Accepted Manuscript

A facile one pot C-C and C-N bond formation for the synthesis of spirobenzodiazepines and their cytotoxicity

Burri Nagaraju, Jeshma Kovvuri, K. Suresh Babu, Praveen Reddy Adiyala, V. Lakshma Nayak, Abdullah Alarifi, Ahmed Kamal

PII: S0040-4020(17)31097-9

DOI: 10.1016/j.tet.2017.10.060

Reference: TET 29063

To appear in: Tetrahedron

Received Date: 27 September 2017

Accepted Date: 21 October 2017

Please cite this article as: Nagaraju B, Kovvuri J, Babu KS, Adiyala PR, Nayak VL, Alarifi A, Kamal A, A facile one pot C-C and C-N bond formation for the synthesis of spiro-benzodiazepines and their cytotoxicity, *Tetrahedron* (2017), doi: 10.1016/j.tet.2017.10.060.

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

A facile one pot C-C and C-N bond formation for the synthesis of spirobenzodiazepines and their cytotoxicity

Burri Nagaraju, ^{a,b} Jeshma Kovvuri, ^{a,b} K. Suresh Babu, ^b Praveen Reddy Adiyala, ^b V. Lakshma Nayak, ^b Abdullah Alarifi ^c and Ahmed Kamal, ^{a,b,c *}

^aAcademy of Scientific and Innovative Research (AcSIR), New Delhi-110025, India

^bMedicinal Chemistry and Biotechnology, CSIR-Indian Institute of Chemical Technology, Hyderabad-500007, India

^cCatalytic Chemistry Chair, Chemistry Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia

A facile one pot C-C and C-N bond formation for the synthesis of spirobenzodiazepines and their cytotoxicity

Burri Nagaraju,^{a,b} Jeshma Kovvuri, ^{a,b} K. Suresh Babu,^b Praveen Reddy Adiyala,^b V. Lakshma Nayak,^b Abdullah Alarifi^c and Ahmed Kamal, ^{a,b,c *}

^aAcademy of Scientific and Innovative Research (AcSIR), New Delhi-110025, India ^bMedicinal Chemistry and Biotechnology, CSIR-Indian Institute of Chemical Technology, Hyderabad-500007, India ^cCatalytic Chemistry Chair, Chemistry Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia

Abstract

An efficient, multicomponent and environmentally benign protocol has been developed for the synthesis of spiro-benzodiazepines through C-C and C-N bond formations in a single step. This one-pot protocol proceeds *via* three component reaction of *o*-phenylenediamines, tetronic acid and isatins by using mild and inexpensive catalyst like sulphamic acid in water. A variety of spiro-benzodiazepine derivatives has been synthesized in excellent yields by using this protocol in a shorter reaction time. All the synthesized compounds were evaluated for their cytotoxic potential on different human cancer cell lines and most of the compounds exhibited moderate to good cytotoxic activity, while some of them like **4f**, **4h**, **4i**, **4j** and **4q** showed promising cytotoxicity with IC₅₀ values ranging between 1.14-1.69 μ M.

Keywords: Cytotoxicity, Spiro-benzodiazepines, Multicomponent reactions, C-C and C-N bonds, Sulphamic acid.

* Corresponding authors. Tel.: +91-40-27193157; fax: +91-40-27193189;

E-mail addresses: ahmedkamal@iict.res.in

Introduction

Nitrogen containing seven membered heterocycles like benzodiazepines display a diverse range of pharmacological properties¹ such as analgesic, sedative, anti-depressive, anti-convulsant, anti-anxiety, anti-cancer^{2,3} and play a significant role in the treatment of central nerves system disorders.^{4,5} Benzodiazepines exhibit excellent binding ability because of conformational enantiomeric property.⁶⁻⁸ On the other hand, spiro-heterocycles are found in numerous biologically important natural products as well as synthetic congeners.⁹ Moreover, the derivatives of tetronic acid (tetrahydrofuran-2, 4-dione) are also play an essential role in medicinal chemistry.^{10,11}

<Figure-1>

Owing to their extensive applications (**Figure 1**) in medicinal chemistry wangt.al¹² reported microwave assisted synthesis of indoline-spiro benzofurodiazepines in the presence of acetic acid (**Scheme 1**), though the reported method is efficient, it have some limitations like use of unstable, flammable acetic acid, high energy source (200 W), pertinent only to small scale production due to microwave synthesis and fail to report isatin-N substituted products. Therefore, a mild, greener and more efficient protocol for the synthesis of spiro benzodiazepines is highly desirable.

< Scheme 1>

Multicomponent reactions allow the formation of several bonds in a single operation and provide certain advantages such as simplicity in extraction, purification processes and high degree of atom economy. The design of new multicomponent reactions with greener procedures for C-C and C-N bond formation has attracted great attention, particularly in the areas of drug discovery and organic chemistry.

In view of the special properties of water like high dielectric constant, cohesive energy, extraordinary effect on reaction rates, neutral, natural and non-toxic in nature Furthermore, besides having selectivity and unique reactivity that cannot be obtained in many other organic solvents, water also offers an easy approach for the separation of heavy metals as well as by-products, organic reagents and catalysts from the aqueous phase. Conversely, heterogeneous solid acids are useful over homogeneous acid catalysts as they can be simply recovered from the reaction mixture by filtration and can be reused after activation or without activation, making it economically more feasible. During the last few years, sulphamic acid (SA) has been used as a cost-effective, stable, less corrosive, non-hygroscopic and highly efficient greener heterogeneous acid catalyst for acid-catalyzed reactions. It has been used as an efficient catalyst for acetylation of alcohols and phenols,¹³⁻¹⁵ esterification,¹⁶ tetrahydropyranylation,¹⁷ Beckmann rearrangement,¹⁸ Biginelli condensation,¹⁹ Pechmann condensation,²⁰ Hantzsch reaction,²¹ Michael,²² and Mannich reactions.²³

Considering these advantages and in the path of our efforts to develop environmentally benign methods for the synthesis of bioactive compounds,²⁴ herein we report a facile protocol for the synthesis of spiro-benzodiazepine derivatives in excellent yields under milder reaction conditions by using an efficient and recyclable catalyst like sulphamic acid. Moreover these compounds have been evaluated for their cytotoxic potential to know the general sense of how the anticancer activity was affected by electronic character of the diamines and isatins.

Results and discussion

Chemistry

<Table 1>

Initially to optimize the reaction procedure a model reaction was performed using isatin (1 mmol), *o*-phenylenediamine (1 mmol) and tetronic acid (1 mmol) without any

catalyst under various conditions. We observed that the reaction did not proceed until 12 h (entry 1-10, **Table 1**). The same reaction was performed in the presence of different catalysts in water under refluxing conditions. The catalysts such as HCl, ZnCl₂, CH₃SO₃H, *p*-TSA and Amberlite IR-120 can catalyze this reaction with moderate yields (entries 11-19). The best result was obtained with sulphamic acid, according to the yield and time (entries 20 and 21). In addition, CHCl₃, CH₃CN, THF and methanol (entries 23-26, **Table 1**) were also tested in various solvents under refluxing conditions and in this product **4a** was formed in slightly lower yields, even with prolonged time (entry 27).

<Table 2>

After obtaining the desired product, the amount of sulfamic acid required for this reaction was optimized. It was found that when the amount of sulfamic acid was increased from 2 mole % to 5, 10, 15, 20 and 25 mole %, the yields were also enhanced from 46 % to 60 %, 72 %, 84 %, 87 % and 87 %, respectively (entries 1-6, **Table 2**). Therefore, 20 mole % of sulfamic acid is most favourable to proceed this reaction in water.

< Scheme 2> <Table 3>

The scope and generality of the reaction was performed with different set of substituents under the optimized conditions (Scheme 2). All these reactions proceeded efficiently to offer the products in excellent yields (75–90%) (4a–4u, Table 3), moreover the reaction promotes the formation of two C-N and one C-C bond. The isatins used possess both electron-withdrawing as well as electron-donating substituents and the diamines used were *o*-phenylenediamine, 4-methyl-, 4-nitro-, 3-methyl- and 4, 5-dichloro-*o* phenylenediamines. The results summarized are in Table 3. It is observed from the results, that isatin with electron withdrawing group such as a nitro substituents (entries 4g and 4n, Table 3) reacted easily providing good yields of the corresponding product. Similarly, very good yields of

products were obtained in the absence of substituents on isatin (entry 4a, Table 3). The presence of weakly electron withdrawing groups such as halogen substituents on isatin was unfavourable to the efficiency of the reaction (entries 4b-4e, 4l and 4m, Table 3), the reaction with benzyl groups on isatin (entries 4h-4j, Table 3) progressed straight forwardly and the products were obtained in good yields. In the case of diamines, absence of substituent on diamines did not show much result on the yields or reaction rates. The presence of electron donating substituents such as methyl on diamine provided products in good yields. Overall very good yields of the desired spiro-benzodiazepine derivatives were obtained with this method.

To know the feasibility of the reaction, a gram scale synthesis of 4a was tried. 4g of isatin, *o*-phenylenediamine (2.94g) and tetronic acid (2.72g), was dissolved in water, were stirred under the optimized reaction conditions and achieved the desired product 4a in 86 % yield.

Plausible mechanism

The reaction proceeds with the formation of enamine (**I**) by the reaction of *o*-phenylenediamine and tetronic acid. The enamine readily attacks on keto group of isatin to form (**II**) which undergoes dehydration to form (**III**), which is then converted into the final product **4** through intramolecular cyclizations (**Figure 2**).

<Figure 2>

Biological studies

Cytotoxic activity

To estimate the cytotoxicity of spiro-benzodiazepines (4a-4u) MTT assay was carried out on the selected human cancer cell lines, such as lung cancer (A549), breast cancer (MCF-7), prostate cancer (DU-145) and cervical cancer (HeLa). The cytotoxicity results in comparison to the positive controls like doxorubicin and etoposide are expressed in IC_{50} values and are tabulated in Table 4. The results revealed that the all the synthesized compounds 4a-u exhibited moderate to good cytotoxic activities with IC₅₀ values ranging from 1.349- 50.00 µM. Based on the antiproliferative data the SAR of these spiro benzodiazepines was examined. All the compounds have shown pronounced activity against A549 (lung cancer) and DU-145 (prostate cancer) cancel cell lines as compared to other cell lines. The most active derivatives in this series are 4f, 4h, 4i, 4j and 4q, interestingly derivatives **4h** and **4f** were found to be the promising derivatives with IC_{50} values 1.14 and 1.69 µM respectively against DU-145 cell line. The cytotoxicity of the series depends on the nature of substituents present on the diamines and isatins. Unsubstituted (4q) and electron rich substitute like 5-CH₃ (4f) isatins showed increased cytotoxicity, on the other hand simple and electron deficient substituent such as 5-Cl diamine enhanced cytotoxicity and introduction of benzyl group on isatin-NH (4h, 4i and 4j) lead to increased cytotoxic potency on DU-145 and A549 cell lines.

< Table-4>

Conclusion

In conclusion, we have developed a simple, efficient and environmentally benign method for the synthesis of spiro-benzodiazepine derivatives via C-C and C-N bond formation in water and using sulphamic acid as a greener catalyst. The advantage of the present methodology is the use of water and the absence of environmentally harmful

conventional organic solvents. Another important aspect is that the product is isolated by filtration, washing, drying without further purification. Moreover, using this method a series of twenty one spiro-benzodiazepines have been synthesized and evaluated for their cytotoxic potential. Some of these compounds like **4f**, **4h**, **4i**, **4j** and **4q** showed IC₅₀ values ranging between 1.14 to 1.69 μ M on selected human cancer cell lines. Hence, these compounds will be considered as a leads for the future drug designing.

Experimental section

All chemicals, reagents were purchased from the commercial sources and were used without further purification. Reactions were monitored by TLC on silica gel glass plate containing 60 GF-254, and visualization was done by UV light and iodine vapor. ¹H and ¹³C NMR spectra were recorded on Bruker UXNMR/XWIN-NMR (300 MHz) or Innova Varian-VXR-unity (400, 500 MHz) instruments. Chemical shifts were expressed in parts per million (ppm) downfield from TMS expressed as internal standard and coupling constants are expressed in Hz. ¹H NMR spectral data were reported in the following order: multiplicity (s, singlet; brs, broad singlet; d, doublet; dd, doublet of doublets; t, triplet; m, multiplet), coupling constants in Hz, and number of protons. ESI mass spectra were recorded on a Micromass Quattro LC using ESI+ software with capillary voltage 3.98 kV and an ESI mode positive ion trap detector. High resolution mass spectra were recorded on a QSTAR XL Hybrid MS-MS mass spectrometer. Melting points were determined with an electro thermal digital melting point apparatus IA9100 and are uncorrected.

General procedure for the synthesis of N-benzyl isatins

Isatin (1 mmol), corresponding benzyl bromide (1 mmol) and K_2CO_3 (3 mmol) were heated in acetonitrile for 1-2 h. After completion of the reaction, solvent was removed under vacuum and the product was extracted using ethyl acetate. The organic layer was dried over

anhydrous Na₂SO₄ and concentrated. The product obtained was used for next step without further purification.

1-Benzylindoline-2, 3-Dione (2h)

Light red solid; Yield: 99 %; ¹H NMR (300 MHz, CDCl₃): δ 4.93 (s, 2H), 6.78 (d, *J* = 8.07 Hz, 1H), 7.09 (t, *J* = 7.47 & 7.62 Hz, 1H), 7.28-7.36 (m, 5H), 7.48 (dd, *J* = 1.37 & 7.93 Hz, 1H), 7.61 (d, *J* = 7.47 Hz, 1H); ESI-MS: *m*/*z* = 238 (M+H)⁺; HRMS (ESI) *m*/*z* for C₁₅H₁₂O₂N calculated m/z: 238.0789, found *m*/*z*: 238.0782 (M+H)⁺.

1-Benzyl-5-chloroindoline-2, 3-Dione (2i)

Light red solid; Yield: 98%; ¹H NMR (300 MHz, CDCl₃): δ 4.93 (s, 2H), 6.72 (d, *J* = 8.39 Hz, 1H), 7.29-7.37 (m, 5H), 7.43 (dd, *J* = 2.13 & 8.39 Hz, 1H), 7.57 (d, *J* = 8.39 Hz, 1H); ESI-MS: $m/z = 272 (M+H)^+$; HRMS (ESI) m/z for C₁₅H₁₁O₂NCl calculated m/z: 272.0400, found m/z: 272.0394 (M+H)⁺.

1-Benzyl-5-bromoindoline-2, 3-Dione(2j)

Red solid; Yield: 98%; ¹H NMR (300 MHz, CDCl₃): δ 4.92 (s, 2H), 6.67 (dd, J = 1.67 & 8.39 Hz, 1H), 7.30-7.37 (m, 5H), 7.59 (dd, J = 2.13 & 8.39 Hz, 1H), 7.70 (d, J = 2.89 Hz, 1H); ESI-MS: $m/z = 315 (M+H)^+$; HRMS (ESI) m/z for C₁₅H₁₁O₂NBr calculated m/z: 315.9967, found m/z: 315.9962 (M+H)⁺.

General procedure for the synthesis of 4,9-dihydrospiro[benzo[b]furo[3,4-e][1,4]diazepine-10,3'-indoline]-1,2'(3H)-dione derivatives (4a-4u)

In 25ml a round bottom flask with minimum amount of water as solvent at 80 °C, to this add o-phenylenediamine (1 mmol), tetronic acid (1 mmol), isatin (1 mmol) and sulphamic acid (4 mol %) it was stirred, refluxed at 100 °C for 3h. The progress of reaction was monitored by

TLC. After completion of the reaction, ice-cold water was added and stirred for 5 min. The precipitated solid collected by filtration, washed with water and recrystalised using ethanol.

4,9-Dihydrospiro[benzo[b]furo[3,4-e][1,4]diazepine-10,3'-indoline]-1,2'(3H)-dione (4a)

Light yellow solid; Mp: 285-287 °C; ¹H NMR (300 MHz, DMSO-d₆): δ 4.87 (s, 2H), 5.86 (s, 1H), 6.61 (d, J = 7.17 Hz, 1H), 6.77-6.94 (m, 5H), 7.04 (d, J = 7.55 Hz, 1H), 7.15 (t, J = 7.36 & 14.35 Hz, 1H), 10.02 (s, 1H), 10.45 (s, 1H); ¹³C NMR (75 MHz, DMSO-d₆): δ 63.13, 66.18, 93.91, 109.36, 119.14, 120.97, 121.24, 122.92, 123.35, 128.25, 131.47, 131.80, 135.91, 142.70, 158.52, 170.55, 175.01; ESI-MS: m/z = 320 (M+H)⁺; HRMS (ESI) m/z for C₁₈H₁₄O₃N₃ calculated m/z: 320.1029, found m/z: 320.1038 (M+H)⁺.

5'-Fluoro-4,9-dihydrospiro[benzo[b]furo[3,4-e][1,4]diazepine-10,3'-indoline]-1,2'(3H)dione (4b)

White solid; Mp: 269-271 °C; ¹H NMR (300 MHz, CDCl₃ + DMSO-d₆): δ 4.88 (d, *J* = 12.9 Hz, 2H), 5.89 (s, 1H), 6.48 (d, *J* = 7.3 Hz, 1H), 6.83 (dd, *J* = 16.8, 9.3 Hz, 4H), 7.01 (t, *J* = 8.7 Hz, 2H), 10.01 (s, 1H), 10.95 (s, 1H); ¹³C NMR (75 MHz, DMSO-d₆): δ 18.68, 28.88, 63.35, 66.25, 93.35, 109.88, 111.15, 114.29, 119.16, 121.33, 122.93, 123.27, 131.70, 132.78, 135.37, 138.65, 158.59, 170.53, 175.09; ESI-MS: *m*/*z* = 360 (M+Na)⁺; HRMS (ESI) *m*/*z* for C₁₈H₁₂O₃N₃Na calculated m/*z*: 360.0746, found *m*/*z*: 360.0754 (M+Na)⁺.

7'-Fluoro-4,9-dihydrospiro[benzo[b]furo[3,4-e][1,4]diazepine-10,3'-indoline]-1,2'(3H)dione (4c)

Cream solid; Mp: 275-277 °C; ¹H NMR (300 MHz, CDCl₃+ DMSO-d₆): δ 4.84 (s, 2H), 5.85 (s, 1H), 6.41 (d, J = 8.0 Hz, 1H), 6.80 – 6.91 (m, 5H), 7.03 (d, J = 7.5 Hz, 1H), 10.01 (s, 1H), 10.47 (s, 1H); ¹³C NMR (75 MHz, DMSO-d₆): δ 59.48, 63.24, 66.27, 93.47, 115.06, 115.29, 119.13, 119.27, 121.28, 121.55, 122.88, 123.27, 129.78, 131.72, 134.16, 135.42, 144.68, 147.88, 158.43, 170.54, 174.78; ESI-MS: m/z = 360 (M+Na)⁺; HRMS (ESI) m/z for C₁₈H₁₂O₃N₃FNa calculated m/z: 360.0745, found m/z: 360.0754 (M+Na)⁺.

5'-Chloro-4,9-dihydrospiro[benzo[b]furo[3,4-e][1,4]diazepine-10,3'-indoline]-1,2'(3H)dione (4d)

White solid; Mp: 289-291 °C; ¹H NMR (300 MHz, CDCl₃ + DMSO-d₆): δ 4.84 (s, 2H), 5.87 (s, 1H), 6.64 (s, 1H), 6.87 (dd, J = 17.8, 7.2 Hz, 4H), 7.03 (d, J = 7.4 Hz, 1H), 7.16 (d, J = 8.2 Hz, 1H), 10.01 (s, 1H), 10.57 (s, 1H); ¹³C NMR (75 MHz, DMSO-d₆): δ 63.12, 66.26, 93.14, 110.55, 119.16, 121.30, 122.92, 123.22, 123.39, 125.12, 127.86, 131.64, 132.95, 135.34, 141.45, 158.60, 170.51, 174.90; ESI-MS: m/z = 376 (M+Na)⁺; HRMS (ESI) m/z for C₁₈H₁₂O₃N₃ClNa calculated m/z: 376.0459, found m/z: 376.0453 (M+Na)⁺.

5'-Bromo-4,9-dihydrospiro[benzo[b]furo[3,4-e][1,4]diazepine-10,3'-indoline]-1,2'(3H)dione (4e) ¹²

Gray solid; Mp: 310-312°C; ¹³C NMR (75 MHz, DMSO-d6); δ 61.55, 64.72, 91.56, 109.58, 111.17, 117.60, 119.75, 121.67, 124.57, 129.16, 130.09, 131.77, 133.78, 140.35, 157.05, 168.97, 173.28; ESI-MS: *m*/*z* = 398 (M+H)⁺; HRMS (ESI) *m*/*z* for C₁₈H₁₃O₃N₃Br calculated *m*/*z*: 398.01348, found *m*/*z*: 398.0131 (M+H)⁺.

5'-Methyl-4,9-dihydrospiro[benzo[b]furo[3,4-e][1,4]diazepine-10,3'-indoline]-1,2'(3H)dione (4f)

Cream solid; Mp: 259-262 °C; ¹H NMR (300 MHz, CDCl₃ + DMSO-d6): δ 2.20 (d, J = 9.7 Hz, 3H), 4.82 (s, 1H), 5.64 (s, 1H), 6.61 – 6.85 (m, 4H), 7.13 (s, 1H), 9.91 (s, 1H), 10.43 (s, 1H); ¹³C NMR (75 MHz, DMSO-d₆): δ 20.08, 63.08, 66.07, 109.23, 118.99, 120.80, 121.85, 123.27, 127.91, 129.28, 130.17, 135.50, 142.55, 158.40, 170.54; ESI-MS: m/z = 334 (M+H)⁺; HRMS (ESI) m/z for C₁₉H₁₆O₃N₃ calculated m/z: 334.1186, found m/z: 334.1186 (M+H)⁺.

$\label{eq:starses} 5'-Nitro-4, 9-dihydrospiro[benzo[b]furo[3,4-e][1,4] diazepine-10,3'-indoline]-1,2'(3H)-dione$

(**4**g)

Light yellow solid; Mp: 295-298°C; ¹H NMR (300 MHz, CDCl₃ + DMSO-d₆): δ 2.44 (d, J = 9.4 Hz, 2H), 3.65 (s, 1H), 4.38 – 4.46 (m, 3H), 4.54 – 4.59 (m, 2H), 4.96 (s, 1H), 5.70 (d, J = 8.6 Hz, 1H), 7.72 (s, 1H), 8.75 (s, 1H); ¹³C NMR (75 MHz, DMSO-d₆): δ 62.73, 66.49, 92.47, 109.47, 118.75, 119.41, 121.66, 123.25, 125.75, 131.75, 131.90, 135.15, 141.66, 149.34, 159.09, 170.65, 175.66; ESI-MS: m/z = 365 (M+H)⁺; HRMS (ESI) m/z for C₁₈H₁₃O₅N₄ calculated m/z: 365.0881, found m/z: 365.0880 (M+H)⁺.

1'-Benzyl-4,9-dihydrospiro[benzo[b]furo[3,4-e][1,4]diazepine-10,3'-indoline]-1,2'(3H)dione (4h)

White solid; Mp: 257-259 °C; ¹H NMR (300 MHz, CDCl₃ + DMSO-d₆): δ 4.80 (s, 1H), 4.87 (s, 2H), 5.02 (s, 1H), 5.83 (s, 1H), 6.71 (s, 1H), 6.76 – 6.90 (m, 5H), 7.08 (d, *J* = 8.7 Hz, 2H), 7.31 (t, *J* = 7.2 Hz, 3H), 7.46 (d, *J* = 7.4 Hz, 2H), 10.05 (s, 1H); ¹³C NMR (75 MHz, DMSO-d₆): δ 43.16, 62.87, 66.31, 93.57, 108.75, 119.13, 121.39, 121.70, 122.95, 123.24, 123.36, 126.79, 128.11, 130.40, 131.88, 135.46, 135.63, 143.02, 158.70, 170.60, 173.77; ESI-MS: m/z = 432 (M+Na)⁺; HRMS (ESI) m/z for C₂₅H₁₉O₃N₃Na calculated m/z: 432.1318, found m/z: 432.1307 (M+Na)⁺.

1'-Benzyl-5'-chloro-4,9-dihydrospiro[benzo[b]furo[3,4-e][1,4]diazepine-10,3'-indoline]-1,2'(3H)-dione (4i)

Cream solid; Mp: 265-267 °C; ¹H NMR (300 MHz, CDCl₃ + DMSO-d₆): δ 4.78 (d, *J*= 6.3 Hz, 1H), 4.90 (s, 2H), 5.02 (d, *J* = 16.3 Hz, 1H), 6.08 (s, 1H), 6.76 (d, *J* = 11.8 Hz, 2H), 6.90 (dd, *J* = 18.1, 8.2 Hz, 3H), 7.06 (d, *J* = 7.5 Hz, 1H), 7.26 (dt, *J* = 9.6, 7.6 Hz, 4H), 7.42 (d, *J* = 7.1 Hz, 2H), 10.14 (s, 1H); ¹³C NMR (75 MHz, DMSO-d₆): δ 18.76, 61.35, 64.99, 65.11, 107.83, 117.46, 117.87, 118.25, 120.94, 121.93, 122.57, 123.97, 127.76, 129.38, 130.44, 130.86, 131.05, 133.35, 140.32, 147.72, 157.46, 157.57, 169.29, 174.26; ESI-MS: *m/z* = 466

 $(M+Na)^+$; HRMS (ESI) m/z for $C_{25}H_{18}O_3N_3CINa$ calculated m/z: 466.0928, found m/z: 466.0919 $(M+Na)^+$.

1'-Benzyl-5'-bromo-4,9-dihydrospiro[benzo[b]furo[3,4-e][1,4]diazepine-10,3'-indoline]-1,2'(3H)-dione (4j)¹²

Cream colour solid; Mp: 271-273 °C; ¹HNMR (300 MHz, DMSO-d₆): δ 4.78 (d, J = 6.24 Hz, 1H), 4.89 (s, 2H), 5.02 (d, J = 16.24 Hz, 1H), 6.00 (s, 1H), 6.64 (d, J = 8.30 Hz, 1H), 6.84-6.94 (m, 4H), 7.04 (d, J = 7.55 Hz, 1H), 7.22-7.33 (m, 4H), 7.40 (d, J = 6.98 Hz, 1H), 10.11 (s, 1H); ESI-MS: m/z = 488 (M+H)⁺; HRMS (ESI) m/z for C₂₅H₁₉O₃N₃Br calculated m/z: 488.0604, found m/z: 488.0600 (M+H)⁺.

7-Methyl-4,9-dihydrospiro[benzo[b]furo[3,4-e][1,4]diazepine-10,3'-indoline]-1,2'(3H)-

dione (4k)

Gray solid; Mp: 232-234°C; ¹HNMR (300 MHz, DMSO-d₆): δ 2.19 (d, J = 9.64 Hz, 3H), 4.82 (s, 2H), 5.62 (brs, 1H), 6.53-6.96 (m, 6H), 7.13 (t, J = 7.36, 14.16 Hz, 1H), 9.88 (s, 1H), 10.43 (s, 1H); ¹³C NMR (75 MHz, DMSO-d₆): δ 20.15, 63.08, 109.23, 118.99, 121.85, 127.91, 129.28, 130.17, 131.71, 133.23, 135.50, 142.55, 158.40, 170.54, 174.94; ESI-MS: m/z = 334 (M+H)⁺; HRMS (ESI) m/z for C₁₉H₁₆O₃N₃ calculated m/z: 334.1186, found m/z: 334.1196 (M+H)⁺.

5'-Chloro-7-methyl-4,9-dihydrospiro[benzo[b]furo[3,4-e][1,4]diazepine-10,3'-indoline]-1,2'(3H)-dione (4l)

Gray solid; Mp: 247-249°C; ¹H NMR (300 MHz, CDCl₃ + DMSO-d6): δ 2.22 (d, J = 4.9 Hz, 3H), 4.82 (s, 2H), 5.66 (s, 1H), 6.64 – 6.92 (m, 5H), 7.14 (d, J = 7.0 Hz, 1H), 9.89 (s, 1H), 10.53 (s, 1H); ¹³C NMR (75 MHz, DMSO-d₆): δ 20.12, 63.14, 66.30, 92.66, 93.33, 110.46, 119.48, 122.08, 123.43, 125.31, 127.72, 129.08, 130.52, 132.04, 131.54, 132.63, 134.92, 141.25, 158.61, 170.59, 174.95; ESI-MS: m/z = 390 (M+Na)⁺; HRMS (ESI) m/z for C₁₉H₁₄O₃N₃ClNa calculated m/z: 390.0615, found m/z: 390.0613 (M+Na)⁺.

5'-Methoxy-7-methyl-4,9-dihydrospiro[benzo[b]furo[3,4-e][1,4]diazepine-10,3'-indoline]-

1,2'(3H)-dione (4m)

Gray solid; Mp: 239-241°C; ¹H NMR (300 MHz, CDCl₃ + DMSO-d₆): δ 2.20 (d, J = 7.3 Hz, 3H), 3.58 (s, 3H), 4.82 (s, 2H), 5.65 (s, 1H), 6.21 (d, J = 9.9 Hz, 1H), 6.64 – 6.92 (m, 6H), 9.89 (d, J = 6.8 Hz, 1H), 10.26 (s, 1H); ¹³C NMR (75 MHz, DMSO-d₆): δ 20.18, 28.90, 29.34, 55.01, 63.43, 66.22, 93.42, 109.47, 110.64, 112.42, 119.41, 121.90, 123.49, 129.28, 130.25, 131.72, 132.64, 133.17, 135.84, 154.25, 158.50, 170.56, 174.95; ESI-MS: m/z = 386 (M+Na)⁺; HRMS (ESI) m/z for C₂₀H₁₇O₄N₃Na calculated m/z: 386.1111, found m/z: 386.1107 (M+Na)⁺.

7-methyl-5'-nitro-4,9-dihydrospiro[benzo[b]furo[3,4-e][1,4]diazepine-10,3'-indoline]-

1,2'(3H)-dione (4n)

Light yellow solid; Mp: 248-250°C; ¹H NMR (300 MHz, CDCl₃ + DMSO-d₆): δ 2.22 (d, J = 9.1 Hz, 3H), 4.87 (s, 2H), 5.89 (d, J = 13.2 Hz, 1H), 6.69 – 7.04 (m, 4H), 7.52 (d, J = 5.8 Hz, 1H), 8.15 (d, J = 8.5 Hz, 1H), 10.04 (s, 1H), 11.14 (s, 1H);¹³C NMR (75 MHz, DMSO-d₆): δ 20.12, 62.68, 66.47, 109.19, 118.82, 119.61, 122.30, 123.93, 125.34, 130.74, 131.77, 132.42, 134.71, 141.68, 149.08, 158.93, 170.65, 175.67; ESI-MS: m/z = 401 (M+Na)⁺; HRMS (ESI) m/z for C₁₉H₁₄O₅N₄Na calculated m/z: 401.0856, found m/z: 401.0849 (M+Na)⁺.

6,7-Dichloro-4,9-dihydrospiro[benzo[b]furo[3,4-e][1,4]diazepine-10,3'-indoline]-1,2'(3H)dione (40)

White solid; Mp: 255-257°C; ¹H NMR (300 MHz, CDCl₃ + DMSO-d₆): δ 2.85 (s, 2H), 4.19 (s, 1H), 4.84 (d, J = 6.4 Hz, 3H), 5.16 (s, 3H), 8.15 (s, 1H), 8.53 (s, 1H); ¹³C NMR (75 MHz, DMSO-d₆): δ 13.16, 20.45, 28.84, 62.95, 66.02, 94.44, 109.40, 119.71, 121.08, 122.36, 123.43, 123.51, 123.97, 128.38, 130.29, 131.58, 135.88, 142.56, 157.76, 170.08, 174.96; ESI-MS: m/z = 410 (M+Na)⁺; HRMS (ESI) m/z for C₁₈H₁₁O₃N₃Cl₂Na calculated m/z: 410.0069, found m/z: 410.0061 (M+Na)⁺.

6,7-Dichloro-5'-fluoro-4,9-dihydrospiro[benzo[b]furo[3,4-e][1,4]diazepine-10,3'-indoline]-

1,2'(3H)-dione (4p)

Graysolid; Mp: 258-260°C; ¹H NMR (300 MHz, CDCl₃ + DMSO-d₆): δ 3.78 (s, 2H), 5.40 (s, 1H), 5.72 – 5.97 (m, 5H), 9.50 (s, 1H), 9.75 (s, 1H); ¹³C NMR (75 MHz, DMSO-d₆): δ 56.61, 64.90, 94.30, 112.02, 114.07, 115.20, 116.43, 117.20, 118.02, 124.60, 126.79, 131.48, 132.36, 156.47, 159.66, 164.86, 170.86; ESI-MS: m/z = 427 (M+Na)⁺; HRMS (ESI) m/z for C₁₈H₁₀O₃N₃Cl₂FNa calculated m/z: 427.9975, found m/z: 427.9969 (M+Na)⁺.

7-chloro-4,9 dihydrospiro[benzo[b]furo[3,4-e][1,4]diazepine-10,3'-indoline]-1,2'(3H)-dione (4q)

white solid; Mp: 272-276°C; ¹H NMR (300 MHz, CDCl₃ + DMSO-d₆): δ 4.84 (s, 2H), 5.87 (s, 1H), 6.64 (s, 1H), 6.83 – 6.92 (m, 4H), 7.03 (d, *J* = 7.4 Hz, 1H), 7.16 (d, *J* = 8.2 Hz, 1H), 10.01 (s, 1H), 10.57 (s, 1H); ¹³C NMR (75 MHz, DMSO-d₆): δ 63.12, 66.26, 93.14, 110.55, 119.16, 121.30, 122.92, 123.39, 125.12, 127.86, 131.64, 132.95, 141.45, 158.60, 170.51, 174.90; ESI-MS: m/z = 376 (M+Na)⁺; HRMS (ESI) m/z for C₁₈H₁₂O₃N₃ClNa calculated m/z: 376.0567, found m/z: 376.0561 (M+Na)⁺.

5'-chloro-7-nitro-4,9-dihydrospiro[benzo[b]furo[3,4-e][1,4]diazepine-10,3'-indoline]-

1,2'(3H)-dione (4r)¹²

¹³C NMR (75 MHz, DMSO-d₆): δ 27.40, 57.97, 61.51, 64.57, 93.00, 107.95, 118.27, 119.64, 122.53, 126.94, 130.13, 134.44, 141.11, 156.32, 168.64, 173.51; ESI-MS: m/z = 399 (M+H)⁺; HRMS (ESI) m/z for C₁₈H₁₂O₅N₄Cl calculated m/z: 399.04904, found m/z: 399.04907 (M+H)⁺.

5-methyl-4,9-dihydrospiro[benzo[b]furo[3,4-e][1,4]diazepine-10,3'-indoline]-1,2'(3H)-

dione (4s)

Cream white solid; Mp: 232-234°; ¹H NMR (300 MHz, $CDCl_3 + DMSO-d_6$): δ 2.16 (s, 3H), 2.56 (s, 1H), 4.82 (s, 2H), 5.61 (s, 1H), 6.52 (s, 1H), 6.93 – 6.70 (m, 4H), 6.99 (dd, J = 16.9,

7.3 Hz, 2H), 9.88 (s, 1H), 10.31 (s, 1H); ¹³C NMR (75 MHz, DMSO-d₆): δ 18.85, 27.67, 61.52, 64.41, 92.13, 117.30, 119.32, 121.03, 121.54, 126.66, 127.86, 129.57, 129.97, 134.07, 138.46, 156.62, 168.80, 173.52; ESI-MS: m/z = 356 (M+Na)⁺; HRMS (ESI) m/z for C₁₉H₁₅O₃N₃Na calculated m/z: 356.1113, found m/z: 356.1109 (M+Na)⁺.

5',6,7-trichloro-4,9-dihydrospiro[benzo[b]furo[3,4-e][1,4]diazepine-10,3'-indoline]-

1,2'(3H)-dione (4t) ¹²

White solid; Mp: 272-276°C; ¹H NMR (300 MHz, CDCl₃ + DMSO-d₆): δ 3.78 (s, 2H), 5.39 (s, 1H), 5.72-5.97 (m, 5H), 9.50 (s, 1H), 9.75 (s, 1H); ESI-MS: *m/z* = 443 (M+Na)⁺; HRMS (ESI) *m/z* for C₁₈H₁₀O₃N₃Cl₃Na calculated *m/z*: 443.9787, found *m/z*: 443.9782 (M+Na)⁺. 5'-methoxy-7-nitro-4,9-dihydrospiro[benzo[b]furo[3,4-e][1,4]diazepine-10,3'-indoline]-1,2'(3H)-dione (4u) ¹²

Yellow solid; Mp: 280-283°C; ¹³C NMR (75 MHz, DMSO-d₆): δ 13.76, 20.45, 28.84, 59.41, 62.95, 66.02, 94.44, 109.40, 119.71, 121.08, 122.36, 123.43, 123.97, 128.38, 130.29, 131.58, 135.88, 142.56, 157.76, 170.08, 174.96; ESI-MS: m/z = 417 (M+Na)⁺; HRMS (ESI) m/z for C₁₉H₁₄O₆N₄Na calculated m/z: 417.0913, found m/z: 417.0907 (M+Na)⁺.

Biology

Cytotoxicity evaluation (MTT assay)

The cytotoxicity of these spiro compounds was determined using MTT assay.²⁵ Cancer cells (DU-145, MCF-7, HeLa and A549) were used in this assay. 1×10^4 cells/well were seeded in 200 µl Dulbecco's modified Eagle's medium (DMEM), supplemented with 10% FBS in each well of 96-well micro culture plates and incubated for 24 h at 37 °C in a CO₂ incubator. All the derivatives diluted to the desired concentrations (500 nM, 1 µM, 5 µM, 10 µM, 25 µM, 50 µM, 75 µM, 100 µM and 150 µM) in culture medium, were added to the wells with respective vehicle control. Doxorubicin and etoposide treated cells, in the same concentration range were used as standards. After 48 h of incubation, 10 µl MTT (3-(4,5-dimethylthiazol-2-

yl) - 2,5-diphenyltetrazoliumbromide) (5 mg/ml) was added to each well and the plates were further incubated for 4 h. Then the supernatant from each well was carefully removed, Formosan crystals were dissolved in 100 μ l of DMSO and absorbance at 570 nm wavelength was recorded at a wavelength of 540 nm using an ELx800 micro plate reader (BioTek, USA).

Acknowledgements

B.N and J.K thanks DST for the award of fellowship under *DST-Inspire Programme*. K.S.B and P.R.A. thankful to the CSIR-New Delhi for the award of senior research fellowship. We extend our appreciation to the International Scientific Partnership Program ISPP at King Saud University for funding this research work through ISPP#0054.

References

- Constantinos, G. N.; Constantinos, A. T.; Julia, S-S.; Christos, A. K.; Dimitra, J. H.-L. J. Med. Chem. 2010, 53, 8409.
- Zizhao, G.; Chunlin, Z.; Lingjian, Z.; Yongqiang, Z.; Jianzhong, Y.; Guoqiang. D.; Shengzheng, W.; Yang, L.; Hai, C.; Chunquan, S.; Zhenyuan, M.; Wannian, Z. Z. E. J. Med. Chem. 2012, 5, 610.
- Randall, L. O.; Kamel, B.; Garattini, S.; Mussini, E.; Randall, L. O.; Eds.; Raven Press: New York, In *Benzodiazepines*; 1973; p. 27.
- a)Vida, J. A.; Wolf, M. W.; and Burger, A. Eds; In *Medicinal Chemistry*; Wiley: New York, **1981**; p. 787; b) Landquist, J. K.; Katritzky, A. R.; Rees, C. W.; Eds; Pergamon Press: In *Comprehensive Heterocyclic Chemistry*, Oxford, **1984**; Vol 1, Ch. 1/06
- Hester, Jr.; J. B.; J. Heterocycl. Chem. 1980, 17, 575; b) Hester Jr., H. B.; Rudzik, A. D.; Voigtlander, P. F. V. J. Med. Chem. 1980, 23, 392.
- Merluzzi, V.; Hargrave, K. D.; Labadia, M.; Grozinger, K.; Skoog, M.; Wu, J. C.; Shih, C.-K.; Eckner, K.; Hattox, S.; Adams, J.; Rosenthal, A. S.; Faanes, R.; Eckner, R. J.; Koup, R. A.; Sullivan, J. L. *Science* 1990, 250, 1411.

- Braccio, D. M.; Grossi, G.; Romoa, G.; Vargiu, L.; Mura, M.; Marongiu, M. E. *Eur. J. Med. Chem.* 2001, *36*, 935.
- Haris, R. C.; Straley, J. M. U.S. Patent 1,537,757, 1968; Chem. Abstr. 1970, 73, 100054w.
- a) Rudolph, U.; Mohler, H. Curr. Opin. Pharmacol. 2006, 6, 18. (b) Blount, J. F.;
 Fryer, R. I.; Gilman, N. W.; Todaro, L. J. Mol. Pharmacol. 1983, 24, 425.
- Abdel-Rahman, A. H.; Keshk, E. M.; Hanna, M. A.; El-Bady, S. M. Bioorg. Med. Chem. 2004, 12, 2483.
- 11. Kang, T. H.; Matsumoto, K.; Murakami, Y.; Takayama, H.; Kitajima, M.; Aimi, N.;Watanabe, H. *Eur. J. Pharmacol.* 2002, *39*, 444
- Wang, S.; Cheng, C.; Gong, F.; Wu, F.; Jiang, B.; Zhou, J.; Tu, S. *Chin. J. Chem.* **2011**, 29, 2101.
- 13. a) Khafagy, M. M.; Wahab, A. H. F. A. E.; Eid, F. A.; Agrody, A. M. E. Farmaco.
 2002, 57, 715. b) Kodomari, M.; Noguchi, T.; Aoyama, T.; Synth. Commun. 2004, 34,1783.
- 14. Li, J. T.; Han, J. F.; Yang, J. H.; Li, T. S; Ultrason. Sonochem. 2003, 10,119.
- a) Li-Tao, A.; Jian-Ping, Z.; Li-Li, Z.; Yong, Z. *Tetrahedron Lett.* 2007, 48, 4297. b)
 Maiti, G.; Kayal, U.; Karmakar, R.; Bhattacharya, R.N. *Tetrahedron Lett.* 2012, 53, 1460.
- 16. Matsumoto, M.; Kawamura, Y.; Terui, Y.; Nakai, H.; Yoshida, T.; Shoji, J. J. Antibiot. **1990**, 43, 739.
- 17. Naeimi, H.; Foroughi, H. New J. Chem. 2015, 39, 1228.
- Nardi, M.; Cozza, A.; Nino, A.D.; Oliverio, M.; Procopio, A. Synthesis. 2012, 44, 800.
- 19. Okita, T.; Isobe, M.; Tetrahedron 1994, 50, 11143.

- 20. a) Raboisson, P. J. M. B.; Vendeville, S. M. H.; Bonfanti, J. F.; McGowan, D.; Vandyck, K.; Doublet, F. M. M.; Hu, L. L.; Nyanguile, O. 2008. *PCT Int. Appl.* WO 2008099022A1 20080821. b) Rehse, K.; Wagenknecht, J.; Rietbrock, N. *Arch. Pharm.* 1978, *311*, 986.c) Roggo, B. E.; Petersen, F.; Delmendo, R.; Jenny, H. B.; Peter, H. H.; Roesel, J. J. Antibiot. 1994, 47, 136.
- Orlova, Z. I.; Ukhin, L. Y.; Suponitskii, K. Y.; Shepelenko, E. N.; Belousova, L. V.; Borodkin, G. S.; Popovaa, O. S. *Russ Chem Bull.* 2013, 62, 1409.
- 22. Rostami, A.; Tavakoli, A. Chin. Chem. Lett. 2011, 22, 1317.
- Schimer, J.; Cigler, P.; Vesely, J.; Grantz-Saskova, K.; Lepsik, M.; Brynda, J.; Rezacova, P.; Kozisek, M.; Cisarova, I.; Oberwinkler, H.; Kraeusslich, H. G.; Konvalinka, J. J. Med. Chem. 2012, 55, 10130.
- 24. Kamal, A.;. Babu, K, S.; Vishnu Vardhan, M. V. P. S.; Hussaini, S.M.A.; Mahesh, R.; Shaik, S.P.; Alarifi, A. *Bioorg. Med. Chem. Lett.* **2015**, *25*, 2199-2202.
- 25. (a) Berenyi, A.; Minorics, R.; Ivanyi, Z.; Ocsovszki, I.; Duczaa, E.; Thole, H.; Messinger, J.; Wolfling, J.; Motyan, G.; Mernyak, E.; Frank, E.; Schneider, G.; Zupko, I. Steroids 2013, 78, 6978; (b) Das, B.; Reddy, C. R.; Kashanna, J.; Mamidyala, S. M.; Kumar, C. G. Med. Chem. Res. 2012, 21, 3321; (c) Mosmann, T. J. Immunol. Methods 1983, 65, 55.

Figures

Figure 1: Representative examples of benzodiazepines scaffolds found in some drug candidates.

Scheme 2: Sulfamic acid catalysed synthesis of 4,9-dihydrospiro[benzo[*b*]furo[3,4*e*][1,4]diazepine-10,3'-indoline]-1,2'(3H)-dione derivatives

 R_2

Tables

	HN O	=0 + NH ₂	Conditions Table 1	HN NH	
	1	2	3	4n	
Entry	Solvent	Temperature(°C)	Catalyst	Time (h)	Yield ^a (%)
1		rt		12	
2	acetonitrile	rt		12	-
3	methanol	rt		12	
4	ethanol	rt		12	
5	water	rt		12	
6		100		12	
7	acetonitrile	reflux		12	
8	methanol	reflux		12	
9	ethanol	reflux		12	
10	water	reflux		12	
11	ethanol	reflux	HCl	12	20
12	ethanol	reflux	$ZnCl_2$	12	20
13	ethanol	reflux	CH ₃ SO ₃ H	6	28
14	water	reflux	CH ₃ SO ₃ H	6	36
15	ethanol	reflux	<i>p</i> -TSA	6	35
16	water	reflux	p-TSA	6	48
17		120	Amberlite IR-120	6	32
18	ethanol	reflux	Amberlite IR-120	6	28
19	water	reflux	Amberlite IR-120	6	42
20	ethanol	reflux	SA	6	68
21	water	reflux	SA	3	87
22		120	SA	12	28
23	chloroform	reflux	SA	6	32
24	acetonitrile	reflux	SA	6	42
25	THF	reflux	SA	6	44
26	methanol	reflux	SA	6	60
27	water	rt	SA	12	20

Table 1: Optimization of reaction conditions

 $\frac{27}{a}$ wate

Entry	Catalyst (mole %)	Yield ^a (%)
1	2	46
2	5	60
3	10	72
4	15	84
5	20	87
6	25	87
aisolated	yields	

Table 2: Optimization of amount of catalyst required	Table 2:	t of catalyst requir	of amount of	required.
---	----------	----------------------	--------------	-----------

Table 3: The scope and limitations for the synthesis of spiro-benzodiazepines derivatives

Compound	IC ₅₀ values(in µM) ^a				
Compound	HeLa ^b	A549 ^c	MCF-7 ^d	DU-145 ^e	
4a	32.40	16.75	31.63	14.72	
4b	44.50	28.22	21.77	22.62	
4c	13.93	9.071	13.50	16.43	
4d	22.24	17.12	16.60	16.78	
4e	23.65	20.50	46.70	18.19	
4f	9.576	1.549	2.138	1.349	
4g	42.83	13.84	40.50	17.69	
4h	2.291	1.349	2.239	1.148	
4 i	15.88	3.890	9.281	2.188	
4 j	11.90	3.802	2.344	3.162	
4k	15.04	9.655	15.36	9.194	
41	25.88	22.05	31.87	21.95	
4m	18.17	16.14	10.44	9.960	
4n	16.89	19.40	15.31	15.64	
40	53.00	23.46	30.88	16.71	
4p	36.85	13.03	23.09	12.88	
4q	5.370	2.951	9.514	1.698	
4r	12.69	18.77	12.45	15.45	
4s	26.94	17.21	23.21	13.45	
4t	28.35	18.79	21.00	12.33	
4u	35.86	16.89	15.84	11.18	
Doxorubicin	1.032	1.514	1.445	1.820	
Etoposide	1.905	2.238	1.633	2.070	

Table 4: Cytotoxicity evaluation for compounds in selected human cancer cell lines.

^a 50% Inhibitory concentration after 48 h of drug treatment. ^b Human cervical cancer. ^c Human lung cancer.

^d Human breast cancer. ^e Human prostate cancer.