An improved procedure for the synthesis of aryl phosphonates by palladium-catalysed cross-coupling of aryl halides and diethyl phosphite in polyethylene glycol

Ping Wang^{a,b}, Jie Lu^b and Zhan-Hui Zhang^{b*}

^aDepartment of Chemical and Environmental Engineering, Hebei Chemical & Pharmaceutical Vocational Technology College, Shijiazhuang 050026, P. R. China

^bCollege of Chemistry & Material Science, Hebei Normal University, Shijiazhuang 050024, P. R. China

A general and greener protocol for the synthesis of aryl phosphonates by the cross-coupling of aryl halides and diethyl phosphite using tetrakis(triphenylphosphine)palladiume/triethylamine/polyethylene glycol 600 [Pd(PPh₃)₄/ Et₃N/PEG 600] as an efficient catalytic system has been developed. This procedure also avoids hazardous solvents and is therefore an eco-friendly alternative to the existing methods.

Keywords: Hirao reaction, aryl phosphonates, polyethylene glycol

Aryl phosphonates and their derivatives have received attention recently because of their wide range of applications in polymers, medicinal chemistry, catalysis and photoelectric materials.¹ Phosphonates play an important role in organometallic catalysis² and organocatalysis.³ Various approaches to the synthesis of aryl phosphonates have been explored over the past few years.⁴⁻⁷ The transition-metal-catalysed Hirao reaction⁸ is one of most widely-used methods for the synthesis of arylphosphonates. Some improved procedures by the cross-coupling of aryl halides,^{9–12} triflates,¹³ tosylates,¹⁴ boronic acids¹⁵⁻¹⁶ imidazolylsulfonates¹⁷ and azoles¹⁸ with dialkyl phosphites have also been developed to construct C(sp²)-P bonds. Although these methods are suitable for certain syntheses, some of these procedures have one or more disadvantages such as the use of volatile and hazardous organic solvents, the requirement for expensive ligands and a microwave oven. Thus, the development of a more practical and economical procedure for the preparation of these compounds is still highly desirable.

The use of polyethylene glycol as a reaction medium has gained considerable interest in organic synthesis due to its many advantages from environmental, economical, and safety standpoints. It is noncorrosive, nonvolatile, stable, non-toxic, inexpensive, biologically acceptable and eco-friendly, and allows many useful organic transformations to be performed under mild reaction conditions.^{19–25} In continuation of our research program for the development of environmentally benign methodologies,^{26–32} we now report the synthesis of aryl phosphonates by cross-coupling of aryl halides and diethyl phosphite in PEG 600 (Scheme 1).

In order to achieve a practical protocol for the synthesis of aryl phosphonates, the effect of a number of parameters such as catalysts, bases, and solvents were screened for a model reaction employing *N*-(3-iodobenzyl)acetamide and diethyl phosphonate. The results are shown in Table 1. Among various catalysts it was found that $Pd(PPh_3)_4$ was the most effective. A concentration of 5 mol% was sufficient to complete the reaction with maximum yield (Table 1, entry 4). The reaction

phosphonates in PEG 600.

did not proceed smoothly in the absence of the catalyst and only a trace of the product was formed. To identify the best medium for the reaction, we also performed the model reaction with different solvents such as THF, DMF, 1,4-dioxan, EtOH, MeCN, CH_2Cl_2 , toluene and PEG 600. PEG 600 was found to be the best reaction medium. Further examination of the conditions indicated that Et_3N was the optimal base. Other organic and inorganic bases were poorer at promoting this crosscoupling of the model substrates. The influence of the reaction temperature was also optimised. Increasing or reducing the reaction temperature from 130 °C led to a lower yield of **3a**.

We then examined the reaction of representative aryl halides and diethyl phosphite under these optimised reaction conditions (5 mol% Pd(PPh₃)₄, Et₃N, PEG 600, 130 °C). The reaction proceeded efficiently with aryl iodides and gave the corresponding aryl phosphonates in high to excellent yields without the formation of any by-products (Table 2, entries 1-3). This method was found to be equally effective for conversion of aryl bromides with electron-withdrawing and electrondonating groups. Aryl halides having electron-withdrawing groups gave higher yields compared to those containing electron-donating groups. Steric hindrance had a negative influence on the reaction. The corresponding products were obtained in slightly lower yield and required longer reaction times when the substituent groups was present in the ortho position of the benzene ring. More importantly, aryl chlorides were successfully employed to afford the desired product with moderate to high yields. This procedure was also compatible with the presence of a variety of functional groups such as ester, ketone, aldehyde, nitro, dialkylamine, amides, and hydroxy in the substrates.

In summary, we have successfully developed a convenient protocol for the synthesis of aryl phosphonates by the crosscoupling of aryl halides and diethyl phosphite using a catalytic system that employs $Pd(PPh_3)_4$ along with triethylamine as the base in PEG 600. The operational simplicity, and the use of commercially available $Pd(PPh_3)_4$ with no need for any other ligands, and the wide range of substrates make this approach a useful as an alternative to the existing synthetic methodologies.

Experimental

All chemicals were purchased and used without further purification. Melting points were determined on an X-4 apparatus and are uncorrected. IR spectra were recorded using a Bruker-TENSOR 27 spectrophotometer. NMR spectra were taken with a Bruker DRX-500 spectrometer at 500 MHz (¹H), 125 MHz (¹³C) and 201 MHz (³¹P) using CDCl₃ as the solvent with TMS as internal standard. Elemental analyses were obtained on a Vario EL III CHNOS elemental analyser.

^{*} Correspondent. E-mail: zhanhui@126.com

 Table 1
 Effect of reaction parameters on the synthesis of diethyl (3-(acetamidomethyl)phenyl)phosphonate (3a)^a

Entry	Catalyst	Solvent	Base	Temperature /°C	Time/h	Yield/% ^b
1	Cul	PEG 600	Et ₃ N	130	45	15
2	Pd(OAc) ₂	PEG 600	Et ₃ N	130	17	60
3	Pd(PPh ₃) ₂ Cl ₂	PEG 600	Et ₃ N	130	40	62
4	Pd(PPh ₃) ₄	PEG 600	Et ₃ N	130	15	95
5	Pd(PPh ₃) ₄	THF	Et ₃ N	Reflux	20	35
6	Pd(PPh ₃) ₄	DMF	Et ₃ N	Reflux	19	74
7	Pd(PPh ₃) ₄	1,4-dioxane	Et ₃ N	Reflux	20	25
8	Pd(PPh ₃) ₄	EtOH	Et ₃ N	Reflux	23	39
9	Pd(PPh ₃) ₄	MeCN	Et ₃ N	Reflux	27	56
10	Pd(PPh ₃) ₄	CH ₂ Cl ₂	Et ₃ N	Reflux	26	68
11	Pd(PPh ₃) ₄	toluene	Et ₃ N	Reflux	25	45
12	Pd(PPh₃)₄	PEG 600	Na ₂ CO ₃	130	22	60
13	Pd(PPh₃)₄	PEG 600	K ₂ CO ₃	130	22	15
14	Pd(PPh₃)₄	PEG 600	NaF	130	21	Trace
15	Pd(PPh₃)₄	PEG 600	NaOAc	130	22	25
16	Pd(PPh₃)₄	PEG 600	KOAc	130	22	15
17	Pd(PPh₃)₄	PEG 600	КОН	130	23	10
18	Pd(PPh₃)₄	PEG 600	NaOH	130	23	13
19	Pd(PPh₃)₄	PEG 600	NaHCO₃	130	21	16
20	Pd(PPh₃)₄	PEG 600	DMAP	130	23	5
21	no	PEG 600	Et₃N	130	45	Trace
22 ^c	Pd(PPh ₃) ₄	PEG 600	Et ₃ N	130	15	71
23 ^d	$Pd(PPh_3)_4$	PEG 600	Et ₃ N	130	15	95
24	Pd(PPh ₃) ₄	PEG 600	Et ₃ N	110	15	73
25	Pd(PPh ₃) ₄	PEG 600	Et₃N	120	15	80
26	Pd(PPh ₃) ₄	PEG 600	Et ₃ N	140	15	85

^aReaction conditions: N-(3-iodobenzyl)acetamide (1 mmol), diethyl phosphite (1.5 mmol), base (4.0 mmol), catalyst (0.05 mmol), solvent (5 mL).

^blsolated yields.

[°]Reaction was performed using 2 mol % catalyst. ^dReaction was performed using 10 mol % catalyst.

Entry	Aryl halide	Product	Time/h	Yield/%ª	M.p./°C
1	3-CH ₃ CONHCH ₂ C ₆ H ₄ I	3a	15	95	Oil
2	2-CH ₃ OOCC ₆ H ₄ I	3b	16	86	Oil ³³
3	3-CH ₃ COOC ₆ H ₄ I	3c	15	93	Oil ³³
4	C ₆ H₅Br	3d	15	83	Oil ¹⁴
5	2-CH ₃ C ₆ H₄Br	3e	16	65	Oil ¹⁴
6	4-CH ₃ C ₆ H ₄ Br	3f	16	81	Oil ¹⁴
7	3-OHC ₆ H₄Br	3g	20	76	68–70 (67–69) ³⁴
8	4-OHC ₆ H ₄ Br	3ĥ	18	78	95–96 (93–94) ³⁴
9	3-NH ₂ C ₆ H₄Br	3i	18	80	49–50 (47–50) ³⁴
10	$4-NH_2C_6H_4Br$	3j	20	78	117–118 (115–119) ³⁴
11	3-NO ₂ C ₆ H ₄ Br	3k	15	83	Oil ³⁴
12	$4-NO_2C_6H_4Br$	31	15	85	Oil ³⁴
13	4-AcC ₆ H₄Br	3m	15	90	Oil ¹⁵
14	4-CH ₃ OOCC ₆ H ₄ Br	3n	20	85	Oil ¹⁴
15	2-BrC ₆ H₄CHO	30	25	72	Oil ³⁵
16	3-BrC ₆ H₄CHO	3р	25	82	Oil ³⁶
17	4-BrC ₆ H₄CHO	3q	21	88	Oil ³³
18	4-CH ₃ CONHC ₆ H ₄ CI	3r	21	61	Oil ⁸
19	4-CNC ₆ H ₄ CI	3s	20	70	32–33 (30–32) ⁸
20	3-NO ₂ C ₆ H ₄ Cl	3t	23	68	Oil ¹²
21	4-NO ₂ C ₆ H ₄ Cl	3k	20	73	Oil ¹²
22	4-AcC ₆ H ₄ Cl	31	20	70	Oil ¹⁵
23	4-CH ₃ OOCC ₆ H ₄ CI	3m	20	72	Oil ¹⁴
24	2-CIC ₆ H₄CHO	3n	25	60	Oil ³⁵
25	3-CIC ₆ H₄CHO	30	25	65	Oil ³⁶
26	4-CIC ₆ H ₄ CHO	3р	21	79	Oil ³³

Table 2 Synthesis of aryl phosphonates

^a Isolated yields.

Synthesis of aryl phosphonates; typical procedure

A mixture of N-(3-iodobenzyl)acetamide (1 mmol), diethyl phosphite (1.5 mmol), triethylamine (4.0 mmol), and Pd(PPh₃)₄ (0.05 mmol) in PEG 600 (5 mL) was stirred in an oil bath at 130 °C for an appropriate time under the nitrogen. The progress of the reaction was followed by TLC. After the completion of the reaction, the resulting mixture was cooled to room temperature and extracted with diethyl ether (10 mL). The ether layer was washed with brine, and then dried with anhydrous Na₂SO₄. The solvent was removed in vacuo, and the crude reaction mixture was purified by chromatography on silica gel to give pure diethyl (3-(acetamidomethyl)phosphonate (3a): Oil; IR (KBr): 3280, 2981, 2362, 1651, 1558, 1423, 1238, 968, 788, 567 cm⁻¹; ¹H NMR (500 MHz, CDCl₃): 1.30 (t, J = 7.0 Hz, 6H, CH₃), 2.02 (s, 3H, CH₃), 4.02–4.14 (m, 4H), 4.44 (d, J = 5.5 Hz, 2H), 6.23 (br s, 1H), 7.39–7.43 (m, 1H), 7.48 (d, J = 7.5 Hz, 1H), 7.64–7.67 (m, 1H), 7.69 (d, J = 7.5 Hz, 1H) ppm; ¹³C NMR (125 MHz, CDCl₃): 16.2 (d, ³ $J_{c-p} = 6.4$ Hz), 22.9, 42.9, 62.2 (d, ² $J_{c-p} = 15.6$ Hz), 128.2 (d, ¹ $J_{c-p} = 187.0$ Hz), 128.8 (d, ${}^{2}J_{c-p} = 15.5$ Hz), 130.3 (d, ${}^{3}J_{c-p} = 9.4$ Hz), 130.6 (d, ${}^{3}J_{c-p} = 10.6$ Hz), 131.8 (d, ${}^{4}J_{c-p} = 3.1$ Hz), 139.4 (d, ${}^{2}J_{c-p} = 14.5$ Hz), 170.6 ppm; ³¹P NMR (201 MHz, CDCl₃): 18.9 ppm; Anal. Calcd.for C₁₃H₂₀NO₄P: C, 54.73; H, 7.07; N, 4.91. Found: C, 54.65; H, 6.89; N, 5.10%.

We are grateful to the National Natural Science Foundation of China (21272053, 21072042 and 20872025) and Nature Science Foundation of Hebei Province (B2011205031) for financial support.

Received 19 February 2013; accepted 21 March 2013 Paper 1301799 doi: 10.3184/174751913X13686082295417 Published online: 12 June 2013

References

- J. Galezowska and E. Gumienna-Kontecka, Coord. Chem. Rev., 2012, 256, 105.
- 2 D.S. Surry and S.L. Buchwald, Chem. Sci., 2011, 2, 27.
- 3 Y. Wei and M. Shi, Acc. Chem. Res., 2010, 43, 1005.
- 4 E. Guenin and D. Meziane, Curr. Org. Chem., 2011, 15, 3465.
- 5 S. Van der Jeught and C.V. Stevens, *Chem. Rev.*, 2009, **109**, 2672.
- 6 V.P. Mehtaa and E.V. Van der Eycken, Chem. Soc. Rev., 2011, 40, 4925.
- 7 F.M.J. Tappe, V.T. Trepohl and M. Oestreich, Synthesis, 2010, 3037.
- 8 T. Hirao, T. Masunaga, Y. Ohshiro and T. Agawa, Synthesis, 1981, 56.

- 9 M. Kalek, M. Jezowska and J. Stawinski, Adv. Synth. Catal., 2009, 351, 3207.
- 10 M. Kalek, A. Ziadi and J. Stawinski, Org. Lett., 2008, 10, 4637.
- 11 Y. Belabassi, S. Alzghari and J.L. Montchamp, J. Organomet. Chem., 2008, 693, 3171.
- 12 M.C. Kohler, J.G. Sokol and R.A. Stockland, *Tetrahedron Lett.*, 2009, 50, 457.
- 13 K.S. Petrakis and T.L. Nagabhushan, J. Am. Chem. Soc., 1987, 109, 2831.
- 14 C.R. Shen, G.Q. Yang and W.B. Zhang, *Org. Biomol. Chem.*, 2012, **10**, 3500.
- 15 M. Andaloussi, J. Lindh, J. Savmarker, P.J.R. Sjoberg and M. Larhed, *Chem. Eur. J.*, 2009, **15**, 13069.
- 16 R.Q. Zhuang, J.A. Xu, Z.S. Cai, G. Tang, M.J. Fang and Y.F. Zhao, Org. Lett., 2011, 13, 2110.
- 17 Y. Luo and J. Wu, Organometallics, 2009, 28, 6823.
- 18 C.D. Hou, Y.L. Ren, R. Lang, X.X. Hu, C.G. Xia and F.W. Li, *Chem. Commun.*, 2012, 48, 5181.
- 19 Z.H. Zhang, Monatsh. Chem., 2005, 136, 1191.
- 20 U.P. Singh, Synlett, 2012, 2721.
- 21 X.N. Zhang, Y.X. Li and Z.H. Zhang, Tetrahedron, 2011, 67, 7426.
- 22 K. Karnakar, S.N. Murthy, K. Ramesh, G. Satish, J.B. Nanubolu and Y.V.D. Nageswar, *Tetrahedron Lett.*, 2012, 53, 2897.
- L.F. Yao, Q. Zhou, W. Han and S.H. Wei, *Eur. J. Org. Chem.*, 2012, 6856.
 R. Mallepalli, L. Yeramanchi, R. Bantu and L. Nagarapu, *Synlett*, 2011, 2730.
- 25 L. Nagarapu, R. Mallepalli, L. Yeramanchi and R. Bantu, *Tetrahedron Lett.*, 2011, 52, 3401.
- 26 R.Y. Guo, P. Wang, G.D. Wang, L.P. Mo and Z.H. Zhang, *Tetrahedron*, 2013, 69, 2056.
- 27 Z.H. Zhang, X.N. Zhang, L.P. Mo, Y.X. Li and F.P. Ma, *Green Chem.*, 2012, 14, 1502.
- 28 Y.-H. Liu, J. Deng, J.-W. Gao and Z.-H. Zhang, Adv. Synth. Catal., 2012, 354, 441.
- 29 J. Deng, L.P. Mo, F.Y. Zhao, Z.H. Zhang and S.X. Liu, ACS Comb. Sci., 2012, 14, 335.
- 30 H.J. Wang, L.P. Mo and Z.H. Zhang, ACS Comb. Sci., 2011, 13, 181.
- 31 J. Deng, L.P. Mo, F.Y. Zhao, L.L. Hou, L. Yang and Z.H. Zhang, Green Chem., 2011, 13, 2576.
- Z.H. Zhang, H.Y. Lu, S.H. Yang and J.W. Gao, J. Comb. Chem., 2010, 12, 643.
- 33 D. Villemin, A. Elbilali, F. Simeon, P.A. Jaffres, G. Maheut, M. Mosaddak and A. Hakiki, J. Chem. Res. (S), 2003, 436–437.
- 34 L.D. Freedman and H.H. Jaffe, J. Am. Chem. Soc., 1955, 77, 920-921.
- 35 G.V. Garner, D.B. Mobbs, H. Suschitzky and J.S. Millership, J. Chem. Soc. (C), 1971, 3693.
- 36 D.W. Allen, B.G. Hutley, and M.T.J. Mellor, J. Chem. Soc. Perkin 2, 1977, 789.

Copyright of Journal of Chemical Research is the property of Science Reviews 2000 Ltd. and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use.