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Zinc-mediated addition of bromoacetonitrile to carbonyl compounds under 
solvent-free conditions
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Zinc mediated addition reaction of bromoacetonitrile with aryl aldehydes and ketones produces β-hydroxynitriles under 
solvent-free conditions. The valuable feature of the methodology are solvent-free and catalyst-free conditions and short 
reaction times (5 min).
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β-Hydroxynitriles are useful building blocks for the synthesis 
of β-hydroxycarboxylic acids and their derivatives, γ-amino 
alcohols as well as other important functionalities.1–3 Typically, 
β-hydroxynitriles are prepared through the deprotonation of a 
nitrile followed by addition to an aldehyde or ketone through 
a nucleophilic attack.4 The procedure has the disadvantage of 
being harsh on sensitive acidic functional groups present in 
the substrate and the facile dehydrations of β-hydroxynitriles 
usually give the desired products in unsatisfactory yields.5 To 
overcome the above problems, the Reformatsky-type reaction 
is recognised as being a good alternative.6–8 Some activated 
metals such as nickel,9 antimony,10 tin,11 indium12 and SmI2

13 
are reported to promote Reformatsky-carbonyl addition 
reactions of α-halonitriles. However, there are few examples of 
satisfactory Reformatsky-type reaction with bromoacetonitriles 
mediated by zinc. This is due to the relatively low activity 
and the requirement of strict reaction conditions with zinc. 
Various methods have been reported to improve the activation 
of organozinc, such as ultrasound14,15 and microwave.16 In 
our preliminary research, we found that the reactivity of 
organozinc could be enhanced dramatically in the absence 
of solvent (THF). We have reported the solvent-free addition 
reaction of allylzinc bromide and carbonyl compounds.17 Now 
we report an efficient addition reaction of bromoacetonitrile 
with aryl carbonyl compounds mediated by zinc under solvent-
free conditions. We found that the reactivity with zinc could 
be enhanced dramatically in the absence of the solvent THF. 
The reaction is very fast in all cases with substrates reacting 
completely in less than 5 min at room temperature.

We now propose that an organozinc compound 
(BrZnCH2CN) may be formed through the oxidative addition of 
bromoacetonitrile to zinc, and that nucleophilic addition of this 
species to carbonyl groups yields the products. The reaction of 
organozinc reagents always requires strict reaction conditions 

such as a transition-metal catalyst, N2 atmosphere, anhydrous 
solvent, and low temperature. However, our solvent-free 
reaction is completed in less than 5 min in an open atmosphere 
at room temperature and does not need any catalyst. The yields 
are good, and the reaction time is very short. The examples are 
shown in Scheme 1.

Solvent-free conditions play a major role in the reaction. The 
reaction did not proceed at all in the presence of the solvent 
THF. The reason is probably that the micro-environment and 
the higher concentration of reactants in the absence of solvent 
lead to more favourable kinetics than in solution.

The zinc mediated addition reactions of bromoacetonitrile 
with a series of aldehydes and ketones under solvent-free 
conditions are contained in Table 1. The reaction provides 
good yields in reactions utilising aryl aldehydes and ketones. 
Aryl aldehydes containing both electron-donating and 
electron-withdrawing groups in the aromatic rings and 
heteroaryl aldehydes were found to undergo the conversion 
smoothly (Table 1, entries 1–5, 8). The corresponding products 
β-hydroxynitriles were obtained in yields ranging from 74% to 
92%. The approach only gave 1, 2-addition for α, β-unsaturated 
aldehydes, and conjugate addition did not occur (Table 1, entries 
6 and 7). Aryl ketones also proceed by a similar reaction, 
but the yield is lower than with aldehydes. Lower activated 
aliphatic aldehydes or ketones, unfortunately, did not undergo 
the addition reactions.

In conclusion, zinc-mediated solvent-free nitrile aldol 
reaction provides an alternative method for introducing a nitrile 
into a carbonyl compound. The method here has the following 
advantages: solvent-free, short reaction time (5 min), mediated 
by cheap metallic zinc, without another catalyst, adaptability 
to a wide variety of aryl aldehydes and ketones, high yield and 
environmentally benign.

Experimental
IR spectra were measured using an Alpha Centauri FT-IR 
spectrophotometer. 1H NMR and 13C NMR spectra (400 MHz) were 
recorded in CDCl3 using a Bruker AC-E 400 MHz spectrometer. 
HRMS was performed on an APEX II FT-ICR. Purification of 
products was performed via flash chromatography with 200–400 mesh 
silica gel [petroleum ether (bp 60–90 °C) : ethyl acetate, 10 : 1]. The 
chemicals were obtained from commercial sources.

Synthesis of  3a–i; general procedure
In a dried round-bottom flask fitted with magnetic bar and dropping 
funnel, zinc powder (0.39 g, 6 mmol) was activated 18 and aromatic 
aldehydes or ketones (4 mmol) were added. After this step, 
bromoacetonitrile (5 mmol) was added dropwise over 2 minutes and 
then the reaction was stirred for 5 minutes at room temperature. After 
complete conversion, saturated aqueous ammonium chloride was 
poured into the mixture and the mixture was stirred for 5 minutes. 
Ethyl ether was added to the reaction mixture and the organic layer was 
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separated. The organic extracts were dried over anhydrous MgSO4. 
The residue was purified by flash chromatography on silica gel to 
obtain an oily product. All the isolated products were characterised 
by IR, 1H NMR and 13C NMR. The physical and spectra data of the 
compounds 3a–i are as follows.

3-Hydroxy-3-phenylpropanenitrile (3a): Oil,11,12 IR (υ/cm–1): 3387, 
3012, 2245, 1538; 1H NMR (400 MHz, CDCl3, TMS): 7.40–7.26 (m, 5H), 
5.04–5.01 (t, J = 6.4 Hz, 1H), 2.76–2.74 (d, 2H), 2.57(br s, 1H, OH) 13C 
NMR (100 MHz, CDCl3): 140.9, 128.9, 128.8, 125.5, 117.3, 69.9, 27.9.

3-(4-Fluorophenyl)-3-hydroxypropanenitrile (3b): Oil,19 IR (υ/cm–1): 
3407, 3025, 2243, 1541; 1H NMR (400 MHz, CDCl3, TMS): 7.38–7.05 (m, 
4H), 5.00 (t, J = 6.0 Hz, 1H), 3.15 (br s, 1H, OH), 2.73–2.71(d, 2H); 13C 
NMR (100 MHz, CDCl3): 163.9, 161.5, 136.8, 136.7, 127.4, 127.3, 117.2, 
115.8, 115.6, 69.2, 27.9.

3-(4-Chlorophenyl)-3-hydroxypropanenitrile (3c): Oil,11,12,19 IR (υ/cm–1): 
3385, 3024, 2241, 1547; 1H NMR (400 MHz, CDCl3, TMS): 7.39–7.26 
(m, 4H), 5.05–5.00 (q, J = 6.0 Hz, 1H), 2.79–2.68 (m, 3H); 13C NMR 
(100 MHz, CDCl3): 139.4, 134.6, 129.1, 126.9, 117.0, 69.3, 27.9.

3-Hydroxy-3-(3-methoxyphenyl)propanenitrile (3d): Oil,19 IR (υ/cm–1): 
3406, 3016, 2233, 1517, 1431; 1H NMR (400 MHz, CDCl3, TMS): 7.32–
7.26 (m, 1H), 6.94 (s, 2H), 6.89–6.86 (t, 1H), 4.99–4.97 (t, J = 4.0 Hz, 
1H), 3.84–3.79 (t, 3H), 2.80 (br s, 1H, OH), 2.74–2.73(m, 2H); 13C NMR 
(100 MHz, CDCl3): 159.9, 142.7, 129.9, 117.7, 117.3, 114.2, 111.1, 69.9, 
55.3, 27.9.

3-Hydroxy-3-(4-methoxyphenyl)propanenitrile (3e): Oil,11 IR (υ/cm–1): 
3401, 3012, 2243, 1523; 1H NMR (400 MHz, CDCl3, TMS): 7.35–7.26 (m, 
2H), 6.94–6.91 (q, 2H), 5.02–4.99 (t, J = 6.4 Hz, 1H), 3.82 (s, 3H), 2.82–

Table 1 Zinc-mediated solvent-free addition reaction of bromoacetonitrile to carbonyl compoundsa
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aReaction conditions: activated zinc powder (6 mmoL), aldehydes or ketones (4 mmoL), and bromoacetonitrile (5 mmoL) at 
room temperature for 5 min.
bAll products were characterised by IR, 1H NMR and 13C NMR.
cIsolated yield.
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2.71 (m, 2H), 2.32 (br s, 1H, OH); 13C NMR (100 MHz, CDCl3): 159.9, 
133.1, 126.8, 117.3, 114.3, 69.9, 55.3, 27.9.

3-Hydroxy-5-phenylpent-4-enenitrile (3f): Oil,11,12,19 IR (υ/cm–1): 3398, 
3019, 2236, 1529; 1H NMR (400 MHz, CDCl3, TMS): 7.57–7.25 (m, 5H), 
6.72–6.84 (d, 1H), 6.26–6.20 (t, 1H), 4.64–4.60(q, J = 5.6 Hz, 1H), 2.73–
2.61 (m, 2H), 2.51(br s, 1H, OH); 13C NMR (100 MHz, CDCl3): 135.5, 
132.9, 128.7, 128.4, 127.9, 126.7, 117.2, 68.6, 26.3.

3-Hydroxy-4-methyl-5-phenylpent-4-enenitrile (3g): Oil, IR (υ/cm–1): 
3402, 3014, 2238, 1526; 1H NMR (400 MHz, CDCl3, TMS): 7.37–7.23 
(m, 5H), 6.64 (s, 1H), 4.54–4.53(t, J = 6.0 Hz, 1H), 2.70–2.67 (q, 2H), 
2.48 (br s, 1H, OH), 1.88 (s, 3H); 13C NMR (100 MHz, CDCl3): 136.6, 
136.4, 128.9, 128.2, 127.6, 127.0, 117.4, 73.2, 24.6, 13.2; HRMS calcd for 
C12H13N O[M + H]+: 188.1075, found: 188.1079.

3-(Furan-2-yl)-3-hydroxypropanenitrile  (3h): Oil,19 IR (υ/cm–1): 3405, 
2236, 1612, 1518, 1H NMR (400 MHz, CDCl3, TMS): 7.42–7.40(m, 1H), 
6.39–6.36 (m, 2H), 5.05–5.02 (t, J = 6.0 Hz, 1H), 3.13 (br s, 1H, OH), 
2.91–2.88 (m, 2H), 13C NMR (100 MHz, CDCl3): 152.8, 142.8, 116.9, 
110.5, 107.4, 63.7, 24.8.

3-Hydroxy-3-phenylbutanenitrile (3i): Oil,12 IR (υ/cm–1): 3408, 3027, 
2249, 1516; 1H NMR (400 MHz, CDCl3, TMS): 7.49–7.26 (m, 5H), 
2.87–2.77 (q, 2H), 2.42 (br s, 1H, OH), 1.76 (s, 3H); 13C NMR (100 MHz, 
CDCl3): 144.5, 128.7, 127.9, 117.3, 72.4, 33.6, 29.1.
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