

Check for updates

Organic & Biomolecular Chemistry

Accepted Manuscript

This is an Accepted Manuscript, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about Accepted Manuscripts in the <u>author guidelines</u>.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard <u>Terms & Conditions</u> and the ethical guidelines, outlined in our <u>author and reviewer resource centre</u>, still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this Accepted Manuscript or any consequences arising from the use of any information it contains.

Published on 14 August 2017. Downloaded by University of Pennsylvania Libraries on 14/08/2017 17:48:26.

DOI: 10.1039/C7OB01689A

Organic & Biomolecular Chemistry

ARTICLE

Palladium-catalyzed regioselective C-H bond arylations at the C3 position of ortho-substituted fluorobenzenes

Received 00th January 20xx, Accepted 00th January 20xx

DOI: 10.1039/x0xx00000x

Anoir Hfaiedh, a, b Hamed Ben Ammar, Jean-François Soulé, a and Henri Doucet a

The influence of an ortho-substituent on fluorobenzene derivatives for palladium-catalyzed C-H bond arylation has been explored. In the presence of 2-bromo, 2-chloro and 2-methoxy substituents, the reaction proceeds nicely using a diphosphine-palladium catalyst and potassium acetate/dimethylacetamide (PivOK/DMA) as catalytic system. In all cases, a regioselective arylation at the the other ortho-position to the fluorine atom (C3) was observed. A variety of electronwithdrawing substituents on the aryl bromide coupling partner, such as formyl, nitro, nitrile, and also heteroaryl bromides was tolerated. Moreover, tri(hetero)aryl derivatives containing a fluorobenzene as central unit have been prepared from 2-bromofluorobenzene through palladium-catalyzed-successive C-H bond (hetero)arylations.

Introduction

Fluorinated biphenyl derivatives are an important class of molecules because this motif is embedded in various medicinal drugs. As examples, Flurbiprofen, which contains only one fluorine atom and Diflunisal which contains two fluorine atoms, are non-steroidal anti-inflammatory drugs (Figure 1). Tarenflurbil is investigated for its potential as a treatment for Alzheimer's disease (Figure 1). Due to the ubiquitousness of this motif, the discovery of environmentally friendly efficient synthetic routes allowing their preparation by utilizing fluorobenzene units as starting materials rather than late stage fluorination, ¹ remains an important research topic.

Figure 1. Pharmaceuticals containing a 2-fluorobiphenyl unit.

Palladium cross-coupling reactions (e.g., Suzuki, Negishi, Hiyama, Kumada reactions) remain a very efficient and reliable approach for the synthesis of fluorinated biphenyl motifs. due to the generation of stoichiometric amount of metal salts as waste. Moreover, the use of an organometallic reagent as coupling partner requires its prior preparation. By contrast, transition metal-catalyzed direct C-H bond arylation allows a straightforward access to (hetero)biphenyls with a lower environmental footprint.² In 2006, Fagnou and co-workers reported the first example of palladium-catalyzed direct arylation of (poly)fluorobenzene derivatives using aryl halides, via a concerted metalation-deprotonation (CMD) mechanism. Since these results, number of accomplishments have been reported toward direct arylation of electron-deficient arenes,⁵ including the use of alternative coupling partners to aryl halides (e.g., tosylates, 6 diaryliodonium salts, 7 boronic acids, 8 ArSO₂Na, ⁹ benzoic acids ¹⁰ or simple arenes under oxidative conditions¹¹), or the use of other transition metals.¹² If poly(fluoro)benzenes [i.e., penta-, 3, 6-7, 9-13 tetra-, 6a, 6b, 14 tri-15 or di-fluorobenzenes¹⁶] generally displayed good reactivities in C-H bond arylation, on the contrary fluorobenzene is almost unreactive. For example, Fagnou reported that the C2arylation of fluorobenzene in the presence of 1-bromo-4methylbenzene proceeded in only 8% yield (Figure 2A).3a To overcome the low reactivities of mono(fluoro)benzenes, one of the approaches was to introduce a functional group on the fluorobenzene ring. In this context, Daugulis and co-workers reported that the introduction of a carboxylic acid at the metaposition to the fluorine atom allowed the formation of C2,C5 diarylation products via palladium-catalyzed C-H bond activation (Figure 2 B).¹⁷ In 2011, Larrosa and co-workers employed a similar strategy for the mono-arylation at the α position to the fluorine atom, albeit decarboxylation occurred simultaneously to afford the corresponding 2-fluorobiphenyls in high yields (Figure 2 C). 18 Our group also contributed in this field by showing that the introduction of a functional group at meta- or para-positions to the fluorine atom increased dramatically its reactivity (Figure 2 D). 19 We shown that the

However, these reactions are considered as not eco-friendly

^{a.} UMR 6226 CNRS-Université de Rennes 1 " Organométalliques, Matériaux et Catalyse", Campus de Beaulieu, 35042 Rennes, France. E-mail: jeanfrancois.soule@univ-rennes1.fr; henri.doucet@univ-rennes1.fr ^{b.} Université de Tunis El Manar, Faculté des Sciences de Tunis, Campus Universitaire

El-Manar, 2092 El Manar Tunis, Tunisia.

c. Laboratoire de Synthèse Organique Asymétrique et Catalyse Homogène (UR 11ES56), Université de Monastir, Faculté des Sciences de Monastir, Avenue de l'environnement, Monastir 5000, Tunisia

[†] Footnotes relating to the title and/or authors should appear here Electronic Supplementary Information (ESI) available: [details of supplementary information available should be included here]. DOI: 10.1039/x0xx00000x

DOI: 10.1039/C7OB01689A **ARTICLE** Org. Biomol. Chem.

introduction of electron-withdrawing substituents (e.g., Cl, Br, CN, NO₂, CO₂R) and also an electron-donating group (e.g., OMe) enhances fluorobenzene reactivity in palladiumcatalyzed direct arylation in favor of one of the ortho-positions of fluorine atom. 19 On the other hand, no ortho-substituted fluorobenzene have been employed in palladium-catalyzed C-H bond arylation (except 1,2-difluorobenzene). In the line with our previous works, 19 we decided to investigate the effect of an ortho-substituent on fluorobenzenes in palladium-catalyzed direct arylation using aryl bromides as coupling partners

Results

Published on 14 August 2017. Downloaded by University of Pennsylvania Libraries on 14/08/2017 17:48:26

In our previous work, we demonstrated that a bromo substituent at para- or meta-position of the fluorine atom on benzene ring exhibits a positive impact on their reactivity in palladium-catalyzed C-H bond arylation of monofluorobenzenes. Therefore, we decided to investigate the reactivity of 1-bromo-2-fluorobenzene in palladium catalyzed C-H bond arylation. We selected 4-bromobenzonitrile as coupling partner -as its oxidative addition to palladium is faster than that of 1-bromo-2-fluorobenzene as it is more electron-deficient—²⁰ and investigated different parameters on the reaction outcome (Table 1). In the presence of 1 mol% Pd(OAc)₂ associated to 2 equivalents of KOAc in DMA at 150 ^oC, we were pleased to find that the arylation of 1-bromo-2fluorobenzene occurred regioselectively at ortho-position of

the fluorine atom, albeit in poor yield, but without the cleavage of the C-Br bond of the fluorobenzene unit (Table 1, entry 1). PdCl₂ used as catalyst allowed the formation of 1 in higher 29% yield (Table 1, entry 2). The use of 1 mol% a diphosphine palladium catalyst, namely PdCl(C3H5)dppb gave the fluorobiphenyl 1 in 65%; moreover employing 2 mol% of this catalyst, a better yield of 73% was obtained (Table 1, entries 3 and 4). However, a full conversion of 1-bromo-2fluorobenzene was observed due to the formation of 2,2'difluoro-1,1'-biphenyl and fluorobenzene as side-products. The use of other bases such as PivOK, K2CO3 or CS2CO3 did not allowed the formation of 1 in higher yields due to the formation of other cross-coupling products (Table 1, entries 5-7). No reaction occurred in DMSO, xylene, diethylcarbonate (DEC), or pentan-1-ol (Table 1, entries 8-11). When the reaction is performed in absence of 4-bromobenzonitrile, no homocoupling reaction occurred (i.e., 3-bromo-2,2'-difluoro-1,1'-biphenyl was not detected) (Table 1, entry 12). This result suggested that under these conditions only electron-deficient aryl bromides can be used as coupling partners to allow the C-H bond activation of the fluorobenzene unit.

Table 1. Reactivity of 1-bromo-2-fluorobenzene in palladium-catalyzed direct arylation with 4-bromobenzonitrile

[Pd] (x mol%)

[a] Determined by GC-MS analysis using n-dodecane as internal standard (Conv. = conversion based on 1-bromo-2-fluorobenzene, DEC = diethyl carbonate). [b] Reaction performed without 4-bromobenzonitrile.

DMA

KOAc

Then, we studied the scope of the aryl bromides in Pdcatalyzed regioselective arylation of 1-bromo-2-fluorobenzene using 2 mol% of PdCl(C₃H₅)dppb catalyst associated to 2 equivalents of KOAc as base in DMA at 150 °C over 16 h (Scheme 1). Aryl bromides substituted at para-position by an electron-withdrawing group, such as nitro, benzoyl, or formyl allowed the formation of desired C3-arylated 1-bromo-2fluorobenzenes 2-4 in 57-69% yields. It is important to note that in all case the C-Br bonds on the fluorobenzene ring remained untouched. By contrast, no desired 2fluorobiphenyls were obtained when electron-donating aryl bromides such as 4-bromoanisole were used.

12^[b]

 $PdCl(C_3H_5)(dppb)$ (2)

Published on 14 August 2017. Downloaded by University of Pennsylvania Libraries on 14/08/2017 17:48:26

Org. Biomol. Chem.

ARTICLE

substituent on aryl bromide has no influence on the yield, as the coupling products 5 and 6 were isolated in 67% and 52% yields, respectively from 3-bromobenzonitrile and 3bromobenzaldehyde. The reaction appears to be not very sensitive to the steric hindrance, as the reactions between 2bromobenzonitrile or 2-bromonitrobenzene and 1-bromo-2fluorobenzene afforded the biphenyls 7 and 8 in 62% and 58% yields, respectively. Heteroaryl bromides could also be used as coupling partners. For example, 3-bromoquinoline was regioselectively coupled with 1-bromo-2-fluorobenzene to give the desired compound 9 in 65% yield.

Scheme 1. Scope of (hetero)aryl bromides in Pd-catalyzed ortho-C-H bond arylation of 1-bromo-2-fluorobenzene

As a bromo substituent at ortho position of fluorine was found to dramatically enhance the reactivity of fluorobenzene in palladium-catalyzed C-H bond arylation, we turned our attention to the reactivity of 1-chloro-2-fluorobenzene (Scheme 2). A chloro-substituent seems to display a similar influence on the reactivity. From electron-deficient aryl bromides such 4-bromonitrobenzene 1-chloro-2-fluorobenzene bromobenzonitrile. was regioselectively arylated at the C3 position to afford the fluorinated biphenyls 10 and 11 in 67% and 70% yields, respectively. Again, meta- or ortho-substituents on the aryl bromides were tolerated, as from 3-bromobenzonitrile and 2bromonitrobenzene the desired products 12 and 13 were isolated in 51% and 47% yields, respectively. The reaction between 3-bromoquinoline and 1-chloro-2-fluorobenzene also allowed the synthesis of target compound 3-(3-chloro-2fluorophenyl)quinoline (14) in 52% yield.

Scheme 2. Scope of (hetero)aryl bromides in Pd-Catalyzed ortho-C-H bond arylation of 1-chloro-2-fluorobenzene

Next, we investigated the reactivity of 2-fluoroanisole, in which methoxy group has a low electron-withdrawing character (σ_{meta}^* = 0.12) at the *meta*-position (Scheme 3). Using the same reaction conditions, the arylation of 2fluoroanisole with 4-bromonitrobenzene or 4-bromobenzonitrile allowed the formation of C3-arylated fluorobenzene derivatives 15 and 16 in 41% and 44% yields, respectively. The reaction between 3-bromobenzonitrile and 2-fluoroanisole afforded the desired fluorinated biphenyl 17 in 40% yield.

Scheme 3. Scope of aryl bromides in Pd-catalyzed ortho-C-H bond arylation of 2fluoroanisole

We also investigated the reactivity of other ortho-substituted fluorobenzene derivatives, which proved to be unreactive under our optimized reaction conditions, namely, PdCl(C₃H₅)dppb (2 mol%) in the presence of KOAc (2 equiv.) as base in DMA at 150 °C (Scheme 4). Indeed, fluorobenzene bearing a strong electron-withdrawing group such as NO2 $(\sigma_{meta}^* = 0.71)$ or CN $(\sigma_{meta}^* = 0.56)$ were completely unreactive. Under our optimized reaction conditions, there was also no C-H bond activation using 2-fluoroacetophenone and 2-fluorobenzaldehyde in the presence of 4bromobenzaldehyde as aryl source, albeit their electronic properties are similar to a chloro or bromo substituents [i.e., Hammett constants: formyl ($\sigma_{meta}^* = 0.35$), acetyl ($\sigma_{meta}^* = 0.35$) 0.38), bromo ($\sigma_{meta}^* = 0.39$) and chloro ($\sigma_{meta}^* = 0.37$)]. On the other hand, 2-fluoroaniline and 2-fluorotoluene which bear electron-donating groups [i.e., NH₂ (σ_{meta} * = -0.16) or Me $(\sigma_{meta}^* = -0.07)$] were also unreactive under these reaction Overall, the reactivity for C-H bond cleavage/functionalization at ortho-position of fluorine atom **ARTICLE**

Published on 14 August 2017. Downloaded by University of Pennsylvania Libraries on 14/08/2017 17:48:26

DOI: 10.1039/C7OB01689A Org. Biomol. Chem.

on benzene ring seems to be correlated only to some extent with the electronic factors and C-H bond acidity. Gorelsky rationalized the regioselectivity and reactivity for palladiumcatalysed direct arylation of arenes by a combination of two factors: (i) arene distortion energy due to substituents and (ii) interaction energies with the metal catalyst.²¹ combination of factors might explain why the less acidic C-H bond on 2-fluoroanisole is more reactive than the C-H bond of 2-fluoronitrobenzene or 2-fluoroacetophenone.

Scheme 4. a) Unreactive ortho-substituted fluorobenzenes in Pd-catalyzed C-H bond arviation. b) Calculated Hammet constants for meta-substituents on benzenes

We further demonstrated the potential of chemoselective C-H bond arylation of 2-bromo-1-fluorobenzene with the introduction of a second aryl group on the fluorobenzene unit. This method allows the two-step synthesis of tri(hetero)aryl derivatives containing a central fluorobenzene unit (Scheme 5, In order to perform the second arylation, only heteroarenes containing C-H bonds with lower Gibbs free energy of activation than fluorobenzene should be employed.²¹ The direct arylation of 2-ethyl-4-methylthiazole at C5 position using 3-bromo-2-fluoro-4'-nitro-1,1'-biphenyl (2) as aryl source was performed using the same catalytic system than previously [i.e., PdCl(C₃H₅)dppb (1 mol%) in the presence of KOAc (2 equiv.) as base in DMA at 150 °C], to afford the tri(hetero)aryl product 18 in 91% yield. The reaction can also be performed using N-methylpyrrole -albeit 4 equivalents were required to prevent the pyrrole C2,C5 diarylation- to afford the desired product 19 in 85% yield. Other triads 20 and 21 were obtained in 90% ad 86% yields, respectively from similar direct arylations of thiazole and pyrrole using 3'-bromo-2'-fluoro-[1,1'-biphenyl]-4-carbonitrile (1) as coupling partner. We also demonstrated the synthetic utility of 3'-Bromo-2'fluoro-[1,1'-biphenyl] using a Suzuki cross-coupling reaction (Scheme 5, middle). From a mixture of 3-bromo-2-fluoro-4'nitro-1,1'-biphenyl (2) and (4-ethoxyphenyl)boronic acid (1.5 equivalents) in the presence of 2 mol% of a diphosphinepalladium catalyst and 2 equivalents of K₃PO₄ in dioxane at 100

°C over 16 h, the meta-terphenyl 22 was obtained in 73% yield. We also performed a Buchwald-Hartwig cross coupling reaction (Scheme 5, bottom). Indeed, 3'-bromo-2'-fluoro-[1,1'biphenyl]-4-carbonitrile (1) was coupled methylpiperazine to allow the formation of the amination product 23 in 64% yield using Pd₂(dba)₃/Xhantphos as catalyst and Cs2CO3 as base.

Scheme 5. Pd-catalyzed functionalizations of 3-bromo-2-fluoro-1,1'-biphenyl derivatives 1 and 2 with heteroarenes. [a] 4 Equivalents of 1-methylpyrrole were used.

Conclusions

In summary, we reported herein on the reactivity of orthosubstituted fluorobenzene derivatives in Pd-catalyzed C-H bond arylation using (hetero)aryl bromides as aryl sources. We showed that bromo, chloro or methoxy substituents at fluorobenzenyl ortho-position can be used to increase the reactivity of the C-H bond at the C3 position. On the contrary, other substituents such as nitro, nitrile, formyl, acetyl and amino on the fluorobenzene inhibited the reaction. This synthetic pathway is attractive and eco-friendly, as the major by-products are a base associated to HBr, and as it avoids the preliminary preparation of an organometallic reducing the number of steps for the preparation of such compounds. Interestingly, when 2-bromofluorobenzene was used with electron-deficient aryl bromides, the reaction was completely chemoselective allowing the synthesis 2,6-difunctinalized fluororobenzenes through Pd-catalyzed orthogonal functionalization, providing a new rapid and efficient method to discover drug candidates.

Experimental Section

Published on 14 August 2017. Downloaded by University of Pennsylvania Libraries on 14/08/2017 17:48:26

DOI: 10.1039/C7OB01689A

Org. Biomol. Chem. ARTICLE

General: All reactions were carried out under argon atmosphere with standard Schlenk-tube techniques. HPLC grade DMA was stored under argon and used without further purification. ¹H NMR spectra were recorded on Bruker GPX (400 MHz or 300 MHz) spectrometer. Chemical shifts (d) were reported in parts per million relative to residual chloroform (7.26 ppm for ¹H; 77.0 ppm for ¹³C), constants were reported in Hertz. ¹H NMR assignment abbreviations were the following: singlet (s), doublet (d), triplet (t), quartet (q), doublet of doublets (dd), doublet of triplets (dt), and multiplet (m). ¹³C NMR spectra were recorded at 100 MHz on the same spectrometer and reported in ppm. All reagents were weighed and handled in air.

Preparation of the $PdCl(C_3H_5)(dppb)$ catalyst:²² An oven-dried 40 mL Schlenk tube equipped with a magnetic stirring bar under argon atmosphere, was charged with $[Pd(C_3H_5)Cl]_2$ (182 mg, 0.5 mmol) and dppb (426 mg, 1 mmol). 10 mL of anhydrous dichloromethane were added, then, the solution was stirred at room temperature for twenty minutes. The solvent was removed in vacuum. The powder was used without purification. (^{31}P NMR 381 MHz, CDCl₃) δ = 19.3 (s).

General procedure for synthesis of fluorinated biphenyls: To a 25 mL oven dried Schlenk tube, *ortho*-substituted fluorobenzene (1 mmol), (hetero)arylbromide (1.5 mmol), KOAc (196 mg, 2 mmol), DMA (3-4 mL) and PdCl(C_3H_5)(dppb) (12.2 mg, 0.02 mmol) were successively added. The reaction mixture was evacuated by vacuum-argon cycles (5 times) and stirred at 150 $^{\circ}$ C (oil bath temperature) for 18-48 h (see tables and schemes). After cooling the reaction at room temperature and concentration, the crude mixture was purified by silica column chromatography to afford the desired arylated product.

3'-Bromo-2'-fluoro-[1,1'-biphenyl]-4-carbonitrile (1): 1-Bromo-2-fluorobenzene (110 μL, 1 mmol) and 4-bromobenzonitrile (270 mg, 1.5 mmol) affords **1** in 73 % (202 mg). 1 H NMR (400 MHz, CDCl₃) δ (ppm) 7.77 (d, J = 8.3 Hz, 2H), 7.69 – 7.59 (m, 3H), 7.38 (ddd, J = 1.6, 5.8, 7.9 Hz, 1H), 7.16 (td, J = 1.0, 7.9 Hz, 1H). 13 C NMR (100 MHz, CDCl₃) δ (ppm) 155.9 (d, J = 249.9 Hz), 139.6, 133.9, 132.3, 129.7 (d, J = 3.1 Hz), 129.6 (d, J = 2.5 Hz), 128.7 (d, J = 14.4 Hz), 125.5 (d, J = 4.8 Hz), 118.6, 112.0, 110.4 (d, J = 21.9 Hz). Elemental analysis: calcd (%) for C_{13} H₇BrFN (276.11): C 56.55, H 2.56; found: C 56.89, H 2.28.

3-Bromo-2-fluoro-4'-nitro-1,1'-biphenyl (2): 1-Bromo-2-fluorobenzene (110 μL, 1 mmol) and 4-bromonitrobenzene (303 mg, 1.5 mmol) affords **2** in 69 % (204 mg). 1 H NMR (400 MHz, CDCl₃) δ (ppm) 8.34 (d, J = 8.9 Hz, 2H), 7.72 (d, J = 8.8 Hz, 2H), 7.66 (ddd, J = 1.7, 6.4, 8.0 Hz, 1H), 7.42 (ddd, J = 1.7, 6.9, 7.8 Hz, 1H), 7.18 (td, J = 1.0, 7.8 Hz, 1H). 13 C NMR (100 MHz, CDCl₃) δ (ppm) 156.0 (d, J = 250.1 Hz), 147.6, 141.5, 134.1, 129.9 (d, J = 3.3 Hz), 129.7 (d, J = 2.4 Hz), 128.4 (d, J = 14.4 Hz), 125.6 (d, J = 4.8 Hz), 123.8, 110.5 (d, J = 21.9 Hz). Elemental analysis: calcd (%) for $C_{12}H_7$ BrFNO $_2$ (296.10): C 48.68, H 2.38; found: C 48.52, H 2.10.

(3'-Bromo-2'-fluoro-[1,1'-biphenyl]-4-yl)(phenyl)methanone (3): 1-Bromo-2-fluorobenzene (110 μL, 1 mmol) and 4-bromobenzophenone (392 mg, 1.5 mmol) affords **3** in 64 % (227 mg). 1 H NMR (400 MHz, CDCl₃) δ (ppm) 7.92 (d, J = 8.3 Hz, 2H), 7.90 – 7.85 (m, 2H), 7.70 – 7.66 (m, 2H), 7.65 – 7.59 (m, 2H), 7.57 – 7.50 (m, 2H), 7.44 (ddd, J = 1.7, 6.9, 7.7 Hz, 1H), 7.16 (td, J = 1.0, 7.9 Hz, 1H). 13 C NMR (100 MHz, CDCl₃) δ (ppm) 196.2, 156.1 (d, J = 249.5 Hz), 139.1, 137.5, 137.1, 133.3, 132.6, 130.3, 130.0, 129.8 (d, J = 2.7 Hz), 129.4, 128.9 (d, J = 3.1 Hz), 128.4, 125.4 (d, J = 4.8 Hz), 110.3 (d, J = 22.1 Hz).

Elemental analysis: calcd (%) for $C_{19}H_{12}BrFO$ (355.21): C 64.25, H 3.41; found: C 48.52, H 2.10.

3'-Bromo-2'-fluoro-[1,1'-biphenyl]-4-carbaldehyde (4): 1-Bromo-2-fluorobenzene (110 μL, 1 mmol) and 4-bromobenzaldehyde (278 mg, 1.5 mmol) affords **4** in 57 % (160 mg). 1 H NMR (400 MHz, CDCl₃) δ (ppm) 10.10 (s, 1H), 7.99 (d, J = 8.0 Hz, 2H), 7.76 – 7.69 (m, 2H), 7.63 (ddd, J = 1.7, 6.3, 8.0 Hz, 1H), 7.42 (ddd, J = 1.7, 6.8, 7.7 Hz, 1H), 7.17 (td, J = 1.0, 7.9 Hz, 1H). 13 C NMR (100 MHz, CDCl₃) δ (ppm) 191.8, 155.9 (d, J = 249.5 Hz), 141.1, 135.8, 133.6, 129.9, 129.8 (d, J = 2.6 Hz), 129.7 (d, J = 3.2 Hz), 127.6 (d, J = 6.6 Hz), 125.4 (d, J = 4.7 Hz), 110.3 (d, J = 22.1 Hz). Elemental analysis: calcd (%) for C₁₃H₈BrFO (279.11): C 55.94, H 2.89; found: C 56.18, H 3.19.

3'-Bromo-2'-fluoro-[1,1'-biphenyl]-3-carbonitrile (5): 1-Bromo-2-fluorobenzene (110 μL, 1 mmol) and 3-bromobenzonitrile (270 mg, 1.5 mmol) affords **5** in 67 % (185 mg). 1 H NMR (400 MHz, CDCl₃) δ (ppm) 7.84 (s, 1H), 7.81 – 7.76 (m, 1H), 7.71 (dt, J = 1.5, 7.5 Hz, 1H), 7.67 – 7.60 (m, 1H), 7.60 – 7.56 (m, 1H), 7.37 (ddd, J = 1.6, 6.8, 7.8 Hz, 1H), 7.16 (td, J = 1.0, 7.8 Hz, 1H). 13 C NMR (100 MHz, CDCl₃) δ (ppm) 155.9 (d, J = 249.3 Hz), 136.3, 136.3, 133.7, 133.3 (d, J = 3.1 Hz), 132.5 (d, J = 3.0 Hz), 131.6, 129.4, 128.3 (d, J = 14.5 Hz), 125.5 (d, J = 4.7 Hz), 118.4, 113.0, 110.4 (d, J = 22.0 Hz). Elemental analysis: calcd (%) for C₁₃H₇BrFN (276.11): C 56.55, H 2.56; found: C 56.21, H 2.34.

3'-Bromo-2'-fluoro-[1,1'-biphenyl]-3-carbaldehyde (6): 1-Bromo-2-fluorobenzene (110 μL, 1 mmol) and 3-bromobenzaldehyde (278 mg, 1.5 mmol) affords **6** in 52 % (144 mg). 1 H NMR (400 MHz, CDCl₃) δ (ppm) 10.10 (s, 1H), 8.05 (s, 1H), 7.94 (d, J = 7.7 Hz, 1H), 7.82 (d, J = 7.4 Hz, 1H), 7.67 (d, J = 7.6 Hz, 1H), 7.64 – 7.58 (m, 1H), 7.45 – 7.38 (m, 1H), 7.20 – 7.11 (m, 1H). 13 C NMR (100 MHz, CDCl₃) δ (ppm) 191.9, 156.0 (d, J = 249.0 Hz), 136.7, 136.0, 134.9 (d, J = 3.1 Hz), 133.3, 130.2 (d, J = 2.7 Hz), 129.8 (d, J = 2.8 Hz), 129.3, 125.4 (d, J = 4.7 Hz), 110.2 (d, J = 22.0 Hz). Elemental analysis: calcd (%) for C₁₃H₈BrFO (279.11): C 55.94, H 2.89; found: C 55.98, H 2.83.

3'-Bromo-2'-fluoro-[1,1'-biphenyl]-2-carbonitrile (7): 1-Bromo-2-fluorobenzene (110 μL, 1 mmol) and 2-bromobenzonitrile (270 mg, 1.5 mmol) affords **7** in 62 % (171 mg). 1 H NMR (400 MHz, CDCl₃) δ (ppm) 7.82 (d, J = 8.6 Hz, 1H), 7.74 – 7.63 (m, 2H), 7.58 – 7.49 (m, 2H), 7.40 (ddd, J = 1.7, 6.8, 8.2 Hz, 1H), 7.18 (t, J = 7.9 Hz, 1H). 13 C NMR (100 MHz, CDCl₃) δ (ppm) 155.9 (d, J = 249.2 Hz), 138.6, 134.4, 133.4, 132.6, 130.9 (d, J = 2.2 Hz), 130.4 (d, J = 2.0 Hz), 128.7, 127.2 (d, J = 15.8 Hz), 125.2 (d, J = 4.6 Hz), 117.7, 112.8, 110.1 (d, J = 21.6 Hz). Elemental analysis: calcd (%) for C₁₃H₇BrFN (276.11): C 56.55, H 2.56; found: C 56.46, H 2.69.

3-Bromo-2-fluoro-2'-nitro-1,1'-biphenyl (8): 1-Bromo-2-fluorobenzene (110 μL, 1 mmol) and 2-bromonitrobenzene (303 mg, 1.5 mmol) affords **8** in 58 % (171 mg). ¹H NMR (400 MHz, CDCl₃) δ (ppm) 8.11 (d, J = 8.2 Hz, 1H), 7.72 (t, J = 7.6 Hz, 1H), 7.66 – 7.59 (m, 2H), 7.44 (d, J = 7.7 Hz, 1H), 7.32 – 7.24 (m, 1H), 7.19 – 7.11 (m, 1H). ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 155.8 (d, J = 247.5 Hz), 133.7, 133.1, 132.5, 129.9, 129.4, 129.1 (d, J = 2.6 Hz), 127.3 (d, J = 17.2 Hz), 125.3 (d, J = 4.6 Hz), 124.7, 109.44 (d, J = 21.6 Hz). Elemental analysis: calcd (%) for $C_{12}H_7BrFNO_2$ (296.10): C 48.68, H 2.38; found: C 48.74, H 2.55.

3-(3-Bromo-2-fluorophenyl)quinoline (9): 1-Bromo-2-fluorobenzene (110 μL, 1 mmol) and 3-bromoquinoline (312 mg, 1.5 mmol) affords **9** in 65 % (196 mg). 1 H NMR (400 MHz, CDCl₃) δ (ppm) 9.10 (s, 1H), 8.35 (s, 1H), 8.18 (d, J = 8.5 Hz, 1H), 7.91 (d, J = 7.2 Hz, 1H), 7.79 (ddd, J = 1.4, 6.9, 8.4 Hz, 1H),

DOI: 10.1039/C7OB01689A

ARTICLE Org. Biomol. Chem.

7.68 - 7.58 (m, 2H), 7.52 (td, J = 1.5, 7.9 Hz, 1H), 7.21 (t, J = 7.9 Hz, 1H). 13 C NMR (100 MHz, CDCl₃) δ (ppm) 156.4 (d, J = 249.3 Hz), 150.4, 147.5, 135.8 (d, J = 3.5 Hz), 133.5, 130.1, 129.90 (d, J = 2.7 Hz), 129.3, 128.1, 127.6, 127.4,127.3 (d, J = 2.5 Hz), 127.2, 125.59 (d, J = 4.7 Hz), 110.36 (d, J = 21.9 Hz). Elemental analysis: calcd (%) for $C_{15}H_9BrFN$ (302.15): C 59.63, H 3.00; found: C 60.02. H 2.98.

3-Chloro-2-fluoro-4'-nitro-1,1'-biphenyl (10): 1-Chloro-2-fluorobenzene (105 µL, 1 mmol) and 4-bromonitrobenzene (303 mg, 1.5 mmol) affords 10 in 67 % (169 mg). ¹H NMR (400 MHz, CDCl₃) δ (ppm) 8.34 (d, J = 8.0 Hz, 2H), 7.73 (d, J = 8.0 Hz, 2H), 7.50 (ddd, J = 1.8, 6.8, 8.2 Hz, 1H), 7.37 (ddd, J = 1.8, 6.9, 8.4 Hz, 1H), 7.24 (t, J = 7.9 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 155.2 (d, J = 251.7 Hz), 147.6, 141.4, 131.1, 129.9 (d, J = 3.2 Hz), 128.8 (d, J = 3.2 Hz) 2.4 Hz), 128.45 (d, J = 13.3 Hz), 125.1 (d, J = 4.9 Hz), 123.8, 122.4 (d, J = 18.5Hz). Elemental analysis: calcd (%) for C₁₂H₇CIFNO₂ (251.64): C 57.28, H 2.80; found: C 57.43, H 3.07.

3'-Chloro-2'-fluoro-[1,1'-biphenyl]-4-carbonitrile (11): 1-Chloro-2fluorobenzene (105 μ L, 1 mmol) and 4-bromobenzonitrile (270 mg, 1.5 mmol) affords 11 in 70 % (162 mg). 1 H NMR (400 MHz, CDCl₃) δ (ppm) 1 H NMR (400 MHz, CDCl₃) δ 7.78 (d, J = 8.7 Hz, 2H), 7.69 - 7.64 (m, 2H), 7.49 (ddd, J = 1.7, 6.8, 8.0 Hz, 1H), 7.34 (ddd, J = 1.7, 6.8, 8.0 Hz, 1H), 7.22 (td, J = 1.7, 6.8, 8.0 Hz, 1H)1.1, 8.0 Hz, 1H). 13 C NMR (100 MHz, CDCl₃) δ (ppm) 155.1 (d, J = 251.6 Hz), 139.5, 132.3, 130.9, 129.7 (d, J = 3.2 Hz), 128.8 (d, J = 2.5 Hz), 125.0 (d, J = 2.5 Hz) 5.0 Hz), 122.31 (d, J = 18.6 Hz), 118.5, 112.0. Elemental analysis: calcd (%) for C₁₃H₇CIFN (231.65): C 67.40, H 3.05; found: C 67.14, H 2.91.

Published on 14 August 2017. Downloaded by University of Pennsylvania Libraries on 14/08/2017 17:48:26

3'-Chloro-2'-fluoro-[1,1'-biphenyl]-3-carbonitrile (12): 1-Chloro-2fluorobenzene (105 μ L, 1 mmol) and 3-bromobenzonitrile (270 mg, 1.5 mmol) affords 12 in 51 % (118 mg). 1 H NMR (400 MHz, CDCl₃) δ (ppm) 1 H NMR (400 MHz, CDCl $_3$) δ 7.84 (s, 1H), 7.81 – 7.77 (m, 1H), 7.74 – 7.68 (m, 1H), 7.60 (t, J = 7.8 Hz, 1H), 7.48 (ddd, J = 1.8, 6.8, 8.0 Hz, 1H), 7.33 (ddd, J = 1.81.8, 6.8, 7.8 Hz, 1H), 7.22 (t, J = 7.9 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 155.1 (d, J = 251.1 Hz), 136.2, 133.8, 133.3 (d, J = 3.3 Hz), 132.9, 132.5 (d, J = 3.0 Hz), 131.6, 130.8, 129.5, 128.4 (d, J = 13.3 Hz), 125.0 (d, J = 5.0 Hz),122.2 (d, J = 18.6 Hz), 113.0. Elemental analysis: calcd (%) for $C_{13}H_7CIFN$ (231.65): C 67.40, H 3.05; found: C 67.56, H 3.28.

3-Chloro-2-fluoro-2'-nitro-1,1'-biphenyl (13): 1-Chloro-2-fluorobenzene (105 µL, 1 mmol) and 2-bromonitrobenzene (303 mg, 1.5 mmol) affords 13 in 47 % (118 mg). ¹H NMR (400 MHz, CDCl₃) δ (ppm) 8.11 (dd, J = 1.3, 8.2 Hz, 1H), 7.72 (td, J = 1.3, 7.6 Hz, 1H), 7.61 (td, J = 1.5, 7.7 Hz, 1H), 7.51 – 7.42 (m, 2H), 7.26 – 7.18 (m, 2H). 13 C NMR (100 MHz, CDCl₃) δ (ppm) 154.9 (d, J =248.9 Hz), 148.7, 133.1, 132.5, 130.8, 129.8, 129.5, 128.3 (d, J = 2.4 Hz), 127.4 (d, J = 16.0 Hz), 124.7, 124.9 (d, J = 4.8 Hz), 121.5 (d, J = 18.1 Hz). Elemental analysis: calcd (%) for C₁₂H₇CIFNO₂ (251.64): C 57.28, H 2.80; found: C 57.10, H 2.71,

3-(3-Chloro-2-fluorophenyl)quinoline (14): 1-Chloro-2-fluorobenzene (105 μL, 1 mmol) and 3-bromoguinoline (312 mg, 1.5 mmol) affords 14 in 52 % (134 mg). 1 H NMR (400 MHz, CDCl₃) δ (ppm) 9.10 (s, 1H), 8.36 (s, 1H), 8.19 (d, J = 8.9 Hz, 1H), 7.91 (d, J = 7.8 Hz, 1H), 7.80 (dd, J = 6.9, 8.4 Hz, 1H), 7.63(t, J = 6.8, 8.2 Hz, 1H), 7.54 - 7.46 (m, 2H), 7.29 - 7.23 (m, 1H). ¹³C NMR (100) MHz, CDCl₃) δ (ppm) 155.6 (d, J = 250.8 Hz), 150.4 (d, J = 3.2 Hz), 147.5, 136.1, 135.8 (d, J = 3.5 Hz), 130.5, 130.1, 129.3, 129.1 (d, J = 2.7 Hz), 128.1, 127.6, 127.2, 125.1 (d, J = 4.9 Hz), 122.3 (d, J = 18.4 Hz). Elemental analysis: calcd (%) for C₁₅H₉CIFN (257.69): C 69.91, H 3.52; found: C 70.26, H 3.85.

2-Fluoro-3-methoxy-4'-nitro-1,1'-biphenyl (15): 1-Fluoro-2methoxybenzene (112 µL, 1 mmol) and 4-bromonitrobenzene (303 mg, 1.5 mmol) affords **15** in 41% (101 mg). 1 H NMR (400 MHz, CDCl₃) δ (ppm) 8.33 (d, J = 8.8 Hz, 2H), 7.74 (d, J = 8.8 Hz, 2H), 7.21 (td, J = 1.5, 8.0 Hz, 1H), 7.11 -6.99 (m, 2H), 3.97 (s, 3H). 13 C NMR (100 MHz, CDCl₃) δ (ppm) 149.5 (d, J = 250.8 Hz), 148.4 (d, J = 11.1 Hz), 147.3, 142.3, 129.9 (d, J = 3.4 Hz), 124.4 (d, J = 5.0 Hz), 124.2, 123.7, 121.6 (d, J = 1.9 Hz), 113.68 (d, J = 2.0 Hz), 56.5. Elemental analysis: calcd (%) for C₁₃H₁₀FNO₃ (247.23): C 63.16, H 4.08; found: C 63.29, H 4.19.

2'-Fluoro-3'-methoxy-[1,1'-biphenyl]-4-carbonitrile (16): 1-Fluoro-2methoxybenzene (112 μ L, 1 mmol) and 4-bromobenzonitrile (270 mg, 1.5 mmol) affords 16 in 44% (100 mg). 1 H NMR (400 MHz, CDCl₃) δ (ppm) 7.76 (d, J = 8.4 Hz, 2H), 7.68 (d, J = 8.4 Hz, 2H), 7.19 (td, J = 1.5, 8.0 Hz, 1H), 7.06(dd, J = 1.6, 8.0 Hz, 1H), 7.04 - 6.98 (m, 1H), 3.97 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 149.5 (d, J = 249.5 Hz), 148.4 (d, J = 11.1 Hz), 140.3, 132.2, 129.8 (d, J = 3.4 Hz), 128.0 (d, J = 10.5 Hz), 124.4 (d, J = 4.9 Hz), 121.5 (d, J = 10.5 Hz) 2.0 Hz), 118.8, 113.5 (d, J = 2.1 Hz), 111.5, 56.4. Elemental analysis: calcd (%) for C₁₄H₁₀FNO (227.24): C 74.00, H 4.44; found: C 73.91, H 4.56.

2'-Fluoro-3'-methoxy-[1,1'-biphenyl]-3-carbonitrile (17): methoxybenzene (112 μ L, 1 mmol) and 3-bromobenzonitrile (270 mg, 1.5 mmol) affords 17 in 40% (91 mg). 1 H NMR (400 MHz, CDCl₃) δ (ppm) 7.85 (s, 1H), 7.80 (d, J = 7.5 Hz, 1H), 7.68 (dt, J = 1.4, 7.7 Hz, 1H), 7.57 (t, J = 7.8 Hz, 1H), 7.19 (td, J = 1.6, 8.0 Hz, 1H), 7.05 (dd, J = 1.6, 8.0 Hz, 1H), 6.99 (ddd, J = 1.6, 8.0 Hz, 1H), 6.90 (ddd, J = 1.6, 8.0 Hz, 1H), 8.0 (ddd, J = 11.6, 6.5, 8.0 Hz, 1H), 3.97 (s, 3H). 13 C NMR (100 MHz, CDCl₃) δ (ppm) 149.7 (d, J = 249.5 Hz), 148.5 (d, J = 11.1 Hz), 137.1, 131.3, 133.6 (d, J = 3.3 Hz), 132.7 (d, J = 3.0 Hz), 129.4, 127.7 (d, J = 10.6 Hz), 124.5 (d, J = 4.9 Hz), 121.7 (d, J = 2.0 Hz), 118.8, 113.5 (d, J = 2.0 Hz), 112.9, 56.7. Elemental analysis: calcd (%) for C₁₄H₁₀FNO (227.24): C 74.00, H 4.44; found: C 74.10, H 4.29.

2-Ethyl-5-(2-fluoro-4'-nitro-[1,1'-biphenyl]-3-yl)-4-methylthiazole (18): 3-Bromo-2-fluoro-4'-nitro-1,1'-biphenyl (2) (148 mg, 0.5 mmol) and 2-ethyl-4methylthiazole (95 mg, 0.75 mmol) affords 18 in 91% (156 mg). ¹H NMR (400 MHz, CDCl₃) δ (ppm) 8.34 (d, J = 8.7 Hz, 2H), 7.76 (d, J = 8.7 Hz, 2H), 7.53 - 7.41 (m, 2H), 7.34 (t, J = 7.7 Hz, 1H), 3.06 (q, J = 7.5 Hz, 2H), 2.42 (s, 3H), 1.44 (t, J = 7.6 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 172.1, 156.5 (d, J = 251.9 Hz), 149.9, 147.4, 142.1, 132.8 (d, J = 2.9 Hz), 130.5 (d, J = 3.0)Hz), 130.0 (d, J = 3.3 Hz), 127.7, 124.6 (d, J = 4.6 Hz), 123.7, 122.8, 121.3 (d, J = 4.6 Hz) = 16.6 Hz), 27.0, 16.1 (d, J = 2.7 Hz), 14.2. Elemental analysis: calcd (%) for C₁₈H₁₅FN₂O₂S (342.39): C 63.14, H 4.42; found: C 63.29, H 4.61.

2-(2-Fluoro-4'-nitro-[1,1'-biphenyl]-3-yl)-1-methylpyrrole (19): 3-Bromo-2fluoro-4'-nitro-1,1'-biphenyl (2) (148 mg, 0.5 mmol) and 1-methylpyrrole (162 mg, 2 mmol) affords 19 in 85% (126 mg). 1 H NMR (400 MHz, CDCl₃) δ (ppm) 8.34 (d, J = 8.9 Hz, 2H), 7.76 (d, J = 8.9 Hz, 2H), 7.49 – 7.41 (m, 2H), 7.33 (t, J = 7.6 Hz, 1H), 6.82 (dd, J = 1.8, 2.7 Hz, 1H), 6.31 (dd, J = 1.8, 3.7 Hz, 1H), 6.28 (dd, J = 2.6, 3.6 Hz, 1H), 3.63 (d, J = 1.7 Hz, 3H). ¹³C NMR (100 MHz, $CDCl_3$) δ (ppm) 156.7 (d, J = 250.1 Hz), 147.3, 142.4, 132.8 (d, J = 3.3 Hz), 130.0 (d, J = 3.3 Hz), 129.9 (d, J = 3.0 Hz), 127.5, 127.3 (d, J = 14.5 Hz), 124.5 (d, J = 4.5 Hz), 123.9, 123.7, 122.4 (d, J = 16.6 Hz), 110.5 (d, J = 1.5 Hz), 108.1,34.8 (d, J = 4.7 Hz). Elemental analysis: calcd (%) for $C_{17}H_{13}FN_2O_2S$ (296.30): C 68.91, H 4.42; found: C 69.04, H 4.21.

3'-(2-Ethyl-4-methylthiazol-5-yl)-2'-fluoro-[1,1'-biphenyl]-4-carbonitrile

(20): 3'-Bromo-2'-fluoro-[1,1'-biphenyl]-4-carbonitrile (1) (138 mg, 0.5 mmol) and 2-ethyl-4-methylthiazole (95 mg, 0.75 mmol) affords 20 in 90% (145 mg). ¹H NMR (400 MHz, CDCl₃) δ (ppm) 7.77 (d, J = 8.4 Hz, 2H), 7.69 (d, Published on 14 August 2017. Downloaded by University of Pennsylvania Libraries on 14/08/2017 17:48:26

Org. Biomol. Chem. ARTICLE

J = 8.4 Hz, 2H), 7.48 - 7.40 (m, 2H), 7.32 (t, J = 7.7 Hz, 1H), 3.05 (q, J = 7.6 Hz, 2H), 2.41 (d, J = 1.3 Hz, 3H), 1.44 (t, J = 7.6 Hz, 3H). 13 C NMR (100 MHz, CDCl₃) δ (ppm) 172.0, 156.4 (d, J = 251.6 Hz), 149.8, 140.2, 132.6 (d, J = 2.7 Hz), 132.3, 130.5 (d, J = 3.1 Hz), 129.8 (d, J = 3.2 Hz), 128.0 (d, J = 14.2 Hz), 124.6 (d, J = 4.6 Hz), 122.9, 121.2 (d, J = 16.6 Hz), 118.7, 111.7, 27.0, 16.1 (d, J = 2.7 Hz), 14.2. Elemental analysis: calcd (%) for C₁₉H₁₅FN₂ (322.40): C 70.78, H 4.69; found: C 71.02, H 5.00.

2'-Fluoro-3'-(1-methyl-1H-pyrrol-2-yl)-[1,1'-biphenyl]-4-carbonitrile (21): 3'-Bromo-2'-fluoro-[1,1'-biphenyl]-4-carbonitrile (1) (138 mg, 0.5 mmol) and 1-methylpyrrole (162 mg, 2 mmol) affords **21** in 86% (119 mg). 1 H NMR (400 MHz, CDCl₃) δ (ppm) 7.77 (d, J = 8.6 Hz, 2H), 7.70 (d, J = 8.6 Hz, 2H), 7.46 – 7.38 (m, 2H), 7.32 (d, J = 8.5 Hz, 1H), 6.83 – 6.80 (m, 1H), 6.30 (dd, J = 1.8, 3.7 Hz, 1H), 6.28 (dd, J = 2.7, 3.6 Hz, 1H), 3.62 (d, J = 1.7 Hz, 3H). 13 C NMR (100 MHz, CDCl₃) δ (ppm) 156.6 (d, J = 249.8 Hz), 140.5, 132.6 (d, J = 3.3 Hz) 132.2, 129.8 (d, J = 3.3 Hz), 127.8, 127.6 (m) 124.5 (d, J = 4.6 Hz), 123.9, 122.3 (d, J = 16.6 Hz), 118.7, 111.5, 110.5, 108.1, 65.8. Elemental analysis: calcd (%) for C₁₈H₁₃FN₂ (276.31): C 78.24, H 4.74; found: C 78.48, H 5.03.

4-Ethoxy-2'-fluoro-4"-nitro-1,1':3',1"-terphenyl (22): The reaction of 3-bromo-2-fluoro-4'-nitro-1,1'-biphenyl **(2)** (148 mg, 0.5 mmol), (4-ethoxyphenyl)boronic acid (124 mg, 0.75 mmol) and K_3PO_4 (212 mg, 1 mmol) at 100 °C over 16 h in 1,4-dioxane (2-3 mL) in the presence of PdCl(C_3H_5)(dppb) (6 mg, 0.01 mmol) under argon affords, after evaporation of the solvent and purification on silica gel, product **22** in 73% (123 mg) yield. ¹H NMR (400 MHz, CDCl $_3$) δ (ppm) 8.33 (d, J = 8.9 Hz, 2H), 7.77 (dd, J = 1.7, 8.8 Hz, 2H), 7.56 – 7.47 (m, 3H), 7.40 (td, J = 1.9, 7.2 Hz, 1H), 7.33 (t, J = 7.6 Hz, 1H), 7.02 (d, J = 8.8 Hz, 2H), 4.12 (q, J = 7.0 Hz, 2H), 1.48 (t, J = 7.0 Hz, 3H). ¹³C NMR (100 MHz, CDCl $_3$) δ (ppm) 158.9, 156.5 (d, J = 250.4 Hz), 147.2, 142.8, 131.3 (d, J = 3.9 Hz), 130.3 (d, J = 3.1 Hz), 130.1 (d, J = 3.4 Hz), 129.1 (d, J = 2.9 Hz), 127.7 (d, J = 9.9 Hz), 127.5, 124.7 (d, J = 4.6 Hz), 124.2, 123.6, 114.6, 63.6, 14.8. Elemental analysis: calcd (%) for $C_{20}H_{16}FNO_3$ (33.7.35): C 71.21, H 4.78; found: C 71.52, H 5.03.

2'-Fluoro-3'-(4-methylpiperazin-1-yl)-[1,1'-biphenyl]-4-carbonitrile (23): The reaction of 3'-bromo-2'-fluoro-[1,1'-biphenyl]-4-carbonitrile (1) (138 mg, 0.5 mmol), 1-methylpiperazine (75 mg, 0.75 mmol) and Cs₂CO₃ (325 mg, 1 mmol) at 100 °C over 16 h in 1,4-dioxane (2-3 mL) in the presence of Pd₂(dba)₃ (11.4 mg, 0.0125 mmol) and XantPhos (14 mg, 0.025 mmol) under argon affords, after evaporation of the solvent and purification on silica gel, product **23** in 64% (95 mg) yield. ¹H NMR (400 MHz, CDCl₃) δ (ppm) 7.72 (d, J = 8.7 Hz, 2H), 7.64 (d, J = 8.7 Hz, 2H), 7.17 (t, J = 7.9 Hz, 1H), 7.07 – 6.98 (m, 2H), 3.18 (t, J = 4.9 Hz, 4H), 2.65 (t, J = 4.7 Hz, 4H), 2.39 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 152.5 (d, J = 249.3 Hz), 140.8 (t, J = 4.6 Hz), 132.6 (d, J = 6.3 Hz), 132.1, 129.8 (d, J = 3.2 Hz), 127.99 (d, J = 12.8 Hz), 124.7 (d, J = 4.5 Hz), 123.3 (d, J = 2.7 Hz), 119.5 (d, J = 3.2 Hz), 118.8, 111.3, 55.1, 50.6 (d, J = 3.4 Hz), 46.1. Elemental analysis: calcd (%) for C₁₈H₁₈FN₃ (295.36): C 73.20, H 6.14; found: C 72.89, H 6.40.

Acknowledgements

A. H. is grateful to "Université de Tunis El Manar" for a research fellowship. We also thank the CNRS, "Rennes Metropole" and French Scientific Ministry of Higher Education for providing financial support.

Notes and references

1. a) R. D. Chambers, J. Hutchinson and G. Sandford, *J. Fluorine Chem.*, 1999, **100**, 63-73; b) S. Rozen, *Chem. Rev.*, 1996, **96**, 1717-1736.

2. a) J. J. Li and G. W. Gribble, *Palladium in Heterocyclic Chemistry*, Pergamon, Amsterdam, 2000; b) L. Ackermann, *Modern arylation methods*, Wiley, 2009; c) J. Roger and H. Doucet, *Adv. Synth. Catal.*, 2009, **351**, 1977-1990; d) L. Ackermann, R. Vicente and A. R. Kapdi, *Angew. Chem. Int. Ed.*, 2009, **48**, 9792-9826; e) O. Baudoin, *Chem. Soc. Rev.*, 2011, **40**, 4902-4911; f) J. Yamaguchi, A. D. Yamaguchi and K. Itami, *Angew. Chem. Int. Ed.*, 2012, **51**, 8960-9009; g) J. Wencel-Delord and F. Glorius, *Nat. Chem.*, 2013, **5**, 369-375; h) R. Rossi, F. Bellina, M. Lessi and C. Manzini, *Adv. Synth. Catal.*, 2014, **356**, 17-117; i) K. Yuan, J.-F. Soulé and H. Doucet, *ACS Catal.*, 2015, **5**, 978-991. 3. a) M. Lafrance, C. N. Rowley, T. K. Woo and K. Fagnou, *J. Am. Chem. Soc.*, 2006, **128**, 8754-8756; b) M. Lafrance, D. Shore and K. Fagnou, *Org. Lett.*, 2010, **12**, 2116-

4. a) D. Lapointe and K. Fagnou, *Chem. Lett.*, 2010, **39**, 1119-1126; b) S. I. Gorelsky, *Coord. Chem. Rev.*, 2013, **257**, 153-164.

5. M. He. J.-F. Soulé and H. Doucet. ChemCatChem. 2014. 6, 1824-1859.

S. Fan, J. Yang and X. Zhang, *Org. Lett.*, 2011, 13, 4374-4377; b) L.
 Ackermann and S. Fenner, *Chem. Commun.*, 2011, 47, 430-432; c) J. W. W.
 Chang, E. Y. Chia, C. L. L. Chai and J. Seayad, *Org. Biomol. Chem.*, 2012, 10, 2289-2299; d) D. S. Lee, P. Y. Choy, C. M. So, J. Wang, C. P. Lau and F. Y.
 Kwong, *RSC Adv.*, 2012, 2, 9179-9182.

7. F. Guo, J. Han, S. Mao, J. Li, X. Geng, J. Yu and L. Wang, *RSC Adv.*, 2013, **3**, 6267-6270.

8. a) Y. Wei, J. Kan, M. Wang, W. Su and M. Hong, *Org. Lett.*, 2009, **11**, 3346-3349; b) X. Fang, Y. Huang, X. Chen, X. Lin, Z. Bai, K.-W. Huang, Y. Yuan and Z. Weng, *J. Fluorine Chem.*, 2013, **151**, 50-57.

9. T. Miao and L. Wang, Adv. Synth. Catal., 2014, **356**, 429-436.

10. K. Xie, Z. Yang, X. Zhou, X. Li, S. Wang, Z. Tan, X. An and C.-C. Guo, *Org. Lett.*, 2010, **12**, 1564-1567.

11. a) Y. Wei and W. Su, *J. Am. Chem. Soc.*, 2010, **132**, 16377-16379; b) H. Li, J. Liu, C.-L. Sun, B.-J. Li and Z.-J. Shi, *Org. Lett.*, 2011, **13**, 276-279.

12. H.-Q. Do and O. Daugulis, J. Am. Chem. Soc., 2008, 130, 1128-1129.

13. a) Y. Matsubara, A. Kimura, Y. Yamaguchi and Z. Yoshida, *Org. Lett.*, 2008, **10**, 5541-5544; b) D. Zhao, W. Wang, S. Lian, F. Yang, J. Lan and J. You, *Chem. Eur. J.*, 2009, **15**, 1337-1340; c) T. Okamoto, K. Nakahara, A. Saeki, S. Seki, J. H. Oh, H. B. Akkerman, Z. Bao and Y. Matsuo, *Chem. Mater.*, 2011, **23**, 1646-1649; d) H. Zhao, Y. Wei, J. Xu, J. Kan, W. Su and M. Hong, *J. Org. Chem.*, 2011, **76**, 882-893; e) J. C. Bernhammer and H. V. Huynh, *Organometallics*, 2012, **31**, 5121-5130; f) F. Chen, Q.-Q. Min and X. Zhang, *J. Org. Chem.*, 2012, **77**, 2992-2998; g) B. Liu, Z. Wang, N. Wu, M. Li, J. You and J. Lan, *Chem. Eur. J.*, 2012, **18**, 1599-1603; h) S. Ye, G. Liu, S. Pu and J. Wu, *Org. Lett.*, 2012, **14**, 70-73; i) D. Yuan and H. V. Huynh, *Organometallics*, 2012, **31**, 405-412; j) S.-Y. Liu, M.-M. Shi, J.-C. Huang, Z.-N. Jin, X.-L. Hu, J.-Y. Pan, H.-Y. Li, A. K. Y. Jen and H.-Z. Chen, *J. Mater. Chem. A*, 2013, **1**, 2795-2805; k) M. Cao, D. Wu, W. Su and R. Cao, *J. Catal.*, 2015, **321**, 62-69.

14. a) M. Tasior, D. T. Gryko, J. Shen, K. M. Kadish, T. Becherer, H. Langhals, B. Ventura and L. Flamigni, J. Phys. Chem. C, 2008, 112, 19699-19709; b) F. Zhang, M. Funahashi and N. Tamaoki, Org. Electron., 2009, 10, 73-84; c) D. Lapointe, T. Markiewicz, C. J. Whipp, A. Toderian and K. Fagnou, J. Org. Chem., 2010, 76, 749-759; d) H.-Q. Do and O. Daugulis, J. Am. Chem. Soc., 2011, 133, 13577-13586; e) R. G. Kalkhambkar and K. K. Laali, Tetrahedron Lett., 2011, 52, 5525-5529; f) W. Lu, J. Kuwabara and T. Kanbara, Macromolecules, 2011, 44, 1252-1255; g) P. Q. Le, T. S. Nguyen and J. A. May, Org. Lett., 2012, 14, 6104-6107; h) W. Lu, J. Kuwabara, T. Iijima, H. Higashimura, H. Hayashi and T. Kanbara, Macromolecules, 2012, 45, 4128-4133; i) T.-H. Chen, I. Popov, O. Zenasni, O. Daugulis and O. S. Miljanic, Chem. Commun., 2013, 49, 6846-6848; j) S. Lentijo, G. Aullon, J. A. Miguel and P. Espinet, Dalton Trans., 2013, 42, 6353-6365; k) D.-P. Liu, Q. Chen, Y.-C. Zhao, L.-M. Zhang, A.-D. Qi and B.-H. Han, ACS Macro Lett., 2013, 2, 522-526; I) M. Wakioka, Y. Kitano and F. Ozawa, Macromolecules, 2013, 46, 370-374; m) T. Yan, L. Chen, C. Bruneau, P. H. Dixneuf and H. Doucet, J. Org. Chem., 2013, 78, 4177-4183,

15. a) D. Garcia-Cuadrado, A. A. C. Braga, F. Maseras and A. M. Echavarren, *J. Am. Chem. Soc.*, 2006, **128**, 1066-1067; b) D. Garcia-Cuadrado, P. de Mendoza, A. A. C. Braga, F. Maseras and A. M. Echavarren, *J. Am. Chem.*

ARTICLE

Published on 14 August 2017. Downloaded by University of Pennsylvania Libraries on 14/08/2017 17:48:26.

DOI: 10.1039/C7OB01689A Org. Biomol. Chem.

Soc., 2007, **129**, 6880-6886; c) J. J. Mousseau, F. Vallee, M. M. Lorion and A. B. Charette, *J. Am. Chem. Soc.*, 2010, **132**, 14412-14414.

16. a) R. Chaudhuri, M.-Y. Hsu, C.-W. Li, C.-I. Wang, C.-J. Chen, C. K. Lai, L.-Y. Chen, S.-H. Liu, C.-C. Wu and R.-S. Liu, *Org. Lett.*, 2008, **10**, 3053-3056; b) T. Yan, C. B. Bheeter and H. Doucet, *Eur. J. Org. Chem.*, 2013, **2013**, 7152-7163; c) J. Zhang, W. Chen, A. J. Rojas, E. V. Jucov, T. V. Timofeeva, T. C. Parker, S. Barlow and S. R. Marder, *J. Am. Chem. Soc.*, 2013, **135**, 16376-16379.

17. H. A. Chiong, Q.-N. Pham and O. Daugulis, J. Am. Chem. Soc., 2007, **129**, 9879-9884.

18.J. Cornella, M. Righi and I. Larrosa, *Angew. Chem. Int. Ed.*, 2011, **50**, 9429-9432.

19. a) T. Yan, L. Zhao, M. He, J.-F. Soulé, C. Bruneau and H. Doucet, *Adv. Synth. Catal.*, 2014, **356**, 1586-1596; b) M. He, J.-F. Soulé and H. Doucet, *ChemCatChem*, 2015, **7**, 2130-2140; c) N. Laidaoui, M. He, D. El Abed, J.-F. Soulé and H. Doucet, *RSC Advances*, 2016, **6**, 62866-62875.

20. B. Noverges Pedro, M. Medio-Simón and A. Jutand, *ChemCatChem*, 2017, 9. 2136-2144.

21. a) S. I. Gorelsky, *Organometallics*, 2012, **31**, 4631-4634; b) S. I. Gorelsky, *Coord. Chem. Rev.*, 2013, **257**, 153-164.

22.T. Cantat, E. Génin, C. Giroud, G. Meyer and A. Jutand, *J. Organomet. Chem.*, 2003, **687**, 365-376.

Table of Contents

We reported herein palladium-catalyzed C–H bond arylation of fluorobenzene derivatives at the *ortho*-position to the fluorine atom. We have demonstrated that bromo, chloro or methoxy substituents at fluorobenzenyl *ortho*-position can be used to increase the reactivity of the C–H bond at the C3 position. Thanks to this method, we reported an efficient synthesis of 2,6-difunctionalized fluorobenzenes from 1-bromo-2-fluorobenzene *via* palladium-catalyzed orthogonal cross-coupling reactions.

PdCl(
$$C_3H_5$$
)(dppb)
(2 mol%)

KOAc, DMA, 150 °C

Regioselective
17 examples
(40–73% yields)

R = NO₂, CN, COMe, CHO, Me, NH₂