

Bioorganic & Medicinal Chemistry Letters 22 (2012) 5063-5066

Contents lists available at SciVerse ScienceDirect

journal homepage: www.elsevier.com/locate/bmcl

InCl₃-catalysed synthesis of 2-aryl quinazolin-4(3*H*)-ones and 5-aryl pyrazolo[4,3-*d*]pyrimidin-7(6*H*)-ones and their evaluation as potential anticancer agents

Naveen Mulakayala^{a,*}, Bhaskar Kandagatla^a, Ismail^a, Rajesh Kumar Rapolu^a, Pallavi Rao^a, Chaitanya Mulakayala^b, Chitta Suresh Kumar^b, Javed Iqbal^a, Srinivas Oruganti^{a,*}

^a Cosmic Discoveries, Institute of Life Sciences, University of Hyderabad Campus, Gachibowli, Hyderabad 500046, India ^b Department of Biochemistry, Sri Krishnadevaraya University, Anatapur 515003, India

ARTICLE INFO

Article history: Received 26 April 2012 Revised 22 May 2012 Accepted 1 June 2012 Available online 13 June 2012

Keywords: 2-Aryl quinazoline-4(3H)-one 2-Aminobenzamides InCl₃ 5-Aryl pyrazolo[4,3-d]pyrimidin-7(6H)-ones antitumor activity

ABSTRACT

A convenient and practical methodology for the synthesis of 2-aryl quinazolin-4(3*H*)-ones by the condensation of *o*-aminobenzamides with aromatic aldehydes under mild conditions using catalytic $InCl_3$ with good yields and high selectivities. This method has been extended for the synthesis of 5-aryl pyrazolo[4,3-*d*]pyrimidin-7(6*H*)-ones which have potential applications in medicinal chemistry. Many of these compounds were evaluated for their anti-proliferative properties in vitro against four cancer cell lines and several compounds were found to be active. Further in vitro studies indicated that inhibition of sirtuins could be the possible mechanism of action of these molecules.

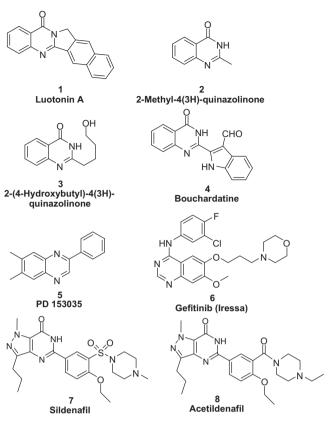
© 2012 Elsevier Ltd. All rights reserved.

Quinazolinones occur widely in nature and exhibit a wide range of biological activities viz. epidermal growth factor (EGF) receptors of tyrosine kinase,¹ anticancer,² antiviral,³ anti-tubercular agents,⁴ treatment of diabetes and obesity,⁵ anti-inflammatory,⁶ insecticidal and anti-microbial activity.⁷ Quinazolin-4(3*H*)-ones are used as ligands for benzodiazepine and AMPA receptors in the CNS system⁸ or as DNA binders.⁹ Naturally occurring alkaloids such as luotonin A **1** from *Peganum nigellastrum*,^{10a} 2-methyl-4(3*H*)-quinazolinone **2** from *Bacillus cereus*,^{10b} 2-(4-hydroxybutyl) quinazolin-4-one **3** from *Dichroa febrifuga*,^{10c} bouchardatine **4** from *Bouchardatia neurococca*^{10d} and EGFR Tyrosine Kinase inhibitors (cellular trans-membrane tyrosine kinases that is over-expressed in a significant number of human tumors) that is PD 153035 **5** and Gefitinib **6**^{10e} have Quinazolinone skeleton (Fig. 1).

In the last decade, several methods have been reported for the syntheses of quinazoline¹¹ and quinazolinone derivatives.^{12–14} However, most of the methods requires higher temperatures for the condensation, which may preclude the presence of sensitive functionalities. We were interested in identifying mild reaction conditions for the construction of substituted quinazolinone derivative structurally present in complex alkaloids with multiple functionalities.

Our interest in the use of Lewis acids for the construction of various heterocyclic motifs, prompted us to study the quinazolinone cyclization using various Lewis acids. In particular, InCl₃ has emerged as a mild Lewis acid catalyst for a variety of organic transformations.^{15–23} Compared to conventional Lewis acids, InCl₃ has advantages of higher stability in water, operational simplicity, strong tolerance to oxygen and nitrogen containing substances and functional groups and it can often be employed in catalytic amounts.

Our initial effort was the cyclic condensation of *o*-aminobenzamide **7** with various aromatic aldehydes **8** as model substrates for the preparation of 2-aryl quinazolin-4(3*H*)-ones **9** (Scheme 1). We were delighted to find that *o*-aminobenzamide reacted with aromatic aldehydes in the presence of 10 mol % of InCl₃ to furnish 2-arylquinazolin-4(3*H*)-ones **9a–g**²⁴ in good to excellent isolated yields (Table 1).


In the absence of InCl₃, the condensation of *o*-aminobenzamide and aromatic aldehyde did not proceed neither at room temperature nor at reflux temperature. We presume that the presence of InCl₃ promotes the cyclisation via an imine intermediate.

In our efforts to optimize the reaction conditions, we studied the formation of **9a** and have observed that yields were higher in acetonitrile as compared to other solvents (Table 2). Reduction in the amount of InCl₃ from 10 to 1 mol % produced cyclized product **9a** in diminished yields. This suggests that the use of 5–10 mol % InCl₃ in acetonitrile is critical to obtain the products in good yields.

^{*} Corresponding authors. Tel.: +91 40 665 71626; fax: +91 40 665 71158 (N.M.). *E-mail addresses:* naveen071280@gmail.com, naveenm@ilsresearch.org (N. Mulakayala).

⁰⁹⁶⁰⁻⁸⁹⁴X/\$ - see front matter @ 2012 Elsevier Ltd. All rights reserved. http://dx.doi.org/10.1016/j.bmcl.2012.06.003

Table 1

Figure 1. Bioactive compounds containing quinazolin-4(3*H*)-one and pyrazolo[4,3-*d*]pyrimidin-7(6*H*)-one skeleton.

Scheme 1. InCl₃-catalyzed reaction between *o*-amino-benzamide and aromatic aldehyde.

The catalytic activity of $InCl_3$ in the synthesis of 2-aryl quinazolin-4(3*H*)-ones prompted us to investigate its application for the synthesis of other therapeutically relevant scaffolds. In this regard, we employed the $InCl_3$ methodology for the construction of 5-aryl pyrazolo[4,3-*d*]pyrimidin-7(6*H*)-one systems which are the key structural motifs of important drugs like Sildenafil **5** and acetildenafil **6** (Fig. 1).

The catalytic activity of other Lewis acids like $AlCl_3$, $TiCl_4$, BF_3 -OEt₂, FeCl₃, $CuCl_2$ in the synthesis of 2-aryl quinazolin-4(3*H*)-ones give moderate yields of the desired product (Table 3).

We observed that 4-amino-1-methyl-3-propylpyrazole-5-carboxamide²⁵ reacted with aromatic aldehydes in the presence of 10 mol % of InCl₃ at room temperature to furnish 5-aryl pyrazolo[4,3-*d*]pyrimidin-7(6*H*)-ones **11a–h**²⁴ (Scheme 2) in good to excellent isolated yields (Table 4).

Having the optimized reaction condition for the preparation of 5-aryl pyrazolo [4,3-*d*]pyrimidin-7(6*H*)-ones and pyrazolo[4,3-*d*]pyrimidin-7(6*H*)-ones in hand we then examined the generality and scope of this methodology. Thus a variety of aromatic aldehydes **8** were reacted with amino benzamide **7** and substituted pyrazole-5-carboxamide **10** in MeCN at room temperature using

Compound	Aldehyde	Product	Time (min)	Yield ^a (%)
9a	СНО	NH N	30	88
9b	CHO F	NH NH	45	94
9c	CHO OCH ₃	NH N OCH3	60	87
9d	СНО	NH NH CI	40	92
9e	CHO	NH N CI	45	92
9f	CHO Br		45	92
9g	CHO NO ₂		60	88

^a Isolated yield.

Table 2
Optimisation of InCl ₃ -catalyzed reaction of 2-phenyl quinazolin-4(3 <i>H</i>)-one 9a

Entry	Mol % of InCl ₃	Solvent	Temp (°C)	Time (h)	Yield ^a (%)
1	10	CH₃CN	rt	0.5	92
2	5	CH ₃ CN	rt	1	88
3	10	MeOH	rt	2	86
4	5	MeOH	rt	4	84
5	10	CH_2Cl_2	rt	6	67
6	10	CHCl ₃	rt	9	65
8	10	iPrOH	rt	12	62
7	10	EtOAc	rt	18	60

^a Isolated yield.

InCl₃ and results are presented in Tables 1–3. The reaction proceeded well in all these cases and the substituents like F, Cl, Br, OMe, Me, NO₂ and $-OCHF_2$ present in the aromatic aldehydes **8** were well tolerated. The reaction appeared to be clean as no formation of side product was observed and the desired product **9** & **11** were isolated in good to excellent yield in each case. All the compounds synthesized were well characterized by spectral (NMR, MS and IR) data.

 Table 3

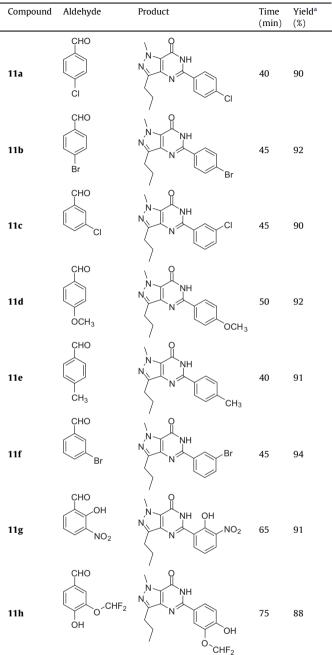
 Optimisation of the catalyst for the preparation of 2-phenyl quinazolin-4(3H)-one 9a

Entry	Mol %	Lewis acid	Temp (°C)	Time (h)	Yield ^a (%)
1	10	InCl ₃	rt	0.5	92
2	5	InCl ₃	rt	1	88
3	10	AlCl ₃	rt	4	66
4	10	AlCl ₃	60	4	70
5	10	TiCl ₄	rt	6	53
6	10	FeCl ₃	rt	6	50
8	10	BF ₃ .OEt ₂	rt	6	54
7	10	CuCl ₂	rt	6	45
^a Isolate	d yield.				
$H_2N \xrightarrow{O}_{N} + \underbrace{CHO}_{R} \xrightarrow{InCl_3} \xrightarrow{N}_{N} \xrightarrow{N}_{N} \xrightarrow{N}_{R}$					

Scheme 2. InCl₃-catalyzed synthesis of 5-aryl pyrazolo [4,3-d]pyrimidin -7(6H)-ones.

8

11


10

Based on the precedence of known anticancer activity of known quinazolin-4(3H)-one^{10e} derivatives we were interested to test anticancer properties in vitro. We evaluated our compounds for their anti-proliferative properties in vitro against a number of cancer cell lines for example, human chronic myeloid leukemia cells (K562), human colon carcinoma cells (Colo-205), and human breast cancer cell line (MDA-Mb 231MR32). The test compounds were examined at various concentrations in a MTT (3-(4,5-dimethyl thiazol-2-yl)-2,5-diphenyl tetrazolium bromide) assay and the IC₅₀ values obtained for each compounds are summarized in Table 5. Harmine, a member of β-carboline family of compounds showed cytotoxicity against HL60 and K562 cell lines²⁶ was used as a reference compound. While most of these compounds showed inhibition of leukemia cell growth as reflected by their IC₅₀ values the good results however were obtained using compounds 9b, **9d**,**11a**, **11b**, **11c**, **11h** (IC₅₀ <19 µM, Table 5). Interestingly, except compounds **9e** and **11b** all other compounds (IC_{50} <20 μ M, Table 5) were found to be active against colon carcinoma cells and except compounds 9a, 9d, 9f, 11a, 11b, 11e and 11g rest of the compounds $(IC_{50} < 45 \mu M, Table 5)$ showed good activities against breast cancer cells. Overall, compound 11h possessing a 4-hydroxy-3-difluoromethoxy phenyl group at C-5 position was found to be promising (IC_{50} ${\sim}7{\text{--}}25~\mu\text{M}\text{, Table 5}\text{)}\text{.}$

In order to understand the mechanism of action some of the compounds were tested for their inhibitory potential against sirtuins. Being considered as important targets for cancer therapeutics sirtuins (class III NAD-dependent deacetylases) are shown to upregulated in various types of cancer.²⁷ Inhibition of sirtuins allows re-expression of silenced tumor suppressor genes, leading to reduced growth of cancer cells. The activity of test compounds was determined using Sirt1 fluorescence activity assay using suramin, a known inhibitor of Sirt1 as a reference compound. At the concentration of 10 µM compounds 9b, 11f, 11g and 11h showed 48%, 59%, 61%, and 63% inhibition, respectively, in compared to suramin's 79% inhibition indicating that the anticancer properties of these molecules are possibly due to their sirtuin inhibiting properties. To understand the nature of interactions between these compounds and the Sir1 protein a molecular docking simulation study was carried out using a representative compound 11h (Fig. 2). The three dimensional model of hSirt1 (NCBI gi no: 7555471, 200-500 amino acid residues) was developed by homology modeling using the templates PDB: 2HJH and PDB: 1J8F in the Modeller9v6. Nine

Table 4

```
InCl<sub>3</sub>-catalyzed synthesis of pyrazolo[4,3-d] pyrimidin-7(6H)-ones
```


^a Isolated yield.

amino acid residues, for example, Gly261, Ala262, Ile270, Pro271, Phe273, Arg274, Gln345, Ile347, and His363 were found to play key roles in this interaction with the overall binding energy of –9.6 Kcal/mol indicating that molecule **11h** interacts well with this protein.

In summary, we have developed a convenient methodology for the synthesis of 2-aryl quinazolinone derivatives in high yields via the cyclisation of *o*-aminobenzamide with aromatic aldehydes using InCl₃ catalyst. This novel approach for the synthesis of 2-aryl quinazolin-4(3*H*)-ones and 5-aryl pyrazolo[4,3-*d*]pyrimidin-7(6*H*)ones is convenient, mild, cost-effective and practically free of chromatographic separation.

General experimental procedure:To a solution of aromatic aldehyde (1.0 mmol) in acetonitrile, *o*-aminobenzamide (1.0 mmol)

Table 5

In vitro cytotoxic activity of the synthesized compounds **9a–f** and **11a–h** against leukemiacells, K562, humancolon carcinoma cells, Colo-205, human breast cancer cell line (MDA-Mb 231MR32)

Compound	IC ₅₀ ^{a,b} (μM)		
	K562	Colo-205	MDA-MB 231
9a	19	13	52
9b	17	10	20
9c	24	8	28
9d	18	12	41
9e	20	23	37
9f	21	11	41
9g	19	12	42
11a	15	10	51
11b	17	25	46
11c	16	11	40
11d	21	9	44
11e	19	14	48
11f	24	12	38
11g	21	10	44
11h	15	7	25
Harmine	14	8	32

 $^a\mathrm{IC}_{50}$ represent the concentration of compound that causes a 50% growth inhibition to untreated cells using the MTT assay.

^bData represent the mean values of three independent determinations.

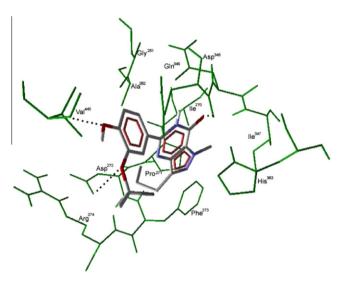


Figure 2. Docking of compound 5b into the active site of hSirt1.

and InCl₃ (10 mol %) were added at room temperature and the reaction mixture was stirred till the completion of the starting materials (indicated by TLC). After filtration through celite, the solvent was evaporated under reduced pressure and the crude product was triturated with 10% diethyl ether in hexane to obtain the pure product. All the compounds isolated were characterized by ¹H NMR, ¹³ C NMR and Mass.

Acknowledgement

N.M. and C.M. thanks CSIR, New Delhi, for the award of fellowship.

Supplementary data

Supplementary data associated with this article can be found, in the online version, at http://dx.doi.org/10.1016/j.bmcl.2012.06.003.

References and notes

- 1. Ple, P. A.; Green, T. P.; Hennequin, L. F.; Curwen, J.; Fennell, M.; Allen, J.; Lambert-vander Brempt, C.; Costello, G. J. Med. Chem. 2004, 47, 871.
- (a) Doyle, L. A.; Ross, D. D. Oncogene 2003, 22, 7340; (b) Henderson, E. A.; Bavetsias, V.; Theti, D. S.; Wilson, S. C.; Clauss, R.; Jackman, A. L. Bioorg. Med. Chem. 2006, 14, 5020.
- (a) Chien, T.-C.; Chen, C.-S.; Yu, F.-H.; Chern, J.-W. Chem. Pharm. Bull. 2004, 52, 1422; (b) Herget, T.; Freitag, M.; Morbitzer, M.; Kupfer, R.; Stamminger, T.; Marschall, M. Antimicrob. Agents Chemother. 2004, 48, 4154.
- (a) Waisser, K.; Gregor, J.; Dostal, H.; Kunes, J.; Kubicova, L.; Klimesova, V.; Kaustova, J. *Farmaco* **2001**, *56*, 803; (b) Kunes, J.; Bazant, J.; Pour, M.; Waisser, K.; Slosarek, M.; Janota, J. *Farmaco* **2000**, *55*, 725.
 Rudolph, J.; Esler, W. P.; O'Connor, S.; Coish, P. D. G.; Wickens, P. L.; Brands, M.;
- Rudolph, J.; Esler, W. P.; O'Connor, S.; Coish, P. D. G.; Wickens, P. L.; Brands, M.; Bierer, D. E.; Bloomquist, B. T.; Bondar, G.; Chen, L.; Chuang, C.-Y.; Claus, T. H.; Fathi, Z.; Fu, W.; Khire, U. R.; Kristie, J. A.; Liu, X.-G.; Lowe, D. B.; McClure, A. C.; Michels, M.; Ortiz, A. A.; Ramsden, P. D.; Schoenleber, R. W.; Shelekhin, T. E.; Vakalopoulos, A.; Tang, W.; Wang, L.; Yi, L.; Gardell, S. J.; Livingston, J. N.; Sweet, L. J.; Bullock, W. H. J. Med. Chem. 2007, 50, 5202.
 Yadaw, M. P.; Shirude, S. T. Partera A.; Philaman, C. S. C.; Market, C.; M. P.; Schurder, C.; Partera, A.; Partera, A.; Partera, C.; C.; Partera, C.; C.; Partera, S.; Partera, Parte
- Yadav, M. R.; Shirude, S. T.; Parmar, A.; Balaraman, R.; Giridhar, R. Chem. Heterocycl. Compd. (Engl. Transl.) 2006, 1198.
- 7. Singh, T.; Srivastava, S. S. V. K.; Kumar, A. Indian J. Chem. B: Org. Med. Chem. 2006, 45, 2558.
- 8. Arora, D.; Kumar, H.; Malhotra, D.; Malhotra, M. Pharmacologyonline 2011, 3, 659.
- 9. Malecki, N.; Carato, P.; Rigo, G.; Goossens, J. F.; Houssin, R.; Bailly, C.; Henichart, J. P. Bioorg. Med. Chem. 2004, 12, 641.
- (a) Ma, Z.-Z.; Hano, Y.; Nomura, T.; Chen, Y.-J. *Heterocycles* **1997**, *46*, 541; (b) Yoshida, S.; Aoyagi, T.; Harada, S.; Matsuda, N.; Ikeda, T.; Naganawa, H.; Hamada, M.; Takeuchi, T. *J. Antibiot.* **1991**, *44*, 111; (c) Deng, Y.; Xu, R.; Ye, Y. J. *Chin. Pharm. Sci.* **2000**, *9*, 116; (d) Wattanapiromsakul, C.; Forsterand, P. I.; Waterman, P. G. *Phytochemistry* **2003**, *64*, 609; (e) Noolvi, M. N.; Patel, H. M.; Bhardwaj, V.; Chauhan, A. *Eur. J. Med. Chem.* **2011**, *46*, 2327.
- (a) Shreder, K. R.; Wong, M. S.; Nomanbhoy, T.; Leventhal, P. S.; Fuller, S. R. Org. Lett. 2004, 6, 3715; (b) Yoon, D. S.; Han, Y.; Stark, T. M.; Haber, J. C.; Gregg, B. T.; Stankovich, S. B. Org. Lett. 2004, 6, 4775; (c) Costa, M.; Ca, N. D.; Gabriele, B.; Massera, C.; Salerno, G.; Soliani, M. J. Org. Chem. 2004, 69, 2469.
- (a) Witt, A.; Bergman, J. Curr. Org. Chem. 2003, 7, 659; (b) Mhaske, S. B.; Argade, N. P. Tetrahedron 2006, 62, 9787.
- (a) Kamal, A.; Reddy, K. S.; Prasad, B. R.; Babu, A. H.; Ramana, A. V. Tetrahedron Lett. 2004, 45, 6517; (b) Larksarp, C.; Alper, H. J. Org. Chem. 2000, 65, 2773.
- (a) Liu, J.-F.; Ye, P.; Zhang, B.; Bi, G.; Sargent, K.; Yu, L.; Yohannes, D.; Baldino, C. M. J. Org. Chem. 2005, 70, 6339; (b) Liu, J.-F.; Ye, P.; Sprague, K.; Sargent, K.; Yohannes, D.; Baldino, C. M.; Wilson, C. J.; Ng, S.-C. Org. Lett. 2005, 7, 3363; (c) Subba Reddy, B. V.; Venkateswarlu, A.; Madan, C.; Vinu, A. Tetrahedron Lett. 1891, 2011, 52.
- 15. Li, C. J.; Chan, T. H. Tetrahedron **1999**, 55, 11149.
- 16. Babu, G.; Perumal, P. T. Aldrichimica Acta 2000, 33, 16.
- 17. Ghosh, R. Indian J. Chem. 2001, 40B, 550.
- 18. Clarke, P. A.; Zaytzev, A. V.; Whitwood, A. C. Tetrahedron Lett. 2007, 48, 5209.
- 19. Shanthi, G.; Perumal, P. T. Tetrahedron Lett. 2009, 50, 3959.
- 20. Shanthi, G.; Perumal, P. T. Tetrahedron Lett. 2008, 49, 7139.
- Yadav, J. S.; Reddy, B. V. S.; Satheesh, G.; Narasimhulu, G.; Portier, Y.; Madhavi, C.; Kunwar, A. C. *Tetrahedron Lett.* 2008, 49, 3341.
- 22. Kumar, R.; Nandi, G. C.; Verma, R. K.; Singh, M. S. Tetrahedron Lett. 2010, 51, 442.
- (a) Yadav, J. S.; Sunny, A.; Reddy, B. V. S.; Sabitha, G. *Tetrahedron Lett.* 2001, *42*, 8063; (b) Yadav, J. S.; Reddy, B. V. S.; Kumar, G. M. *Synlett* 2001, 1781; (c) Yadav, J. S.; Reddy, B. V. S.; Sabitha, G.; Prabhakar, A.; Kunwar, A. C. *Tetrahedron Lett.* 2003, *44*, 2221; (d) Yadav, J. S.; Reddy, B. V. S.; Reddy, C. S. *Tetrahedron Lett.* 2004, *45*, 4583; (e) Yadav, J. S.; Reddy, B. V. S.; Madan, C. *New J. Chem.* 2000, *24*, 853.
- Analytical data of selected compounds: Compound 9a: mp 237–238 °C; ¹H NMR (DMSO-d₆, 400 MHz): δ 12.6 (br, 1H), 8.18–8.00 (m, 3H), 7.85–7.39 (series of m, 6H); ¹³C NMR (100 MHz, DMSO-d₆): δ 162.7, 152.8, 149.0, 135.0, 133.0, 131.8, 129.0, 128.2, 127.7, 127.0, 126.3, 121.3; Mass (ESI): m/z = 222 [M+H]⁺; Compound 11h: mp 276–278 °C; ¹H NMR (400 MHz, CDCl₃+DMSO d₆): δ 11.56 (br s, 1H), 9.48 (s, 1H), 7.74 (s, 1H), 7.52 (d, *J* = 8.4 Hz, 1H), 7.18 (d, *J* = 8.4 Hz, 1H), 6.70 (t, *J* = 75.6 Hz, 1H), 4.25 (s, 3H), 2.88 (t, *J* = 7.2, H2, 2H), 1.84 (q, *J* = 7.2, 14.0 Hz, 2H), 1.01 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (CDCl₃+DMSO d₆, 100 Hz): δ 155.1, 149.3, 148.7, 146.0, 140.7, 138.2, 131.1, 124.5, 118.9, 116.3, 113.3, 38.0, 27.5, 22.1, 13.9; Mass (ESI): m/z = 349.1 [M-H]⁺.
- Haning, H.; Niewohner, U.; Schenke, T.; Lampe, T.; Hillisch, A.; Bischoff, E. Bioorg. Med. Chem. Lett. 2005, 15, 3900.
- (a) Jahaniani, F.; Ebrahimi, S. A.; Rahbar-Roshandel, N.; Mahmoudian, M. *Phytochemistry* **2005**, *66*, 1581; (b) Michan, S.; Sinclair, D. *Biochem. J.* **2007**, *404*, 1; (c) Sauve, A. A.; Wolberger, C.; Schramm, V. L.; Boeke, J. D. Annu. Rev. *Biochem.* **2006**, *75*, 435; (d) Saunders, L. R.; Verdin, E. Oncogene **2007**, *26*, 5489; (e) Fraga, M. F.; Agrelo, R.; Esteller, M. Ann. N.Y. Acad. Sci. **2007**, *60*, 1100; (f) Zhao, W.; Kruse, J. P.; Tang, Y.; Jung, S. Y.; Qin, J.; Gu, W. Nature **2008**, *451*, 587.
 Milne, J. C.; Lambert, P. D.; Schenk, S.; Carney, D. P.; Smith, J. J.; Gagne, D. J.; Jin,
- Milne, J. C.; Lambert, P. D.; Schenk, S.; Carney, D. P.; Smith, J. J.; Gagne, D. J.; Jin, L; Boss, O.; Perni, R. B.; Vu, C. B.; Bemis, J. E.; Xie, R.; Disch, J. S.; Ng, P. Y.; Nunes, J. J.; Lynch, A. V.; Yang, H.; Galonek, H.; Israelian, K.; Choy, W.; Iffland, A.; Lavu, S.; Medvedik, O.; Sinclair, D. A.; Olefsky, J. M.; Jirousek, M. R.; Elliott, P. J. *Nature* **2007**, *450*, 712.