <u>Ethical guidelines</u> still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this *Accepted Manuscript* or any consequences arising from the use of any information it contains.

www.rsc.org/dalton

Graphical Abstract

Unprecedented structural variations in trinuclear mixed valence Co(II/III) complexes derived from a Schiff base and its reduced form: Theoretical studies, pnicogen bonding interactions and catecholase-like activities

Alokesh Hazari, Lakshmi Kanta Das, Ramakant M. Kadam, Antonio Bauzá, Antonio Frontera* and Ashutosh Ghosh*

Solvent induced *cis* and *trans* forms of a mixed valence trinuclear Co(II/III) complex with a salen type Schiff base ligand are isolated. The reduction of the Schiff base results in the formation of an unprecedented cyclic trinuclear mixed valence Co(II/III) complex in which a $\mu_{1,3}$ -N₃ coordinated azido ligand participates in pnicogen bonding interactions established by DFT calculations. The catecholase like activities in the aerial oxidation of 3,5-di-tert-butylcatechol to the corresponding o-quinone of all three complexes have been examined.

Cite this: DOI: 10.1039/c0xx00000x

ARTICLE TYPE

Unprecedented structural variations in trinuclear mixed valence Co(II/III) complexes derived from a Schiff base and its reduced form: Theoretical studies, pnicogen bonding interactions and catecholase-like activities

⁵ Alokesh Hazari,^a Lakshmi Kanta Das,^a Ramakant M. Kadam,^b Antonio Bauzá,^c Antonio Frontera^{*c} and Ashutosh Ghosh^{*a}

Received (in XXX, XXX) XthXXXXXXX 20XX, Accepted Xth XXXXXXXX 20XX DOI: 10.1039/b000000x

Three new mixed valence trinuclear Co(II/III) compounds *cis*-[Co₃L₂(MeOH)₂(N₃)₂($\mu_{1,1}$ -N₃)₂] (1), *trans*-[Co₃L₂(H₂O)₂(N₃)₂($\mu_{1,1}$ -N₃)₂]·(H₂O)₂ (2) and [Co₃L²₂(N₃)₃($\mu_{1,3}$ -N₃)] (3) have been synthesized by reacting a di-Schiff base ligand (H₂L) or its reduced form [H₂L^R] (where H₂L = N,N'-bis(salicylidene)-1,3-propanediamine and H₂L^R = N,N'-bis(2- hydroxybenzyl)-1,3-propanediamine) with cobalt perchlorate hexahydrate and sodium azide. All three products have been characterized by IR, UV-Vis and EPR spectroscopies, ESI-MS, elemental, powder and single crystal X-ray diffraction analyses. Complex 1 is an angular trinuclear species in which two terminal octahedral Co(III)N₂O₄ centers coordinate to the central octahedral cobalt(II) ion through μ_2 -phenoxido oxygen and $\mu_{1,1}$ -azido ¹⁵ nitrogen atoms along with two mutually *cis*-oxygen atoms of methanol molecules. On the other hand, in linear trinuclear complex 2, in addition to the μ_2 -phenoxido and $\mu_{1,1}$ -azido bridges with terminal octahedral Co(III) solvent dependent. In complex 3, the two terminal octahedral Co(III)N₂O₄ centers coordinate to the central penta-coordinated Co(II) is solvent dependent. In complex 3, the two terminal octahedral Co(III)N₂O₄ centers coordinate to the central penta-coordinated Co(II) is solvent dependent. In complex 3, the two terminal octahedral Co(III)N₂O₄ centers coordinate to the central penta-coordinated Co(II) is bended with two bridges along with nitrogen atom of a terminal azido ligand. In addition, the two terminal Co(III) are connected through a $\mu_{1,3}$ -azido bridge that participates in pnicogen bonding interactions (intermoluclar N–N interaction) as acceptors. Both the *cis* and *trans* isomeric forms of 1 and 2 have been optimized using density functional theory (DFT) calculations and it is found that the *cis* configuration is energetically more favorable than the *trans* one. However, *trans* configuration of 2 is stabilized

energetically more favorable than the *trans* one. However, *trans* configuration of 2 is stabilized by the hydrogen bonding network involving a water dimer. The pnicogen bonding interactions have been demonstrated using MEP surfaces and CSD search which support the counter intuitive electron acceptor ability of the $\mu_{1,3}$ -azido ligand. Complexes 1–3 exhibit catecholase-like activities in the aerial 25 oxidation of 3,5-di-tert-butylcatechol to the corresponding *o*-quinone. Kinetic data analyses of this oxidation reaction in acetonitrile reveal that the catecholase-like activity follows the order: 1 ($k_{cat} = 142 h^{-1}$) >3($k_{cat} = 99 h^{-1}$) >2 ($k_{cat} = 85 h^{-1}$). Mechanistic investigations

reveal that the catecholase-like activity follows the order: $1 (k_{cat} = 142 h^{-1}) > 3(k_{cat} = 99 h^{-1}) > 2 (k_{cat} = 85 h^{-1})$. Mechanistic investigations of the catalytic behaviors by X-band EPR spectroscopy and estimation of hydrogen peroxide formation indicate that the oxidation reaction proceeds through the reduction of Co(III) to Co(II).

30 Introduction

Cobalt complexes derived from Schiff bases have attracted an extensive interest in the area of coordination chemistry due to their intriguing structural features and various applications covering catalysis in organic synthesis, photochemistry, ³⁵ electrochemistry and important biological applications.¹⁻⁴ The salen-type di-Schiff base ligands on reaction with Co(II) in an aerobic condition are known to afford mixed valence tri-nuclear complexes.⁵ The main structural feature of these complexes is a central Co(II) ion linked to two terminal Co(III) ions through

- ⁴⁰ double phenoxido bridges along with an additional anionic bridge between the terminal and central cobalt atoms, which is usually a carboxylate group⁶ except three examples where this bridge is chloride, azido, or sulphito.⁷⁻⁹ It is interesting to mention that in most of such complexes the two anionic bridges are mutually *cis*
- ⁴⁵ excepting one in which two mutually *trans*-acetate ions link the terminal Co(III) to central Co(II).¹⁰ This feature is somewhat extraordinary as the similar homo- and hetero-trinuclear complexes of divalent metal ions (Mn(II), Co(II), Ni(II),Cu(II), Zn(II)) are abundant with various anionic coligands (e.g.
- ⁵⁰ carboxylate, azide, cyanate, etc) and usually these bridges are mutually *trans* to each other.¹¹⁻¹⁵

Recently, it has been shown that the use of reduced Schiff base ligands may bring about fascinating variations in the structure of the complexes mainly due to fact that (i) the reduction of the rigid ⁵⁵ azomethine (-CH=N-) fragment to less constrained -CH₂-NH-moiety make them more flexible compared to the Schiff bases¹⁶ and (ii) the introduction of a H-atom on the nitrogen not only has considerable effect on the crystal packing but it can even stabilize rather unusual isomers.¹⁷

⁶⁰ In this present investigation, our aim is to synthesize mixed valence cobalt complexes using a salen-type di-Schiff base ligand and its corresponding reduced analogue along with azide as coligand in order to study their structural variations and catecholase-like activities.¹⁸ Catecholase-like activity of some ⁶⁵ model coordination complexes has been a topic of recent interest for the development of new bioinspired catalysts.¹⁹ Catechol oxidase is a copper-containing type-III active-site protein that catalyzes the oxidation reaction of a wide range of *o*-diphenols (catechols) to corresponding *o*-quinones through a process known ⁷⁰ as catecholase activity. From the reports of distinguished research groups, the ability of dicopper complexes to oxidize phenols and catechols is well established.²⁰ From these extensive studies, it is concluded that various structural factors such as metal-metal distances, electrochemical properties of the complexes, it is complexes.²⁰ The complexes of the complexes.²⁰ The complexes of the complexes of the complexes of the complexes of the complexes.²⁰ The complexes of the complexes.²⁰ The complexes of the complexes.²⁰ The complexes of th

This journal is $\ensuremath{\mathbb{C}}$ The Royal Society of Chemistry [year]

exogenous bridging ligands, the ligand structure, and the pH can influence the catecholase activity.¹⁹⁻²¹ Furthermore, the mechanistic studies for the oxidation of catecholic substrate to their respective quinone reveals that the reaction proceeds ⁵ through the formation of either a dicopper(II) catecholate intermediate or an organic radical intermediate such as copper(I) semiquinonate.²² Recent investigations have also shown that some manganese(II/III), nickel(II), zinc(II) and cobalt(II/III) species can also mediate such catechol oxidation.²³⁻²⁶ It becomes ¹⁰ evident that in the case of Ni(II) and Mn(III) metal-centered redox participation is most probably responsible for the catecholase activity of these model compounds whereas in case

catecholase activity of these model compounds whereas in case of redox innocent Zn(II) this activity can be promoted through the generation of ligand-centered radical. However, to the best of our 15 knowledge, no mechanistic studies have yet been done on the catecholase-like activity of cobalt complexes.

- In this report, we have synthesized and structurally characterized two mixed valence trinucler complexes cis- $[Co_3L_2(MeOH)_2(N_3)_2(\mu_{1,1}-N_3)_2]$ and trans-(1) $_{20}$ [Co₃L₂(H₂O)₂(N₃)₂($\mu_{1,1}$ -N₃)₂]·(H₂O)₂ (**2**) by reacting a di-Schiff base ligand (H₂L) (where $H_2L = N,N'$ -bis(salicylidene)-1,3propanediamine), cobalt perchlorate hexahydrate and sodium azide in two different solvents, methanol and ethanol, respectively. Two solvent molecules (methanol or water) which 25 coordinate to the central Co(II) are cis in 1 but trans in 2. Another complex, $[Co_3L^R_2(N_3)_3(\mu_{1,3}-N_3)]$ (3) has been synthesized with the reduced form of this Schiff base ligand, N,N'-bis(2hydroxybenzyl)-1,3-propanediamine (H_2L^R) . The unique feature of **3** is a $\mu_{1,3}$ -N₃ bridge between two terminal Co(III) and its 30 participation in pnicogen bonding interactions as acceptor. Theoretical study has been performed using DFT calculations at the BP86-D3/def2-TZVP level of theory, to analyze (i) the energy difference between the cis-trans isomers, (ii) how the solvent molecule influences the stability of the isomers, (iii) the probable 35 explanation for the isolation of both the isomers in the solid state, and (iv) some non-covalent interactions including pnicogen bonding interactions²⁷ observed in the crystal packing of complex 3. To the best of our knowledge, the *cis-trans* configurational changes in mixed valentCo(III)-Co(II)-Co(III) as in 1 and 2, and 40 the presence of pnicogen interaction in azide in 3 are unprecedented. All three complexes show catecholase-like activity. The EPR spectral investigation reveals that the process is most likely associated with the reduction of cobalt(III) to cobalt(II), as proposed for the copper-based models of this
- 45 biocatalyst.

Experimental

Starting Materials

⁵⁰ The salicylaldehyde, 1,3-propanediamine and sodium borohydride were purchased from Lancaster and were of reagent grade. They were used without further purification.

Caution! Azide salts and Perchlorate salts of metal complexes with organic ligands are potentially explosive. Only a small

ss amount of material should be prepared and it should be handled with care.

Synthesis of the Schiff Base Ligand, N,N'-bis(salicylidene)-1,3-propanediamine (H_2L)

⁶⁰ The Schiff base ligand was synthesized by a reported method.²⁸ 5 mmol of 1,3-propanediamine (0.42 mL) was mixed with 10 mmol of the salicylaldehyde (1.04 mL) in methanol or ethanol (20 mL). The resulting solution was refluxed for *ca*. 2 h and allowed to cool. The resulting yellow solution of the ligand was purified by

65 removing methanol completely from the resultant solution under

vacuum to result in a viscous liquid, followed by addition of a mixture of petroleum ether and chloroform. The extracted pure yellow solid mass of ligand was dissolved in methanol or ethanol and used for complexation. The ligand was characterized by ⁷⁰ elemental analyses and ¹H NMR study.

Ligand (H₂L). Anal. Calcd for C₁₇H₁₈N₂O₂: C 72.32, H 6.43, N 9.92; Found: C 72.48, H 6.69, N 10.05%. ¹H-NMR (CDCl₃,

300 MHz) (Fig. S1) in ppm: h = 2.08-2.17 (m, 2H, CH₂); g = 3.746-3.704 (t, 2H, CH₂); b,c,d and e = 6.863-7.348 (aromatic H); $7_5 a = 8.380$ (S, 1H,CH=N-)

Synthesis of the reduced Schiff base ligand, N,N'-bis(2-hydroxybenzyl)-1,3-propanediamine (H_2L^R)

The di-Schiff base ligand (H_2L) was synthesized as stated above. Then 20 mL (5 mmol) of this prepared methanolic ligand solution

- ⁸⁰ (H₂L) was cooled to 0°C, and solid sodium borohydride (570 mg, 15 mmol) was added to this methanolic solution with stirring. After completion of addition, the resulting solution was acidified with concentrated HCl (10 mL) and then evaporated to dryness.²⁹ The reduced Schiff base ligand H₂L^R was extracted from the solid
- ⁸⁵ mass with methanol. The ligand was purified in same procedure as described above for H₂L. The purified ligand was dissolved in methanol and used for complexation. Ligand (H₂L^R). Anal. Calcd for C₁₇H₂₂N₂O₂: C 71.30, H 7.74, N

Ligand (H_{2L}). Anal. Calcd for $C_{17}H_{22}N_2O_2$: C /1.30, H 7.74, N 9.78; Found: C 71.48, H 7.69, N 9.65%. ¹H-NMR (CDCl₃, 200 MH) (Eigen 20) in the state of the

⁹⁰ 300 MHz) (Fig. S2) in ppm: h = 1.68-1.82 (m, 2H, -CH₂); k = 2.08 (s, H, -NH) g = 2.71-3.79 (m, 2H, -CH₂); a = 3.99 (s, 2H, -CH₂) b,c,d and e = 6.75-7.19 (aromatic H).

Synthesis of the complex cis-[Co₃L₂(MeOH)₂(N₃)₂($\mu_{1,1}$ -N₃)₂] (1)

- ⁹⁵ The yellow colored methanolic solution (20 mL) of the di-Schiff base (H₂L) ligand (2 mmol) was taken in a beaker. To this methanolic solution, a water solution (1 mL) of Co(ClO₄)₂·6H₂O (1.098 g, 3 mmol) followed by an aqueous solution (1 mL) of sodium azide (0.260 g, 4mmol) was added. The mixture was ¹⁰⁰ stirred for 1 h and then filtered. The filtrate was allowed to stand overnight when needle shaped dark brown X-ray quality single crystals of 1 appeared at the bottom of the beaker. The crystals were washed with a methanol–water mixture and dried in a desiccator containing anhydrous CaCl₂ and then characterized by
- ¹⁰⁵ elemental analysis, spectroscopic methods, and X-ray diffraction. Complex 1: Yield: 0.834 g, 86%. Anal. Calc. for $C_{36}H_{40}Co_3N_{16}O_6$: C 44.59, H 4.16, N 23.11; found: C 44.72, H 4.35, N 22.95%; UV/vis: [λ_{max} in nm (ϵ_{max} in M⁻¹ cm⁻¹)] (MeCN) = 618(379), 377(21661), and 276(17532) and λ_{max} in nm (solid, ¹¹⁰ reflectance) = 617 and 378. IR (KBr) in cm⁻¹: v(C=N) 1621,
- $v(N_3)$ 2061 and 2010. HRMS (m/z, ESI⁺): found for [CoL(Na)]⁺ = 362.0504 (calc. 362.0441), [Co₂L₂(CH₃CN)Na]⁺ = 743.1162 (calc. 743.1284), [Co₃L₂(N₃)₃]⁺ = 863.0811 (calc. 863.0696).

115 Synthesis of the complex, trans-[Co₃L₂(H₂O)₂(N₃)₂($\mu_{1,1}$ -N₃)₂]·(H₂O)₂ (2)

Complex **2** was prepared by mixing the same components in the same stoichiometric ratio as for **1** but using ethanol instead of methanol as solvent. In this case, square shaped blackish brown ¹²⁰ X-ray quality single crystals appeared at the bottom of the vessel on keeping the filtrate at open atmosphere.

Complex **2**: Yield: 0.694 g, 71%. Anal. Calc. for $C_{34}H_{40}Co_3N_{16}O_8$: C 41.77, H 4.12, N 22.92; found: C 41.54, H 4.32, N 23.06%; UV/vis: $[\lambda_{max} \text{ in } m(\varepsilon_{max} \text{ in } M^{-1} \text{ cm}^{-1})]$ (MeCN)

130

Synthesis of the complex $[Co_3L^R(N_3)_3(\mu_{1,3}-N_3)]$ (3)

Complex 3 was prepared using reduced Schiff base ligand with the same molar ratios of reactant as for 1 and 2. To the colourless methanolic solution (20 mL) of the reduced Schiff base ligand $\frac{1}{2}$

⁵ (H₂L^R), a water solution (1 mL) of Co(ClO₄)₂·6H₂O (1.098 g, 3 mmol) followed by an aqueous solution (1 mL) of sodium azide (0.260 g, 4 mmol) were added. The mixture was stirred for 1 h and then filtered. The filtrate was allowed to stand overnight when rhombic shaped deep brown X-ray quality single crystals of ¹⁰ complex **3** appeared at the bottom of the beaker.

Complex 3: Yield: 0.840 g, 92%. Anal. Calc. for $C_{34}H_{40}Co_3N_{16}O_4$: C 44.70, H 4.41, N 24.53; found: C 44.83, H 4.31, N 24.65%; UV/vis: $[\lambda_{max} \text{ in mm} (\epsilon_{max} \text{ in } M^{-1} \text{ cm}^{-1})]$ (MeCN) = 624(167), 363(16010), and 254(16492) and $\lambda_{max} \text{ in nm}$ (solid,

¹⁵ reflectance) = 621 and 365. IR (KBr) in cm⁻¹: v(N-H) 3235, v(N₃) 2051 and 2027, HRMS (m/z, ESI⁺): found for $[CoL^{R}(Na)]^{+}$ = 366.0747 (calc. 366.0754) and $[Co_3L^{R}_{2}(N_3)_4Na]^{+}$ = 936.1290 (calc. 936.1312).

20 Physical Measurements

Published on 06 January 2015. Downloaded by Selcuk University on 12/01/2015 11:09:49

Elemental analyses (C, H, and N) were performed using a Perkin-Elmer 2400 series II CHN analyzer. IR spectra in KBr pellets (4000–400 cm⁻¹) were recorded using a Perkin- Elmer RXI FT-IR spectrophotometer. Electronic spectra in acetonitrile (800–200

²⁵ nm) and solid state (800–300 nm) were recorded in a Hitachi U-3501 spectrophotometer. The ¹H-NMR spectra at 300 MHz were recorded in CDCl₃ on a Bruker DRX 300 spectrometer. The electrospray ionization mass spectrometry (ESI-MS positive) spectra were recorded with a Micromass Qtof YA 105 mass

³⁰ spectrometer. EPR spectra was recorded on a Bruker EMM 1843
 spectrometer operating at X-band frequency (9.80 GHz), having 100 kHz frequency modulation and a phase sensitive detection to obtain a first derivative signal. Di phenyl picrylhydrazyl (DPPH) was used for calibration of g-values of paramagnetic species. The
 ³⁵ epr parameters for different samples have been precisely

determined from the calculated spectra, as obtained from Bruker SIMFONIA program based on perturbation theory R.T. Weber, (WIN-EPR SIMFONIA manual, 1995).³⁰

Crystallographic data collection and refinement

- ⁴⁰ Well formed single crystal of each complex was mounted on a Bruker-AXS SMART APEX II diffractometer equipped with a graphite monochromator and Mo K α ($\lambda = 0.71073$ Å) radiation. The crystals were positioned 60 mm from the CCD, and frames (360) were measured with a counting time of 5 s. The structures
- ⁴⁵ were solved using the Patterson method through the SHELXS 97 program. Non hydrogen atoms were refined with independent anisotropic displacement parameters, while difference Fourier synthesis and least-squares refinement showed the positions of any remaining non-hydrogen atoms. The non-hydrogen atoms
- ⁵⁰ were refined with anisotropic thermal parameters. The hydrogen atoms bound to carbon atoms were included in geometric positions and given thermal parameters equivalent to 1.2 (or 1.5 for methyl groups) times those of the atom to which they were attached. Hydrogen atoms that bonded to N or O were located in
- ss a difference Fourier map and refined with distance constraints. Successful convergence was indicated by the maximum shift/error of 0.001 for the last cycle of the least-squares refinement. Owing to the intrinsic nature of the crystal 1, the reflection data were weak and thus R factors are high. Absorption
- ⁶⁰ corrections were carried out using the SADABS program,³¹ while all calculations were made via SHELXS 97,³² SHELXL 97,³³ PLATON 99,³⁴ ORTEP-32,³⁵ and WINGX system ver-1.64.³⁶ Data collection, structure refinement parameters, and

Scheme 1 Formation of the complexes 1-3. The Schiff-base ligand (H₂L) and its reduced analouge (H₂L^R) were synthesized using the reported procedures.^{28,29} The Schiffbase ligand (H₂L) on reaction with cobalt perchlorate hexahydrate 105 and sodium azide in 2:3:4 molar ratios resulted two different trinuclear mixed valence Co(II/III) complexes, cis- $[Co_3L_2(MeOH)_2(N_3)_2(\mu_{1,1}-N_3)_2]$ (1) and trans- $[Co_3L_2(H_2O)_2(N_3)_2(\mu_{1,1}-N_3)_2] \cdot (H_2O)_2$ (2) depending upon the solvent used. Complex 1 separated as a needle shaped dark brown ¹¹⁰ single crystals from methanolic filtrate whereas complex 2

crystallographic data for the three complexes are given in Table 65 S1.

Theoretical methods

The energies of all complexes included in this study were computed at the BP86-D3/def2-TZVP level of theory. The

- ⁷⁰ geometries have been fully optimized for the energetic analysis of the *cis/trans* isomerism. Instead, we have used the crystallographic coordinates for the theoretical analysis of the non-covalent interactions observed in the solid state. The calculations have been performed by using the program
- ⁷⁵ TURBOMOLE version 6.5.³⁷ For the calculations we have used the BP86 functional with the latest available correction for dispersion (D3).³⁸ The Bader's "Atoms in molecules" theory has been used to study the interactions discussed herein by means of the AIM all calculation package.³⁹

⁸⁰ This level of theory has been shown useful and reliable to study noncovalent interactions like those analyzed herein.^{28,40} Moreover, the optimized complexes 1 and 2 exhibit Co–N and Co–O metal ligand distances that are similar to the experimental ones. For instance, in complex 1 the experimental distances range from 1.90 to 2.12 Å and the theoretical ones range from 1.98 to

Itom 1.90 to 2.12 A and the theoretical ones range from 1.98 to 2.21 Å.

Catalytic Oxidation of 3,5-DTBC

The catecholase activity of **1–3**, were studied using 3,5-di-tertbutylcatechol (3,5-DTBC) as substrate in acetonitrile solution ⁹⁰ under aerobic conditions at room temperature. The reactions were followed spectrophotometrically by monitoring the increase in the maximum absorbance of the quinone band at 400 nm as a function of time (time scan). To detect the formation of hydrogen peroxide during the catalytic reaction we followed the iodometric ⁹⁵ method as reported earlier.⁴⁰

Results and Discussion

Syntheses of the Complexes

separated as square shaped blackish brown single crystals from ethanolic filtrate. On the other hand, when the reduced Schiffbase ligand, cobalt perchlorate hexahydrate and sodium azide were mixed in same molar ratio as for 1 and 2 in MeOH then ⁵ rhombic shaped deep brown X-ray quality single crystals of 3 was isolated from the reaction mixture (Scheme 1). It may also be

noted that no complex other than complex **3** was produced when the same reaction was carried out in ethanol medium.

10 IR and UV-Vis Spectra of the complexes

Besides elemental analysis, all three complexes were initially characterized by the IR spectra. A strong and sharp band due to the azomethine v(C=N) group of the Schiff base appears at 1621 cm⁻¹ for both of the complexes **1** and **2** (Fig. S3–S4). On the ¹⁵ other hand, a moderately strong and sharp peak at 3235 cm⁻¹ (due to a N–H stretching vibration) and absence of any peak at around 1620 cm⁻¹, for complex **3** (Fig. S5) indicate that the imine group of the Schiff base is reduced.⁴¹ In addition, the presence of azido ligands in all three complexes is confirmed by the appearance of ²⁰ strong and sharp peaks at 2061, 2062 and 2051 cm⁻¹ along with shoulders at 2010, 2010 and 2027 cm⁻¹ in the spectra of **1–3** respectively (Fig. S3–S5). The splitting of the band is indicative of the presence of two different coordinated azide ions⁴² in

- agreement with their crystal structures. ²⁵ The electronic spectra of these compounds were recorded in acetonitrile solutions and in solid state. The complexes show a broad absorption band in the visible region at 618, 619, and 624 nm in acetonitrile and 617, 620, and 621 nm in the solid state for **1–3** respectively, attributed to d–d transitions of Co(II) ions.
- ³⁰ Besides these bands, an absorption band in the range 363–399 nm were observed in solution as well as solid state, assignable to ligand-to-metal charge transfer transitions for all three complexes. Moreover, absorption bands at 276, 272 and 254 nm in acetonitrile were observed for 1–3 respectively (Fig. S6–S7), ³⁵ assignable to intra-ligand charge transfer transitions.

Description of the structures (1–3)

- A partially labeled diagram of complex **1** is presented in Fig. 1, and selected bond parameters are summarized in Table 1. The molecular structure of **1** contains two discrete neutral trinuclear ⁴⁰ units (**1A** and **1B**) of same formula, *cis*- $[Co_3L_2(MeOH)_2(N_3)_2(\mu_{1,1}-N_3)_2]$ with slight differences in bond parameters. Thus, we describe only the structure of **1A**. In the structure, three cobalt atoms are in bent arrangement with $\angle Co(3A)$ -Co(1A)-Co(2A) angle of 130.4°. Each of the cobalt
- ⁴⁵ atoms has a six-coordinated distorted octahedral geometry. The basal plane of the two terminal Co(III) centers are formed by two μ_2 -phenoxido O atoms and two imine N atoms of the chelated dianionic tetradentate Schiff-base ligand [L²⁻] and the axial positions are occupied by one nitrogen atom of $\mu_{1,1}$ -bridging
- ⁵⁰ azido and one nitrogen from terminal azido ligand. The basally coordinated atoms and the Co atom deviate only slightly from the mean plane of the coordinated atoms (Table S2). The basal Co–O bond distances in each of the terminal cobalts are shorter than basal Co–N bond distances and the axial Co–N bond distances
- ⁵⁵ are longer than the basal bonds (Table 1). Both the bridging and terminal of azido ligands are nearly linear (Table S3). The ranges of *trans* [170.9(5)–176.7(4)°] and *cis* [80.2(4)–96.8(4)°] angles (Table 2) indicate slight deviation from ideal octahedral geometry.
- ⁶⁰ The central Co(II) atom is bonded to two phenoxido oxygen atoms of deprotonated tetradentate Schiff base ligands, two nitrogen atoms of $\mu_{1,1}$ -bridging azide ions and two oxygen atoms of methanol molecules. Here also, the Co(II)–N bond distances

are slightly greater than Co(II)–O bond distances (Table 1) like ⁶⁵ the terminal cobalt atoms. The central Co–N/O bond distances are significantly greater than that of the terminal cobalt centers as the central cobalt atom is in +2 oxidation states whereas terminals atoms are in +3 oxidation states. The range of *cis* angles [73.4(4)–92.5(4)°] and *trans* angles [157.6(4)°–168.7(4)°] around ⁷⁰ Co(II) indicate considerable deviation from the ideal values. The two methanol molecules in this structure are mutually *cis* to each other as usual to other mixed valence cobalt complexes reported previously.⁵⁻⁹ The Co(3A)···Co(1A) and Co(2A)···Co(1A) distances are 3.169 and 3.169 Å, respectively.

Fig. 1 The structure of 1 with ellipsoids at 50% probability. The structure contains two similar discrete neutral trinuclear units (1A and 1B) of same formula. One unit (1A) is shown here. Hydrogen atoms have been omitted for clarity.

The structure of 2 is shown in Fig. 2 together with the atomic numbering scheme. Dimensions in the metal coordination sphere are given in Table 2. The centrosymmetric linear trinuclear unit of this complex having molecular formula s5 $[Co_3L_2(H_2O)_2(N_3)_2(\mu_{1,1}-N_3)_2] \cdot (H_2O)_2$ contains two mutually trans water molecule unlike 1. Like 1, the basal plane of the terminal Co(III) centers are formed by two phenoxido oxygen atoms and two imine nitrogen atoms of the chelated dianionic tetradentate Schiff-base ligand [L²⁻] and the axial positions are occupied by 90 one nitrogen atom of μ_{II} -bridging azido and one nitrogen from terminal azido ligand. Here also, the terminal Co atom deviate from the mean plane of the coordinated atoms and this deviation is smaller than that in complex 1 (Table S2). The Co-O bond distances are shorter than Co-N bond distances in the basal plane 95 and the axial Co-N bond distances are longer than the basal bonds (Table 2) like 1. The bridging and terminal of azido ligands in this structure are also nearly linear (Table S3). The ranges of trans [173.0(5)-177.4(6)°] and cis [83.9(5)-96.5(6)°] angles (Table 3) indicate similar deviation from ideal octahedral 100 geometry as in 1.

Fig. 2 The structure of **2** with ellipsoids at 50% probability. Symmetry element ^a = 2-x,-y,-z. Hydrogen atoms have been omitted for clarity.

The central cobalt atom Co(1), which sits on the crystallographic ¹⁰⁵ inversion center has a six-coordinated distorted octahedral geometry. The basal plane of this atom is constructed by two μ_2 phenoxido oxygen atoms of deprotonated tetradentate Schiff base ligands and two nitrogen atoms of $\mu_{1,1}$ -bridging azide ions. Two **Dalton Transactions Accepted Manuscript**

*trans*axial positions are occupied by two water molecules. The central Co–N/O bond distances are significantly greater (Table 2) than that of the terminal cobalt center as expected. Though all the trans angles of Co(1) are 180° (as the molecule is ⁵ centrosymmetric), the range of *cis* angles [87.9(5)–104.3(5)°] deviates considerably from their ideal value (90°). The metal-

metal distance $(Co(2) \cdots Co(1))$ in this case is slightly smaller than that in complex 1 (3.132 Å).

- The structure of complex **3** having molecular formula [$Co_3L^R_2(N_3)_3(\mu_{1,3}-N_3)$] (**3**) is shown in Fig. 3. Selected bond lengths and angles are listed in Table 3. In this structure, three cobalt atoms are in a bent arrangement with $\angle Co(3)-Co(1)-Co(2)$ angle of 104.2°. The terminal cobalt(III) atoms present a six-coordinated distorted octahedral geometry
- ¹⁵ like other two structures described above. The basal plane of the two terminal Co(III) centers are formed by two phenoxido oxygen atoms and two imine nitrogen atoms of the chelated dianionic tetradentate reduce Schiff-base ligand $(L^R)^2$ and the axial positions are occupied by one nitrogen atom of $\mu_{1,3}$ -bridging
- ²⁰ azido and one nitrogen from terminal azido ligand. The terminal Co atoms deviate only slightly from the mean plane of the coordinated atoms and these deviations are the smaller than **1** but greater than **2** (Table S2). The basal Co–O bond distances in each of the terminal cobalt atoms are shorter than basal Co–N bond
- ²⁵ distances and the axial Co–N bond distances are larger than the basal bonds (Table 3). Both the bridging and terminal of azido ligands are nearly linear (Table S3) like other two structures. The ranges of *cis* [78.5(2)–96.4(3)° for Co(2) and 87.2(2)–96.0(2)° for Co(3)] and the *trans* angles [170.9(2)–175.1(2)° for Co(2) and 100 model. (2000 model of Co) (2000 model) (20

Published on 06 January 2015. Downloaded by Selcuk University on 12/01/2015 11:09:49

³⁰ 171.2(2)–175.1(2)° for Co(3)] indicate slight deviation from ideal octahedral geometry.

Unlike other two structures, here the central cobalt atom is pentacoordinated by four phenoxido oxygen atoms of two reduced Schiff base ligands, and a terminally coordinating azido ligand.

- ³⁵ The distortions of the coordination geometry from the square pyramid to the trigonal bipyramid have been calculated by the Addison parameter (τ).⁴³The value of τ is defined as the difference between the two largest donor metal-donor angles divided by 60. The τ is 0 for the ideal square pyramid and 1 for ⁴⁰ the trigonal bipyramid. The τ value of Co(1) is 0.46, indicating
- that the geometry is intermediate between the two ideal geometries. The metal–metal distances (Co(3)···Co(1) 3.122 Å and Co(2)···Co(1) 3.121 Å) are similar to those of **2**.

45 Fig. 3 The structure of 3 with ellipsoids at 50% probability. Hydrogen atoms have been omitted for clarity.

A CSD search for trinuclear Co(III)–Co(II)–Co(III) complexes containing deprotonated tetradentate Schiff base ligand revels ⁵⁰ that only nine such structures have been reported so far.^{5,6-9,10} Among them, eight complexes are linear in which terminal Co(III) and central Co(II) are linked through acetato (six structures)^{5,6,10} or sulfite⁹ (one structure) or chlorido⁷ (one structure) bridges in addition to double phenoxido bridges. The 55 remaining one is azido bridged,⁸ angular trinuclear species in which central Co(II) is connected to terminal Co(III) via single phenoxido bridges and two mutually cis-oxygen atoms of water molecules are bonded with Co(II). Thus this structure is very similar to that of compound 1 of present study. It is to be noted 60 that in eight of these complexes, the two anionic bridges that link the terminal Co(III) to central Co(II) are mutually cis and only in one¹⁰ these bridges are mutually *trans*. Therefore, the structure of complex 2 of the present work, in which the two water molecules are trans coordinated to the central Co(II) is rather unusual. 65 Moreover, complexes 1 and 2 present the first example of the formation of "cis-trans" configuration induced by the solvent molecule for this type of trinuclear complexes. Complex 3 is the first example of mixed valence Co(II/III) complexes with reduced salen type di-Schiff base ligands and possesses a unique 70 structural feature among these mixed-valence complexes. That is, two terminal Co(III) are joined by a $\mu_{1,3}$ -azido bridge with a penta-coordinated central Co(II). CSD search shows that there are few reports where $\mu_{1,3}$ -azido bridge connects the first metal ions with the third one in the fragments of polynuclear (>3 metal

⁷⁵ centers) complexes but only one hit is there of a trinuclear complex containing Cu(II) that has such interaction.⁴⁴

Theoretical study

The three trinuclear Co(III)–Co(II)–Co(III) compounds that have ⁸⁰ been X-ray characterized and are represented in Figs. 1-3. As aforementioned, two different compounds are obtained depending on the solvent used. That is, compound **1** (obtained from methanol) presents the two coordinated methanol molecules in *cis* position of Co(II) whilst compound **2** (obtained from ethanol)

85 exhibits two *trans* coordinated water molecules. Moreover, when the Schiff base ligand is reduced, a totally different structure 3 is obtained.

In order to give an explanation to the aforementioned experimental results we have fully optimized the complex 1 in cis 90 conformation starting from the crystallographic coordinates of 1 and in *trans* starting from the crystallographic coordinates of 2 and replacing the coordinated water molecules by methanol moieties. The resulting optimized geometries are shown in Fig. 4 where we also indicate the relative energies. It can be observed 95 that for compound 1 the cis conformation is 10.5 kcal/mol more stable than the *trans* in agreement with experiment. Using the same methodology we have optimized the cis and trans isomers for compound 2 and, similarly to compound 1, the *cis* isomer is also considerably more favorable than the trans isomer (18.0 100 kcal/mol). Examining the intramolecular interactions, it can be observed that both isomers exhibit two strong (O-H...O) hydrogen bonds involving the hydrogen atoms of the coordinated water molecules and the phenolic oxygen atom. Moreover the cis isomers also present aromatic interactions involving the arene ¹⁰⁵ rings (highlighted in Fig. 4) and CH₂ groups of the ligands. These interactions further stabilize the cis isomer. This result does not agree with the experimental X-ray structure obtained for compound 2 (trans isomer). A likely explanation is that intermolecular interactions in the solid state stabilize the trans 110 isomer in compound 2. A further examination of compound 2 reveals the crucial role of the uncoordinated water molecules that form a hydrogen bonding network connecting the coordinated water molecules with the end-on coordinated azide ligands (see Fig. 5). This hydrogen bonding network cannot be formed in the 115 cis isomer due to the relative position of the coordinated water molecules and the azide ligands. Moreover, it is not possible in compound 1, where methanol instead of water is coordinated to the metal center.

45

55

Fig. 4 BP86-D3/def2-TZVP optimized geometries of the cis/trans isomers of compounds 1 and 2. Relative energies are also indicated. Distances in Å.

We have computed the interaction energy of compound 2 with the water molecules since this should compensate the 18 kcal/mol difference between the *cis* and *trans* isomers of compound 2. The reaction used to compute this energy (denoted as ΔE_w) is shown $_{10}$ in Fig. 5 and it can be observed that $\Delta E_{\rm w}$ clearly compensates the cis-trans energetic difference (18.0 kcal/mol) providing a plausible explanation to the different behavior of both compounds in the solid state.

15 Fig. 5 Hydrogen bonding network observed in the solid state of compound 2 and the associated interaction energy

In the second part of the theoretical study we analyze the dual behavior of the azide ligand since it is able to act as a H-bond 20 acceptor (electron rich moiety) when it is end-on coordinated or acting as a $\mu_{1,1}$ bridging ligand and as electron acceptor (middle nitrogen atom) when it is acting as $\mu_{1,3}$ -N₃ bridging ligand. In the description of the experimental structures (vide supra) and in Fig. 5 hydrogen bonding interactions involving the azide ligand are 25 described. In Fig. 6 we show Molecular electrostatic potential

- surface (MEPS) of compound **3** that presents a $\mu_{1,3}$ -N₃ bridging ligand in the structure together with several end-on coordinated azido ligands. Interestingly, it exhibits two well defined regions, one with positive potential (blue region) close to the $\mu_{1,3}$ -N₃
- 30 bridging ligand and the other with negative potential close to the end-on azide ligand. Therefore, azide-azide (pnicogen bonding) interaction can be expected involving two nitrogen atoms, one acting as donor and the other one as acceptor.

In sharp agreement with the MEP surface analysis, a pnicogen 35 bonding²⁷ interaction is observed in the crystal packing of compound 3 (see Fig. 7). This arrangement maximizes the electrostatic interaction, as can be observed by the high degree of complementarity of the MEP surfaces. Therefore, the $\mu_{1,3}$ -N₃ coordination mode of the azido ligand drastically changes their

⁴⁰ electron donor by electron acceptor ability using the π -hole of the central nitrogen atom. The interaction energy of this dimer is large and negative not only due to pnicogen bonding but also

several C-H...N interactions (Table S4) that also contribute to the total binding energy (see red dashed lines in Fig. 7).

Fig. 6 Molecular Electrostatic Potential surface of compound 3 in two orientations. Energies in kcal/mol.

Fig. 7 Left: partial view of the crystal packing of compound 3 with indication of the N···N interaction. The complementary MEP surfaces are also indicated in the same orientation. Hydrogen atoms have been omitted for clarity.

Finally, we have performed a search in the Cambridge Structural Database (CSD) in order to know if pnicogen bonding interactions are common in $\mu_{1,3}$ -N₃ coordinated azide ligands. It is well-known that the CSD is a convenient and reliable tool for 60 analyzing geometrical parameters.⁴⁵ Interestingly, we have found 20 X-ray structures where the $\mu_{1,3}$ -N₃ ligand coordinated to transition metals participates in pnicogen π -hole interactions as acceptor (π stands for the π -system of azide). Some examples are shown in Fig. 8 illustrating the importance of this interaction in 65 the solid state. In some examples the electron donor is a neutral moiety (CAPVOF⁴⁶ and MILROP⁴⁷) and in others it is an anion (LIJCUC⁴⁸ and MILROP⁴⁹). The lp/anion- π -hole interaction distances range 3.01-3.28 Å, in agreement with previous theoretical and experimental studies on similar interactions ⁷⁰ involving the nitro/nitrate group.⁵⁰ As far as our knowledge extends, the description of such interaction in azide is unprecedented.

Fig. 8 Partial views of several X-ray structures retrieved from the CSD. 75 Distances in Å. Hydrogen atoms have been omitted for clarity.

Page 7 of 15

Dalton Transactions Accepted Manuscrip

Catechol Oxidase Studies and Kinetics.

The catecholase-like activity of three mixed valence Co(II/III) complexes were determined by the catalytic oxidation of 3,5-DTBC. This substrate is most widely used because of its low s redox potential which facilitates oxidation to quinone, and its bulky substituents, which prevent further oxidation reactions such as ring opening.⁵¹ Moreover, the oxidation product, 3,5-di-tert-butylquinone (3,5-DTBQ), is highly stable and a characteristic absorption band maxima appeared at around 400 nm ($\epsilon = 1900$ M⁻¹cm⁻¹) in pure acetonitrile solvent system. Before going into

the detail of kinetics studies, we examined the catalytic activity of complexes 1–3 for oxidation of 3,5-di-tert-butylcatechol (3,5-DTBC) to corresponding *o*-quinone (3,5-DTBQ) in acetonitrile solvent according to the reaction shown in Scheme 2.

Scheme 2 Catalytic oxidation of 3,5-DTBC to 3,5-DTBQ in acetonitrile solvent.

For this purpose, 10⁻⁴ (M) acetonitrile solutions of these three ²⁰ complexes were treated with 100 equivalent of 3,5-DTBC at room temperature under aerobic conditions. After mixing of the 3,5-DTBC into the complexes (1–3), the progress of the reaction was followed by recording the UV-Vis spectra of the mixtures at 5 min time's interval. The gradual increase of an absorption band ²⁵ at around 400 nm corresponds to 3,5-DTBQ⁵² was observed for complexes 1–3. The variation of the spectral behavior of complex 1 in the presence of 3,5-DTBC is shown in Fig. 9. Similar plots for 2 and 3 are contained in the Supporting Information (Fig. S8 and S9).

The kinetics of oxidation of 3,5-DTBC to 3,5-DTBQ by the complexes were determined by the method of initial rates by monitoring the growth of the quinone band at 400 nm as a function of time. The rate constant for a particular complex-³⁵ substrate mixture was determined from the log[$A_{\alpha}/(A_{\alpha} - A_t)$] vs time plot. The oxidation rates and various kinetic parameters of the substrate concentration were determined by using 10⁻⁴ M solutions of 1–3 with different concentrations of 3,5-DTBC under aerobic conditions. In each cases, a first-order kinetic was ⁴⁰ observed at low concentrations of 3,5-DTBC, whereas higher concentrations resulted in saturation kinetics. The observed rates *versus* concentration of substrate data were then analyzed on the

versus concentration of substrate data were then analyzed on the basis of the Michaelis–Menten approach of enzymatic kinetics to get the Lineweaver–Burk (double reciprocal) plot and values of ⁴⁵ kinetic parameters V_{max}, K_M, and K_{cat}. Both the curves of observed rate vs [substrate] and Lineweaver–Burk plot for complex 1 are shown in Fig. 10. Similar plots for 2 and 3 are

- given in the Supporting Information (Fig. S10 and S11). The kinetic parameters for all the cases are listed in Table 4. The k_{cat} so values can be calculated by dividing the V_{max} values by the concentration of the corresponding complexes (Table 4). The $k_{cat}(in h^{-1})$ values are 142, 85 and 99 for 1–3, respectively. Thus,
- the catecholase-like activity follows the order: complex 1> complex 3> complex 2. These values lie in the range of the k_{cat} ⁵⁵ values of the di-copper(II) systems behaving as functional models of catechol oxidase. Thus, these three mixed valence
- of catechol oxidase. Thus, these three mixed valence Co(III)-Co(II) compounds can also be considered as a functional model of catechol oxidase. It is important to mention that, the k_{cat}

values obtained for complexes **1–3** are significantly higher than ⁶⁰ those reported for di-cobalt(II) compounds containing "end-off" compartmental Schiff base ligand⁵³ (Table 5) and considerably lower than those reported for dinuclear mixed-valence Co(III)–Co(II) complexes derived from a macrocyclic ligand.⁵⁴

Fig. 10 Plot of the rate vs substrate concentration for complex 1. Inset shows the corresponding Lineweaver–Burk plot.

To get a better understanding of the complex-substrate intermediate and a mechanistic inference of catecholase activity 75 during the oxidation reaction, we have recorded ESI-MS spectra of 1-3, and a 1:10 mixture of the complexes to and 3.5- DTBC within 10 min of mixing in acetonitrile solvent (Fig. S12-S17, Supporting Information). The spectrum of complexes 1 and 2 shows similar pattern. Both complexes show the base peak at m/z $_{80} = 362.0 (100\%)$, (calcd 362.0441) which can be assigned to the mononuclear species $[CoLNa]^+$. In addition, peaks due to the dinuclear $[Co_2L_2(CH_3CN)Na]^+$ and trinuclear $[Co_3L_2(N_3)_3]^+$ species at m/z = 743.1 and 863.0 respectively are also observed for both complexes. On the other hand, complex 3 displays a base s peak at m/z = 366.0 (calcd 366.0754), which can be assigned to corresponding mononuclear species [CoL^RNa]⁺ similar to 1 and 2. Besides, the peak at m/z = 936.1 corresponding to Nacontaining molecular ion of trinuclear species $[Co_3(L^R)_2(N_3)_4Na]^+$ appears in this spectrum. After the addition of 3,5-DTBC to the 90 solutions of complexes 1-3, drastic changes are observed in all three spectra. In case of 1 and 2, in addition to the quinone sodium aggregate $[3,5-DTBQ-Na]^+$ at 243.1 (calcd 243.1415), the base peak at m/z = 921.2 (calcd 921.2449) corresponding to $[Co_2L_2(3,5-DTBC)Na]^+$, and other peaks at m/z = 582.2 (calcd 95 582.1983), 1141.4 (calcd 1141.3912) and 701.1 (calcd 701.0985) corresponding to $[CoL(3,5-DTBC)Na]^+$, $[Co_2L_2(3,5-DTBC)_2Na]^+$ and $[Co_2L_2Na]^+$ respectively are generated. On the other hand, the spectrum of **3** exhibits a base peak at m/z = 586.2

15

100

(calcd586.2218) corresponding to $[CoL^{R}(3,5-DTBC)Na]^{+}$ species. The peaks at m/z = 243.1 and 929.3 can be assigned to quinone sodium aggregate $[3,5-DTBQ-Na]^{+}$ and $[Co_{2}L^{R}_{2}(3,5-DTBC)Na]^{+}$ respectively. These results reveal the formation of the ⁵ catalyst–substrate as intermediates which take part in substrate activation during the oxidation of 3,5-DTBC to 3,5-DTBQ.

The mechanistic studies with copper-based model complexes are well established and it appears that there are two possible mechanisms for the oxidation of 3,5-di-tert-butylcatechol to their ¹⁰ respective quinone. One proceeds through the formation of a dicopper(II) catecholate intermediate where the dicopper(II) species stoichiometrically oxidizes the catecholic substrate to one molecule of quinone and itself reduces to a dicopper(I) species. Then, the dicopper(I) species reacts with an oxygen molecule to ¹⁵ generate a peroxo dicopper(II) adduct, which then oxidizes a second molecule of the substrate to quinone; water is formed as a

byproduct through this four electron reduction process.⁵⁵ The second mechanism involves in the formation of an organic radical intermediate such as copper(I) semiquinonate.⁵⁶ Its subsequent ²⁰ reaction with dioxygen may result in the two electron reduction of dioxygen, leading to the reoxidation of the copper(I) ion and

- of dioxygen, leading to the reoxidation of the copper(1) ion and release of the quinone molecule, with hydrogen peroxide as a byproduct.⁵⁷
- In contrast, up to now there has been only limited study of plausible mechanisms of catechol oxidation reaction catalyzed by nickel(II), manganese(II/III) and zinc(II) complexes. However, it has been shown that the participation of metal centre in the catechol to quinone oxidation process is essential. Thus, this oxidation reaction catalyzed by either Ni(II) or Mn(III) ³⁰ complexes proceeds through the formation of semiquinonate intermediate species similar to Cu(II) complexes. Recently, we have studied the reaction mechanism of this oxidation reaction catalyzed by Ni(II)-oxime complexes²⁴ and shown that the reaction proceeds through the formation of Ni(III) species unlike ³⁵ the dicopper complexes where the oxidation states of Cu(II) shuttle between +I and +II. Moreover, Das *et.al* proposed that
- conversion of 3,5-DTBC to 3,5-DTBQ can be promoted by redox-innocent Zn(II) ion *via* radical pathway.²⁵ In this case, coordinated ligand undergoes reduction with concomitant ⁴⁰ oxidation of the catechol to form semibenzoquinone.
- In order to get a preliminary idea about the mechanism of the catalytic reaction for these mixed valence Co(II)–Co(III) complexes, we were interested to know whether any H_2O_2 was formed and, if so, to find its amount. The estimation of H_2O_2
- ⁴⁵ clearly shows that, after approximately 1 h of oxidation 91%, 79% and 82% H₂O₂ are generated with respect to the formation of 3,5-DTBQ for 1–3 respectively. The results indicate that nearly equimolar amount of hydrogen peroxide is formed with respect to 3,5-DTBQ. Therefore, keeping analogy to the ⁵⁰ mechanism of the oxidation by using the dicopper system, one
- might assume that the reaction proceeds through the formation of Co(II)-semiquinonate radical intermediate.

The valence states of cobalt (Co(II), Co(III)) and its spin state (Co(II) can exist in low spin S=1/2; or high spin, S=3/2 states) in ⁵⁵ complexes can be easily distinguished by EPR spectroscopy. In

case of Co(III) (3d⁶), the $t_{2g}^6 e_g^0$ configuration is diamagnetic and do not give any epr signal. In low spin state configuration Co(II)

 $(3d^7)$ ($t_{2g}^6 e_g^1$; S=1/2), complexes with distorted octahedral or square planar geometries (C_{4v} or D_{4h} symmetry) having unpaired ⁶⁰ electron density localized in d_z² orbital, the principal values of g tensor is given by following equation

$g_{II} \approx g_e$ and $g_{\perp} = g_e + (\lambda/\Delta)$

where $g_e = 2.0023$, λ is the spin orbit parameter and Δ is the energy difference between the $d_{xy, yz}$ and d_z^2 . In such cases, epr ⁶⁵ signal is observed at room temperature due to sufficiently longer spin lattice relaxation time and they exhibit small anisotropy in g tensor ($g_{\perp} \sim 2.2 > g_{||} = 2.02 \cdot 2.01$). EPR parameters for low spin reported Co complexes are given in Table 6.⁵⁸ In high spin state

configuration ($t_{2g}^5 e_g^2$; S=3/2), Co(II) can give epr signals with ⁷⁰ large anisotropy in g tensor ($g_1=5.0-6.8$, $g_2=3.0-4.0$ and $g_3=2.5-$ 1.85) and at very low temperatures. This is mainly due to short spin lattice relaxation time arising due to large orbital contribution of the unpaired electrons towards the magnetic moment of the ground state of Co(II) ion in octahedral field. 75 Therefore, in order to understand the redox participation of the metal centers and to detect the organic radical, if any, produced as intermediate species, we have recorded the X-band EPR spectra of these three trinuclear Co(III)-Co(II)-Co(III) complexes, as well as the reaction mixtures in acetonitrile solutions at different 80 temperatures and time intervals. The observed features of EPR spectra of all complexes in 10⁻³ M acetonitrile solutions at room temperature were similar. The spectra consisted of an isotropic signal at g ca 2.0045 having hyperfine structure comprised of eight lines of almost of equal intensities ($A_{iso} = 10.57$ G). This is 85 shown in Fig. 11(a) (top). The hyperfine structure is due to interaction of unpaired electron with Co nuclei having nuclear spin I=7/2 (⁵⁹Co, I=7/2, 100% natural abundance). The existence of EPR signal at room temperature suggested presence of Co^{2+} in low spin state. The EPR spectra of frozen complexes in 90 acetonitrile recorded at 100 K, showed two sets of eight lines, characteristic of the ⁵⁹Cohyperfine interaction and corresponding to the parallel and perpendicular directions of the symmetry axis with respect to the external magnetic field. The spectra were nearly axially symmetric with $g_{II} = 2.0018$, $A_{II} = 19.65$, g_{\perp} $_{95}$ =2.0059, A₁=7.0 G. The expected ground state for the Co^{2+} complexes can be expressed as $(d_{xz,yz})^4 (d_{xy})^2 (d_z^2)^1$. The observed epr parameters were consistent with the unpaired electron residing in the d_z^2 orbital. The typical EPR spectrum of complex 1 in acetonitrile is shown in fig. 11(a) (bottom).

The EPR spectra of 10^{-3} (M) each complexes with a 10^{-1} (M) 3,5-DTBC in acetonitrile solutions recorded at room temperature were similar to that of the complexes in 10^{-3} M acetonitrile ⁵ without addition of 3,5-DTBC (no change in g and A value for Co²⁺). However, initially there was a drastic increase in the intensity of the EPR signal upon addition of solution of 3,5-DTBC in acetonitrile which gradually increased further (Fig. 12). The increase in the integrated intensity followed the trend ¹⁰ complex 1> complex 3> complex 2 (Fig. 12). The catecholase-like activity also followed similar trend complex 1> complex 3> complex 2 which is in accordance with the data obtained from optical absorption studies. This confirmed that reduction of some

 $m Co^{3+}$ sites to $m Co^{2+}$ occurred in all cases. However, we did not 15 observe any signal corresponding to the formation of the semiquinonate radical intermediate presumably due to its transient nature.

Fig. 12 The plots of EPR intensity vs the time after mixing the 3,5-DTBC ²⁰ to the different complexes (1–3).

Scheme 3 Proposed mechanism for the catalytic cycle of the oxidation of 3,5-di-tert-butylcatechol by complex 1. Complexes 2 and 3 show similar mechanism.

- ²⁵ We therefore assume that the present compounds 1–3 catalyzes the oxidation of 3,5-DTBC to 3,5-DTBQ through the reduction of Co(III) to Co(II) where an organic radical intermediate such as Co(II)-semiquinonate species may be formed. The catalytic cycle is completed by the reaction of Co(II) species with dioxygen,
- ³⁰ leading to the reoxidation of the Co(II) to Co(III) ion and the reduction of dioxygen. Consequently, the quinone molecule as product and hydrogen peroxide as a byproduct are released. The probable reaction mechanism has been shown in Scheme 3.

Conclusion

35 In the present report, we have shown for the first time that the trinuclear mixed valence Co(II/III) complexes with a salen type Schiff base ligand can be isolated both in cis and trans configurations depending upon the solvent used for synthesis. The reduction of the Schiff base results in the formation of an ⁴⁰ unprecedented cyclic trinuclear mixed valence Co(II/III) complex in which a $\mu_{1,3}$ -N₃ coordinated azido ligand participates in pnicogen bonding interactions as acceptor. From the DFT calculations, we have demonstrated that the cis isomers are energetically more stable and the trans isomer (observed 45 experimentally in 2) is stabilized by a hydrogen bonding network involving a water dimer that cannot be formed in compound 1, which compensates the energy of less favored trans coordination. By means of MEP surfaces and CSD search we have demonstrated hitherto unnoticed counterintuitive electron ⁵⁰ acceptor ability of the $\mu_{1,3}$ -N₃ coordinated azide ligand. All three complexes exhibit good catecholase-like activity in the aerial oxidation of 3,5-di-tert-butylcatechol to the corresponding oquinone. Mechanistic investigations of the catalytic behaviors of these mixed valence Co(II/III) complexes by electrospray 55 ionization mass (ESI-MS positive), estimation of hydrogen peroxide formation and EPR spectroscopy indicate that, similarly to the copper(II) analogues, the participation of metal centers through a cobalt(III)/cobalt(II) redox process is responsible for the oxidation of catecholic substrate to quinine.

Acknowledgement

A.H. and L.K.D. are thankful to CSIR, India, for awarding Junior Research Fellowship and Senior Research Fellowship respectively [Sanction No. 09/028 (0889)/2012-EMR-I dated

- 65 13/12/2012 for A.H. and 09/028 (0805)/2010-EMR-I for L.K.D.]. We thank Prof. M. G. B. Drew, School of Chemistry, The University of Reading, U.K. for the refinement of the structure of complexes 1-3. Crystallography was performed at the DST-FIST, India, funded Single Crystal Diffractometer Facility at the 70 Department of Chemistry, University of Calcutta. The authors also thank the Department of Science and Technology (DST),
- New Delhi, India, for financial support (SR/S1/IC/0034/2012). AB and AF thank the DGICYT of Spain (projects CTQ2011-27512/BQU and CONSOLIDER INGENIO 2010 CSD2010-20065 EEDER funds) and the Direction General de
- 75 00065, FEDER funds) and the Direcció General de RecercaiInnovaciódel Govern Balear (project 23/2011, FEDER funds) for financial support.

Notes

^aDepartment of Chemistry, University College of Science, ^{so} University of Calcutta, 92, A.P.C. Road, Kolkata-700 009, India. *E-mail: ghosh 59@yahoo.com*

^bRadiochemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India

^cDepartment of Chemistry, Universitat de les IllesBalears, Crta 85 de Valldemossa km 7.5, 07122 Palma de Mallorca, Baleares, Spain. E-mail: <u>toni.frontera@uib.es</u>

Electronic supplementary information (ESI) available: The electronic supplementary information file contains Fig. SI–S17.CCDC 1033263-1033265 for 1–3 respectively.

References

1 (a) V. I. Maleev, M. North, V. A. Larionov, I. V. Fedyanin, T. F. Savelyeva, M. A. Moscalenko, A. F. Smolyakov and Y. N. Belokon, *Synth.Catal.*, 2014, **356**, 1803–1810; (b) S. Shit, D. ⁹⁵ Saha, D. Saha, T. N. G. Row and C. Rizzoli, *Inorg. Chim. Acta*,

2014, 415, 103–110; (c) Y. N. Belokon, V. I. Maleev, M. North,
 V. A. Larionov, T. F. Savel'Yeva, A. Nijland and Y. V.
 Nelyubina, ACS Catalysis, 2013, 3, 1951–1955; (d) V. I. Maleev,

- M. North, V. A. Larionov, I. V. Fedyanin, T. F. Savel'Yeva, M. A. Moscalenko, A. F. Smolyakov and Y. N. Belokon, *AdvancedSynthesis and Catalysis*, 2014, **356**, 1803–1810; (*e*) E. Vinck, E. Carter, D. M. Murphy and D. S. Van, *Inorg. Chem.*, s 2012, **51**, 8014–8024; (*f*) T. Kurahashi and H. Fujii, *Inorg. Chem.*,
- 2013, **52**, 3908–3919; (g) M. Lashanizadegan and Z. Zareian, *Catal. Lett.*,2011, **141**, 1698–1702.
- 2 (a) M. Hoshino, R. Konishi, N. Tezuka, I. Ueno and H. Seki, Journal of Physical Chemistry, 1996, 100, 13569–13574; (b) H.
- ¹⁰ Kunkely and A. Vogle, Journal of Photochemistry and Photobiology A: Chemistry, 2001, **138**, 51–54; (c) Y. Ohashi, Bulletin of the Chemical Society of Japan, 1997, **70**, 1319–1324.
 ² (c) M. Volne, H. Hartnett, L. W. Leolond, K. Wille, M.
- 3 (a) M. Volpe, H. Hartnett, J. W. Leeland, K. Wills, M. Ogunshun, B. J. Duncombe, C. Wilson and J. B. Love, *Inorg.*
- ¹⁵ Chem., 2009, 48, 5195–5207; (b) T. Honda, T. Kojima and S. Fukuzumi, J. Am. Chem. Soc., 2012, 134, 4196–4206; (c) A. Kamath, N. V. Kulkarni, P. P. Netalkar and V. K. Revankar, SpectrochimicaActa Part A: Molecular and Biomolecular Spectroscopy, 2011, 79, 1418–1424; (d) S. Durmus, A. Atahan
 ²⁰ and M. Zengin, SpectrochimicaActa Part A: Molecular and
- *Biomolecular Spectroscopy*, 2011, **84**, 1–5. 4 (*a*) D. C. Ware, B. D. Palmer, W. R. Wilson and W. A. Denny,
- J. Med. Chem., 1993, **36**, 1839–1846; (b) P. K. Mascharak, Coord. Chem. Rev., 2002, **225**, 201–214; (c) O. A. El-Gammal, ²⁵ E.-R. G. Abu and S. F. Ahmed, SpectrochimicaActa Part A:
- Molecular and Biomolecular Spectroscopy, 2015, 135, 227–240;
 (d) M. Salehi, M. Amirnasr, S. Meghdadi, K. Mereiter, H. R. Bijanzadeh and A. Khaleghian, *Polyhedron*, 2014, 81, 90–97; (e) F.-L. Mao and C.-H.Dai, *Synthesis and Reactivity in Inorganic*, Network 2014, 100 (2014).
- ³⁰ *Metal-Organic, and Nano-Metal Chemistry*, 2014, **44**, 1059–1063; (*f*) K. Das, A. Datta, P.-H.Liu, J.-H.Huang, C.-L.Hsu, W.-T. Chang, B. Machura and C. Sinha, *Polyhedron*, 2014, **71**, 85–90.
- 5 (a) S. Chattopadhyay, M. G. B. Drew and A. Ghosh, *Eur. J.* ³⁵ *Inorg. Chem.*, 2008, 1693–1701; (b) S. Banerjee, J.-T.Chen and C.-Z. Lu, *Polyhedron*, 2007, 26, 686–694.
- 6 (a) G. E. Assey, R. J. Butcher and Y. Gultneh, ActaCrystallogr.,Sect.E: Struct. Rep. Online, 2011, 67, m303– m304; (b) S. Chattopadhyay, G. Bocelli, A. Musatti and A.
 40 Ghosh, Inorg. Chem. Comm., 2006, 9, 1053–1057.
- 7 L. Mechi, P. Siega, R. Dreos, E. Zangrando and L. Randaccio, *Eur. J. Inorg. Chem.*, 2009, 2629–2638.
- 8 A. Ray, G. M. Rosair, R. Kadam and S. Mitra, *Polyhedron*, 2009, **28**, 796–806.
- ⁴⁵ 9 C. Fukuhara, E. Asato, T. Shimoji, K. Katsura, M. Mori, K. Matsumoto and S. Ooi, *J. Chem. Soc., Dalton Trans.*, 1987, 1305–1311.
- 10 X. He, C.-Z. Lu and C.-D. Wu, J. Coord. Chem., 2006, 59, 977–984.
- ⁵⁰ 11 (a) P. Seth, S. Ghosh, A. Figuerola and A. Ghosh, *Dalton Trans.*, 2014, **43**, 990–998; (b) C. Chen, D. Huang, X. Zhang, F. Chen, H. Zhu, Q. Liu, C. Zhang and L. Sun, *Inorg. Chem.*, 2003, **42**, 3540–3548.
- 12 (a) D.-H. Shi, Z.-L.You, C. Xu, Q. Zhang and H.-L. Zhu,
- ⁵⁵ Inorg. Chem. Comm., 2007, 10, 404–406; (b) A. Gerli, K. S. Hagen and L. G. Marzilli, Inorg. Chem., 1991, 30, 4613–4616.
 13 (a) P. Mukherjee, M. G. B. Drew, C. J. <u>Gómez-García</u> and A. Ghosh, Inorg. Chem., 2009, 48, 4817–4827; (b) R. Biswas, S. Mukherjee, P. Kar and A. Ghosh, Inorg.Chem., 2012, 51, 60 8150–8160.
- 14 (a) C. Biswas, M. G. B. Drew, E. Ruiz, M. Estrader, C. Diaz and A. Ghosh, *Dalton Trans.*, 2010, **39**, 7474–7484; (b) B. Sarkar, M. G. B. Drew, M. Estrader, C. Diaz and A. Ghosh, *Polyhedron*, 2008, **27**, 2625–2633.

- ⁶⁵ 15 (a) L. K. Das, S.-W. Park, S. J. Cho and A. Ghosh, *Dalton Trans.*, 2012, **41**, 11009–11017.
- 16 A. Biswas, M. G. B.Drew, C. J. <u>Gómez-García</u> and A. Ghosh, *Inorg. Chem.*, 2010, **49**, 8155–8163.
- 17 A. Hazari, L. K. Das, A. Bauzá, A. Frontera and A. Ghosh, 70 Dalton Trans., 2014, **43**, 8007–8015.
- 18 A. Rompel, H. Fischer, D. Meiwes, K. Büldt-Karentzopoulos, R. Dillinger, F. Tuczek, H. Witzel and B. Krebs, *J. Biol. Inorg. Chem.*,1999, **4**, 56–63.
- 19 I. A. Koval, P. Gamez, C. Belle, K. Selmeczi and J. Reedijk, 75 *Chem. Soc. Rev.*, 2006, **35**, 814–840.
- 20 (*a*) B. Sreenivasulu, M. Vetrichelvan, F. Zhao, S. Gao and J. J. Vittal, *Eur. J. Inorg. Chem.*, 2005, 4635–4645; (*b*) N. A. Rey, A. Neves, A. J. Bortoluzzi, C. T. Pich and H. Terenzi, *Inorg. Chem.*, 2007, **46**, 348–350.
- ⁸⁰ 21 V. K. Bhardwaj, N. Aliaga-Alcalde, M. Corbella and G. Hundal, *Inorg. Chim.Acta*, 2010, **363**, 97–106.
- 22 P. Chakraborty, J. Adhikary, B. Ghosh, R. Sanyal, S. K. Chattopadhyay, A. Bauzá, A. Frontera, E. Zangrando and D. Das, *Inorg. Chem.*, 2014, **53**, 8257–8269.
- 85 23 P. Seth, L. K. Das, M. G. B. Drew and A. Ghosh, *Eur. J. Inorg. Chem.*, 2012, 2232–2242.
- 24 L. K. Das, A. Biswas, J. S. Kinyon, N. S. Dalal, H. Zhou and A. Ghosh, *Inorg. Chem.*, 2014, **53**, 434–445.
- 25 R. Sanyal, S. K. Dash, S. Das, S. Chattopadhyay, S. Roy and 90 D. Das, J. Biol.Inorg.Chem., 2014, DOI 10.1007/s00775-014-1148-z
- 26 P. Wang, G. P. A. Yap and C. G. Riordan, *Chem. Commun.*, 2014, **50**, 5871–5873.
- 27 (a) M. R. Sundberg, R. Uggla, C. Viñas, F. Teixidor, S. 95 Paavola and R. Kivekäs, *Inorg. Chem. Commun.*, 2007, **10**, 713-
- ⁹⁵ Paavola and R. Kivekas, *Inorg. Chem. Commun.*, 2007, **10**, 715–716; (b) S. Scheiner, *Acc. Chem. Res.*, 2013, **46**, 280–288; (c) A. Bauzá, R. Ramis and A. Frontera, *J. Phys. Chem. A*, 2014, **118**, 2827–2834. (d) A. Bauzá, T. J. Mooibroek and A. Frontera, *ChemCommun*, 2014, DOI: 10.1039/C4CC09132A
- ¹⁰⁰ 28 L. K. Das, R. M. Kadam, A. Bauzá, A. Frontera and A. Ghosh, *Inorg. Chem.*, 2012, **51**, 12407–12418.
 ²⁰ M. K. Taylor, L. Bazlinski, L
- 29 M. K. Taylor, J. Reglinski, L. E. A. Berlouis and A. R. Kennedy, *Inorg. Chim.Acta*, 2006, **359**, 2455–2464.
- 30 R. T. Weber, WIN-EPR SIMFONIA manual, 1995.
- ¹⁰⁵ 31 SAINT, version 6.02; SADABS, version 2.03, Bruker AXS, Inc., Madison, WI, 2002.
 ²² C. M. Shaldrigh, Phys. Rev. C, Structure 7, 1477 (1997)
 - 32 G. M. Sheldrick, *Program for Structure Solution*, 1997.33 G. M. Sheldrick, *Program for Crystal Structure Refinement*, 1997.
- ¹¹⁰ 34 A. L. Spek, J. Appl. Crystallogr., 2003, 36, 7–13.
 35 L. J. Farrugia, J. Appl. Crystallogr., 1999, 32, 837–838.
 - 36 L. J. Farrugia, J. Appl. Crystallogr., 1999, **32**, 837– 36 L. J. Farrugia, J. Appl. Crystallogr., 1997, **30**, 565.
 - 37 R. Ahlrichs, M. Bär, M. Hacer, H. Horn and C. Kömel, *Chem. Phys. Lett.*, 1989, **162**, 165–169.
- ¹¹⁵ 38 S. Grimme, J. Antony, S. Ehrlich and H. Krieg, *J.Chem. Phys.*, 2010, **132**, 154104–19.
 - 39 AIMAll (Version 13.05.06), Todd A. Keith, TK Gristmill Software, Overland Park KS, USA, 2013.
- 40. (*a*) M. Mitra, P. Manna, A. Bauzá, P. Ballester, S. Kumar ¹²⁰ Seth, S. R. Choudhury, A. Frontera and S. Mukhopadhyay, J.
- Phys. Chem. B, DOI: 10.1021/jp510075m; (b) S. Saha, A. Sasmal, C. R. Choudhury, G. Pilet, A. Bauzá, A. Frontera, S. Chakraborty and S. Mitra, *Inorg. Chim. Acta*, 2015, **425**, 211–220; (c) M. Mirzaei, H. Eshtiagh-Hosseini, A. Bauzá, S.
- ¹²⁵ Zarghami, P. Ballester, J. T. Maguee and A. Frontera, *CrystEngComm*, 2014, **16**, 6149–6158 (*d*) M. Mirzaei, H. Eshtiagh-Hosseini, Z. Karrabi, K. Molčanov, E. Eydizadeh, J. T.Mague, A. Bauzá and A. Frontera, *CrystEngComm*, 2014, **16**, 5352–5363

(e) A. Neves, L. M. Rossi, A. J. Bortoluzzi, B. Szpoganicz, C. Wiezbicki, E. Schwingel, W. Haase and S. Ostrovsky, *Inorg. Chem.*, 2002, **41**, 1788–1794.

- 41 A. Biswas, L. K. Das, M. G. B. Drew, G. Aromí, P. Gamez 5 and A. Ghosh, *Inorg. Chem.*, 2012, **51**, 7993–8001.
- 42 S. Biswas and A. Ghosh, *Journal of Molecular Structure*, 2012, **1019**, 32–36.
- 43 A. W. Addison, T. N. Rao, J. Reedijk, J. V. Rijn and G. C. Verschoor, *J. Chem. Soc., Dalton Trans.*, 1984, 1349–1356.
- ¹⁰ 44 S. Mukhopadhyay, D. Mandal, P. B. Chatterjee, C. Desplanches, J.-P. Sutter, R. J. Butcher and M. Chaudhury, *Inorg. Chem.*, 2004, **43**, 8501–8509.
- 45 A. Nangia, K. Biradha and G. R. Desiraju, J. Chem. Soc., Perkin Trans., 1996, **2**, 943–953.
- ¹⁵ 46 J. M. Dominguez-Vera, J. Suarez-Varela, I. B. Maimoun and E. Colacio, *Eur. J. Inorg. Chem.*, 2005, 1907–1912.
 47 S. Demeshko, G. Leibeling, S. Dechert, S. Fuchs, T. Pruschke and F. Meyer, *ChemPhysChem*, 2007, 8, 405–417.
- 48 G. A. McLachlan, G. D. Fallon, R. L. Martin, B. Moubaraki,
 ²⁰ K. S. Murray and L. Spiccia, *Inorg. Chem.*, 1994, **33**, 4663–4668.
 49 M. Monfort, I. Resino, M. S. E. Fallah, J. Ribas, X. Solans,
 M. Font-Bardia and H. Stoeckli-Evans, *Chem. Eur. J.*, 2001, **7**, 280–287.
- 50 (a) G. Sánchez-Sanz, C. Trujillo, M. Solimannejad, I. Alkorta 25 and J. Elguero, *Phys. Chem. Chem. Phys.*, 2013, **15**, 14310-
- ²⁵ and J. Eiguero, *Phys. Chem. Chem. Phys.*, 2015, **15**, 14310– 14318; (b) J. E. del Bene, I. Alkorta and J. Elguero, *J. Phys. Chem. A*, 2013, **117**, 6893–6903.

51 J. Mukherjee and R. Mukherjee, *Inorg. Chim.Acta*, 2002, **337**, 429–438.

- ³⁰ 52 F. Zippel, F. Ahlers, R. Werner, W. Haase, H.-F.Nolting and B. Krebs, *Inorg. Chem.*, 1996, **35**, 3409–3419.
 53 A. Banerjee, A. Guha, J. Adhikary, A. Khan, K. Manna, S. Dey, E. Zangrando and D. Das, *Polyhedron*, 2013, **60**, 102–109.
 54 (a) S. Majumder, S. Mondal, P. Lemoine and S. Mohanta,
- ³⁵ Dalton Trans., 2013, **42**, 4561–4569; (b) R. Modak, Y. Sikdar, S. Mandal and S. Goswami, *Inorg. Chem. Comm.*, 2013, **37**, 193–196.

55 E. Monzani, L. Quinti, A. Perotti, L. Casella, M. Gulotti, L. Randaccio, S. Geremia, G. Nardin, P. Faleschini and G. Tabbi, 40 *Inorg. Chem.*, 1998, **37**, 553–562.

- 56 (a) M. R. Mendoza-Quijano, G. Ferrer-Sueta, M. Flores-Álamo, N. Aliaga-Alcalde, V. Gómez-Vidales, V. M. Ugalde-Saldívara and L. Gasque, *Dalton Trans.*, 2012, **41**, 4985–4997; (b) J. Ackermann, F. Meyer, E. Kaifer and H. Pritzkow, *Chem.*
- ⁴⁵ Eur. J., 2002, **8**, 247–258; (c) M. Kodera, T. Kawata, K. Kano, Y. Tachi, S. Itoh and S. Kojo, Bull. Chem. Soc. Jpn., 2003, **76**, 1957–1964; (d) I. A. Koval, K. Selmeczi, C. Belle, C. Philouze, E. Saint-Aman, I. Gautier- Luneau, A. M. Schuitema, M. V. Vliet, P. Gamez, O. Roubeau, M. Luken, B. Krebs, M. Lutz, A.
- ⁵⁰ L. Spek, J.-L. Pierre and J. Reedijk, *Chem. Eur. J.*, 2006, **12**, 6138–6150.
- 57 (a) R. A. Peralta, A. J. Bortoluzzi, B. Szpoganicz, T. A. S. Brandaoa, E. E. Castellano, M. B. de Oliveira, P. C. Severino, H. Terenzi and A. Neves, *J. Phys. Org. Chem.*, 2010, 23,
- ⁵⁵ 1000-1013; (b) J. Balla, T. Kiss and R. F. Jameson, *Inorg. Chem.*, 1992, **31**, 58-62; (c) K. Selmeczi, M. Reglier, M. Giorgi and G. Speier, *Coord. Chem. Rev.*, 2003, **245**, 191-201.
 ⁵⁸ (a) E. F. Vansant and J. H. Lunsford, *Chem. Comm.*, 1972, 830-832; (b)R. F. Howe and J. H. Lunsford, *J. Am. Chem. Soc.*,
- ⁶⁰ 1975, **97**, 5156–5159; (c) S. Fljlwara, T. Watanabe and H. Tadano, J. Coord. Chem., 1971, **1**, 195–206; (d) M. Baumgarten, C. J. Winscom and W. Lubitz, Applied Magnetic Resonance, 2001, **20**, 35–70; (e) Y. Nishida, A. Sumita and S. Kida, Bull. Chem. Soc. Japan, 1977, **50**, 759–760; (f) B. K. Santra and G. K.
- 65 Lahiri, J. Chem. Soc., Dalton Trans., 1998, 139-145.

Dalton Transactions Accepted Manuscript

Tables (1-6)

Unprecedented structural variations in trinuclear mixed valence Co(II/III) complexes derived from a Schiff base and its reduced form: Theoretical studies, pnicogen bonding interactions and catecholase-like activities

Alokesh Hazari, Lakshmi Kanta Das, Ramakant M. Kadam, Antonio Bauzá, Antonio Frontera* and Ashutosh Ghosh*

Table 1 Bond distances (Å) and angles (°) for complexes 1

	1A	1 B		1A	1B
Co(2)–O(10)	1.908(1)	1.899(1)	O(10)–Co(2)– N(7)	89.2(4)	89.0(5)
Co(2)–O(30)	1.934(1)	1.928(1)	O(10)-Co(2)-N(1)	87.7(4)	87.5(4)
Co(2)–N(18)	1.928(1)	1.925(1)	O(30)–Co(2)– N(1)	81.0(4)	80.2(4)
Co(2)–N(22)	1.940(1)	1.933(1)	O(30)–Co(2)– N(7)	90.8(4)	91.2(4)
Co(2)–N(1)	1.991(1)	1.984(1)	N(22)-Co(2)-O(10)	174.0(4)	174.8(4)
Co(2)–N(7)	1.941(1)	1.937(1)	N(18)-Co(2)-O(30)	176.7(4)	175.7(5)
Co(3)–O(31)	1.885(1)	1.901(1)	N(7)-Co(2)-N(1)	171.3(5)	170.9(5)
Co(3)–O(51)	1.908(1)	1.916(1)	O(31)-Co(3)-O(51)	87.1(4)	86.8(4)
Co(3)–N(39)	1.916(1)	1.904(1)	N(39)–Co(3)– N(43)	94.7(4)	95.0(5)
Co(3)–N(43)	1.923(1)	1.945(1)	O(51)–Co(3)– N(43)	87.9(4)	88.1(4)
Co(2)–O(10)	1.908(1)	1.899(1)	O(31)–Co(3)– N(39)	90.7(4)	90.3(4)
Co(3)–N(4)	1.950(1)	1.944(1)	N(4)-Co(3)-N(43)	88.8(5)	89.9(5)
Co(3)–N(10)	1.987(1)	1.994(1)	N(39)–Co(3)– N(4)	91.8(5)	93.1(4)
Co(1)-O(30)	2.115(1)	2.112(1)	O(31)-Co(3)-N(4)	87.8(5)	87.6(5)
Co(1)-O(51)	2.115(1)	2.103(1)	O(51)-Co(3)-N(4)	91.7(4)	90.7(4)
Co(1)–N(10)	2.125(1)	2.119(1)	O(31)-Co(3)-N(43)	173.8(4)	174.3(4)
Co(1)-N(1)	2.109(1)	2.095(1)	O(51)-Co(3)-N(39)	175.7(4)	175.1(4)
Co(1)-O(1)	2.091(1)	2.075(1)	N(4)-Co(3)-N(10)	172.4(5)	171.1(4)
Co(1)-O(2)	2.090(1)	2.093(1)	O(51)-Co(1)-N(10)	73.4(4)	73.9(3)
O(10)–Co(2)– O(30)	87.1(4)	86.9(4)	O(30)–Co(1)–N(10)	92.5(4)	92.8(4)
N(18)-Co(2)-N(22)	95.3(5)	95.1(4)	O(30)-Co(1)-N(1)	74.2(4)	73.6(4)
O(30)–Co(2)– N(22)	87.1(4)	88.1(4)	O(30)-Co(1)-O(1)	81.8(4)	82.2(4)
O(10)–Co(2)– N(18)	90.6(4)	90.0(4)	N(1)-Co(1)-O(1)	90.7(5)	91.1(4)
N(22)-Co(2)-N(1)	93.0(4)	93.1(4)	O(30)-Co(1)-O(51)	111.8(4)	111.6(4)
N(22)-Co(2)-N(7)	89.2(5)	89.7(5)	N(10)-Co(1)-N(1)	157.6(4)	157.2(4)
N(18)-Co(2)-N(1)	96.6(4)	96.8(4)	O(30)-Co(1)-O(2)	168.7(4)	168.4(4)
N(18)-Co(2)-N(7)	91.5(4)	91.6(5)	O(1)-Co(1)-O(2)	87.3(4)	86.6(4)

Co(2)–O(10)	1.905(2)	O(30)–Co(2)– N(22)	88.9(6)	N(22)-Co(2)-O(10)	173.0(5)
Co(2)–O(30)	1.915(2)	O(10)–Co(2)– N(18)	90.4(6)	N(18)-Co(2)-O(30)	174.3(6)
Co(2)–N(18)	1.935(2)	N(22)-Co(2)-N(1)	90.7(6)	N(7)-Co(2)-N(1)	177.4(6)
Co(2)–N(22)	1.945(2)	N(22)–Co(2)– N(7)	87.8(7)	O(30)-Co(1)-N(1)	104.3(5)
Co(2)–N(1)	2.000(1)	N(18)–Co(2)– N(1)	93.9(6)	O(30)–Co(1)–O(1)	93.9(5)
Co(2)–N(7)	1.943(2)	N(18)–Co(2)– N(7)	88.4(6)	N(1)-Co(1)-O(1)	87.9(5)
Co(1)-O(30)	2.061(2)	O(10)–Co(2)– N(7)	93.0(6)	$O(30)-Co(1)-O(30)^{a}$	180.0
Co(1) - N(1)	2.203(2)	N(18)-Co(2)-N(22)	96.5(6)	$N(1)-Co(1)-N(1)^{a}$	180.0
Co(1)-O(1)	2.064(2)	O(10)-Co(2)-N(1)	88.2(6)	$O(1)-Co(1)-O(1)^{a}$	180.0
O(10)-Co(2)-O(30)	84.2(5)	O(30)-Co(2)-N(1)	83.9(5)		
N(18)-Co(2)-N(22)	96.5(6)	O(30)–Co(2)– N(7)	93.9(6)		

Table 2 Bond distances (A	Å) and	angles (°)	for complexes 2
---------------------------	--------	------------	------------------------

Symmetry element a = 2-x, -y, -z for 2.

Published on 06 January 2015. Downloaded by Selcuk University on 12/01/2015 11:09:49.

Table 3 Bond distances	(Å) an	d angles	(°)	for comp	lexes 3
------------------------	--------	----------	-----	----------	---------

Co(2)–O(10)	1.925(5)	O(30)-Co(2)-N(22)	92.8(2)	N(39)-Co(3)-N(3)	90.4(2)
Co(2)–O(30)	1.928(5)	O(10)–Co(2)– N(18)	92.4(2)	N(39)-Co(3)-N(4)	87.4(2)
Co(2)–N(18)	1.992(6)	N(22)-Co(2)-N(1)	86.9(3)	O(31)-Co(3)-N(3)	90.3(2)
Co(2)–N(22)	1.979(6)	N(22)-Co(2)-N(7)	89.0(3)	O(31)-Co(3)-N(4)	94.2(2)
Co(2)–N(1)	1.987(6)	N(18)-Co(2)-N(1)	90.6(2)	O(51)-Co(3)-N(3)	90.7(2)
Co(2)–N(7)	1.943(6)	N(18)-Co(2)-N(7)	87.1(2)	O(51)-Co(3)-N(4)	92.1(2)
Co(3)–O(31)	1.922(5)	O(10)-Co(2)-N(7)	93.8(2)	O(31)-Co(3)-N(43)	171.2(2)
Co(3)–O(51)	1.922(5)	O(10)–Co(2)– N(1)	90.7(2)	O(51)-Co(3)-N(39)	170.7(2)
Co(3)–N(39)	1.991(6)	O(30)–Co(2)– N(1)	90.5(2)	N(3)-Co(3)-N(4)	175.1(2)
Co(3)–N(43)	1.973(6)	O(30)–Co(2)– N(7)	92.5(2)	O(31)-Co(1)-O(51)	71.7(2)
Co(3)–N(3)	1.980(6)	N(22)-Co(2)-O(10)	170.9(2)	O(30)–Co(1)–O(10)	72.0(2)
Co(3)–N(4)	1.941(6)	N(18)-Co(2)-O(30)	170.8(2)	O(51)-Co(1)-N(10)	105.7(3)
Co(1)-O(10)	2.000(5)	N(7)-Co(2)-N(1)	175.1(2)	O(31)-Co(1)-N(10)	120.8(3)
Co(1)-O(30)	2.140(5)	O(31)–Co(3)– O(51)	78.3(2)	O(10)-Co(1)-N(10)	121.0(3)
Co(1)-O(31)	1.997(5)	N(39)-Co(3)-N(43)	96.0(2)	O(30)–Co(1)–N(10)	105.9(3)
Co(1)-O(51)	2.140(5)	O(51)–Co(3)– N(43)	93.3(2)	O(30)–Co(1)–O(31)	91.7(2)
Co(1)-N(10)	1.977(7)	O(31)-Co(3)-N(39)	92.5(2)	O(10)-Co(1)-O(51)	91.9(2)
O(10)–Co(2)– O(30)	78.5(2)	N(3)-Co(3)-N(43)	87.2(2)	O(10)-Co(1)-O(31)	118.2(2)
N(18)-Co(2)-N(22)	96.4(3)	N(4)-Co(3)-N(43)	88.6(2)	O(30)–Co(1)–O(51)	148.4(2)
		1			

- 1 1 1 1 1 1 1 1	Table 4 Kinetic Parameters	for the Oxidation	of 3 5-DTBC Catalyze	d by Complexes 1 2 and 3
--------------------------	----------------------------	-------------------	----------------------	--------------------------

Complexes	V_{max} (M min ⁻¹)	Std. error	$K_{M}(M)$	Std. error	$K_{cat}(h^{-1})$
1	11.8 X 10 ⁻⁵	6.79 X 10 ⁻⁶	1.89 X 10 ⁻³	5.89 X 10 ⁻⁵	142
2	7.17 X 10 ⁻⁵	0.60 X 10 ⁻⁶	1.44 X 10 ⁻³	0.81 X 10 ⁻⁵	85
3	8.29 X 10 ⁻⁵	3.87 X 10 ⁻⁶	1.65 X 10 ⁻³	4.78 X 10 ⁻⁵	99

1 1			
Complexes	$K_{cat}(h^{-1})$ in CH ₃ CN	$K_{cat}(h^{-1})$ in CH ₃ OH	References
$[Co^{III}Co^{II}L^{1}(N_{3})_{3}] \cdot 0.5CH_{3}CN \cdot 0.27H_{2}O$	114.24	Not done	54(a)
$[Co_{III}Co_{II}L^{1}(N_{3})_{3}] \cdot CH_{3}CN$	482.16	45.38	54(a)
$[Co_2(L^2H)(H_2O)_2(CH_3CO_2)_2](CH_3CO_2)_2$	Not done	447	53
$[Co_2(L^3)(H_2O)_2(CH_3CO_2)_2](CH_3CO_2)$	Not done	45.9	53
$[Co_2(L^4)(H_2O)_2(CH_3CO_2)_2](CH_3CO_2)$	Not done	42.9	53
Complex 1	142	Not done	Present work
Complex 2	85	Not done	Present work
Complex 3	99	Not done	Present work

Table 5 k_{cat} values for the oxidation of 3,5-DTBC to 3,5- DTBQ catalyzed by complexes 1–3 and other reported cobalt complexes

Where, H_2L^1 = The [2 + 2] condensation product of 2,6-diformyl-4-methylphenol and 2,2-dimethyl-1,3diaminopropane, H_2L^2 = 2,6-bis(N-ethylpiperazine -iminomethyl)-4-methyl-phenol, H_2L^3 = 2,6-bis(2-ethylpyridineiminomethyl)-4-methyl-phenol and H_2L^4 = 2,6-bis(N-ethylpiperidine-iminomethyl)-4-methyl-phenol.

Table 6 EPR parameter of low spin cobalt complexes (S=1/2) in different geometries (distorted octahedral, square pyramid or trigonal bipyramid and square planar coordination). Hyperfine coupling constant is given in Gauss

Matrix	g ₁	g ₂	g ₃	A ₁	A ₂	A ₃	References
$\left[\mathrm{Co}(\mathrm{CH}_{3}\mathrm{NC})_{6}\right]^{2+}$	2.008	2.087	2.087	68	72	72	58(a)
$\left[\mathrm{Co}(\mathrm{CH}_{3}\mathrm{NC})_{5}\right]^{2+}$	2.003	2.163	2.163	89	32	32	58(a)
Co(NH,),O,-Y	2.002	2.010	2.084	12.5	12	17.8	58(b)
Co(CH,NH,),O,-Y	1.999	2.010	2.075	12	12	21	58(b)
$Co(NH_3)_5O_2$	1.995	1.995	2.981	12.2	12.2	17.2	58(c)
$[Co(N)_4]^{2+}$	2.024	2.479	2.479	108	78	78	58(d)
$\mathrm{Co}(\mathrm{N}_2\mathrm{S}_2)^{2^+}$	2.000	2.000	3.39			165	58(e)
$[CoN_6]^{2+}/[CoN_4P_2]^{2+}$	2.003	2.003	2.009			6.78	58(f)
Co^{2+} complexes 1 , 2 & 3	2.0018	2.0059	2.0059	19.65	7.0	7.0	Present work

Estimated errors for g value, ± 0.002 ; for hyperfine splitting, ± 0.5 G, complexes were frozen in acetonitrile solution