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[Ru(p-cymene)Cl2]2-catalyzed 1,4-addition reactions between 

arylboronic acids and butyl acrylate and acrylamide in the 

presence of phenols were investigated, good to excellent yields 

were obtained. The addition of phenols remarkably promoted 10 

the protonolysis and inhabited the β-H elimination of the 1,4-

addition intermediates, and also efficiently suppressed the 

protonolysis of arylboronic acids. 

Transition metal-catalyzed 1,4-conjugate addition of 

organometallic reagents to α,β-unsaturated carbonyl 15 

compounds is a powerful tool for C-C bond formation 

reactions.
1

 Among various organometallic reagents, 

organoboron compounds had been extensively investigated 

due to their readily availability, stability and low toxicity.
2
 

Since Miyaura and co-workers’ pioneering work in Rh-20 

catalyzed 1,4-addition of arylboronic acids to enones,
3
 the 

Rh(I)-2a,4,5 and Pd(II)-catalyzed
6
 conjugate addition has been 

extensively investigated and well developed. It was 

noteworthy that the substrates in these catalytic reactions were 

limited to enones and enals, unsaturated esters were rarely 25 

employed as the reagents because of their easy β-H 

elimination.
7
 Meanwhile, Ru(II)-catalyzed conjugate addition 

has been sporadically reported
8
 and there has been no example 

for the Ru(II)-catalyzed 1,4-addition of arylboronic acids to β-

unsubstituted acrylates. Herein, we report the first Ru(II)-30 

catalyzed conjugate addition of arylboronic acids to α,β-

unsaturated esters and amides, using 2,6-di-t-butylphenol as a 

versatile additive. 

 
Scheme 1 Competition between protonolysis and β-H elimination of the 35 

1,4-addition intermediates 
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Recently, we reported a simple and efficient Ru-catalyzed 

conjugate addition reaction of arylboronic acids to enones 45 

under neutral conditions, in which vinyl ketones gave 1,4-

addition products with excellent yields and no β-H elimination 

product.9 

In transition metal-catalyzed addition reactions, it is believed 

that after the insertion of the C-C double bond of an α,β-50 

unsaturated compound into the C-M bond of an ArMX, the 

resulted metal complex (I) will be in equilibrium to its 

enolized complex (II) (Scheme 1). When α,β-unsaturated 

compounds used are ketones or aldehydes, enolization is more 

favorable than when they are esters. Complex II can be 55 

hydrolized (or protonolized) in the presence of a proton 

source, while complex I does not form O-bound intermediate 

II easily 10  and can undergo β-H elimination under basic 

conditions. 

β-H elimination occurs easily when the transition metal 60 

possesses a vacant coordination site. In order to suppress the 

β-H elimination product, some ligands are added to prevent 

the metal from unsaturately coordinated. So we examined the 

reaction of 4-(t-butyl)phenylboronic acid 1a (1.05 mmol) and 

butyl acrylate 2a (1.0 mmol) in the presence of [RuCl2(p-65 

cymene)]2 (2.0 mol %) in dioxane-H2O (3.0 mL, V/V = 20:1) 

at 90 °C in the presence of a ligand. When PPh3, bipyridine, 

and dppp were employed as the ligands, the yields of 3aa 

were 43%, 0%, and 0%, respectively. In the presence of PPh3 

and DPPP as ligands, protonolysis product of t-70 

butylphenylboronic acid was the major byproduct. We also 

tried organic acids as additives, hoping that the presence of an 

acid to stimulate the protonolysis of the enolate of the 1,4-

addition intermediate (II in scheme 1). As a result, in the 

presence of 10 mol% of benzoic acid, the yield was 57% 75 

together with some t-butylbenzene; while in the presence of 

20 mol% of acetic acid, the yield decreased to 12% with the 

generation of a large amount of t-butylbenzene (70%) as the 

byproduct. Apparently, the protonolysis of arylboronic acid 

becomes more favorable under acidic conditions. However, 80 

the β-H elimination became overwhelming even in the 

presence of a weak base, as a result, addition of 10 mol% of 

NaOAc to the reaction, no desired 1,4-addition product was 

detected; only Heck-type product was obtained. 

Because both oxygen-based ligands and the acidity of the 85 

reaction condition play a crucial role in controlling the 

protonolysis of arylboronic acids and the β-H elimination 

process,
11 neutral or weak acidic oxygen-based ligand, such as 
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widely-used pentane-2,4-dione and rarely-used phenols, were 

tested. When pentane-2,4-dione was used as ligand, the 

reaction gave 3aa in only 20% yield, most of 1a and 2a was 

remained (Table 1, entry 7). When phenol was used as the 

ligand in our catalytic system, the reaction produced 1,4-5 

addition product 3aa in 90% yield (Table 1, entry 8). Other 

phenols were also tested, and 2,6-di(t-butyl)phenol performs 

best (For more details, see supporting information, Table 1). 

This result prompted us to explore the possibility of using 

oxygen-based ruthenium complexes as catalysts for the 1,4-10 

addition reaction. As a result, if the catalyst was pre-formed 

with [Ru(p-cymene)Cl2]2 and 1 to 2 equivalents of PhONa, the 

reaction gave 1,4-addition product in not more than 30% yield 

together with varying amount of Heck-type product. 

Replacing the catalyst with [Ru(benzene)Cl2]2, the yield was 15 

decreased from 94% to 85% (Table 1, entry 10 vs entry 11); 

other ruthenium catalysts are inefficient, [Ru(COD)Cl2]n and 

RuCl3.xH2O are totally inert (Table 1, entries 13 and 14). This 

reaction was not susceptible to the temperature, when the 

reaction was carried out at 120 °C, the yield was almost equal 20 

to that at 90 °C; while at 50 °C the yield was slightly 

decreased even with longer reaction time. Other solvents, such 

as THF, acetone, toluene, methanol and DMF, decreased the 

yields with varying degrees in our catalytic system. If the 

reaction was carried out in a dry solvent, the yield was 25 

remarkably decreased (See supporting information, Table 1). 

On the basis of these optimization studies, we employed 

[RuCl2(p-cymene)]2 (2 mol %) as the catalyst, 2,6-di-(t-

butyl)phenol (10 mol %) as the additive, in dioxane/H2O = 20 

: 1 (V/V) , 90 °C and 12 h as the standard reaction conditions 30 

for the following catalytic conjugate addition reactions. 

Table 1 Ru-catalyzed 1,4-addition reaction of 1a and 2aa  

  
Entry Catalyst Additive  Yield (%)b 

1 [RuCl2(p-cymene)]2 None 75c 
2 [RuCl2(p-cymene)]2 PPh3 43 
3 [RuCl2(p-cymene)]2 Bipyridine ND 
4 [RuCl2(p-cymene)]2 DPPP ND 
5 [RuCl2(p-cymene)]2 Benzoic acid  57 
6 [RuCl2(p-cymene)]2 HOAc 12 
7 [RuCl2(p-cymene)]2 Pentane-2,4-dione 20 
8 [RuCl2(p-cymene)]2 Phenol  90 
9 [RuCl2(p-cymene)]2 2,6-Dimethylphenol 92 
10 [RuCl2(p-cymene)]2 2,6-Di-t-butylphenol 94 
11 [Ru(benzene)Cl2]2 2,6-Di-t-butylphenol 85 
12 RuCl2(PPh3)3 2,6-Di-t-butylphenol ND 
13 [RuCl2(COD)]n 2,6-Di-t-butylphenol ND 
14 RuCl3·xH2O 2,6-Di-t-butylphenol ND 
aAll the reactions were carried out with 1 (1.05 mmol), 2 (1.00 mmol), 

ruthenium complex (2.0 mol %) and an additive (10 mol%) in a mixed 

solvent [dioxane/H2O = 20/1 (v/v), 3 mL] at 90 °C under N2 for 12 h. 
bYields were determined by GC (signal-integration method with 

durene as an internal standard, Heck-type product was less than 2%). 
cWith 20% of Heck-type product. dND: not detected. 

 

Under the optimized reaction conditions, a wide range of 35 

arylboronic acids and acrylates or acrylamides were 

investigated. The results are summarized in Table 2. The 

para- and meta- substituted arylboronic acids 1c-o can 

efficiently react with 2a to afford the corresponding addition 

products in good to excellent yields (Table 2). The catalytic 40 

reactions tolerated various functional groups, such as OCF3, 

Cl, F, Br, COCH3, CO2CH3 and CHO on the phenyl rings of 

arylboronic acids 1. These results indicate that the catalytic 

reaction is not sensitive to the electronic properties of the 

substituent, but it is susceptible to the position of the 45 

substituents on the phenyl rings. For example, 3-

methylphenylboronic acid (1c) afforded 3ca in 85% yield 

(Table 2, entry 3) whereas 2-methylphenylboronic acid (1b) 

gave 3ba in only 35% yield even if 2.5 eq. of 1b was used 

(Table 2, entry 2). As mentioned before, this reaction is 50 

sensitive to the acidity of the reaction condition, when acrylic 

acid as substrate, almost all of the arylboronic acids were 

protonolyzed. Likewise, the catalytic reaction is very sensitive 

to the steric hindrance with the alkenes 2, no reaction took 

place with α- or β-substituted acrylic substrates under the 55 

standard reaction conditions. 

Table 2 Ru-catalyzed 1,4-addition reaction of arylboronic acids 1 with 

alkenes 2a 

  
Entry Ar E Product Yieldb (%) 

1 p-t-BuC6H4 (1a) 2a 3aa 94 
2 o-MeC6H4 (1b) 2a 3ba 30c 
3 m-MeC6H4 (1c) 2a 3ca 85 
4 p-MeC6H4 (1d) 2a 3da 88 
5 C6H5 (1e) 2a 3ea 91 
6 p-FC6H4 (1f) 2a 3fa 86 
7 p-CF3C6H4 (1g) 2a 3ga 90 
8 p-ClC6H4 (1h) 2a 3ha 92 
9 p-CF3OC6H4 (1i) 2a 3ia 88 
10 p-CH3OC6H4 (1j) 2a 3ja 84 
11 p-BrC6H4 (1k) 2a 3ka 74 
12 p-CH3COC6H4 (1l) 2a 3la 90 
13 p-CO2CH3C6H4 (1m) 2a 3ma 87 
14 p-CHOC6H4 (1n) 2a 3na 81 
15 m-CHOC6H4 (1o) 2a 3oa 83 
16 C6H5 (1e) 2b 3eb 58 
17 C6H5 (1e) 2c 3ec ND 
 aAll the reactions were carried out with 1 (1.0 mmol), 2 (1.0 mmol), 

ruthenium complex (2.0 mol %), 2,6-di-t-butylphenol (10.0 mol %), in 

dioxane/water = 20 : 1 (v/v) (3 mL) at 90 °C under N2 for 12 h. bIsolated 

yield (Heck-type product is less than 3%). c2.5 eq. of aryboronic acid 

was used. 

 60 

It is still a puzzle what the role phenols play in the catalytic 

1,4-addition reaction, but it is clear that phenols do not serve 

only as ligands, as depicted earlier that the pre-formed 

catalyst from [Ru(cymene)Cl2]2 and varying amounts of 

NaOPh performed worse than [Ru(cymene)Cl2]2 and phenol. 65 

Further experiments showed that phenols do not only serve as 

a pH adjusting agent either. If the reaction was run in buffered 

solutions (citric acid/sodium hydroxide, potassium dihydrogen 

phosphate/disodium hydrogen phosphate, and sodium 

tetraborate/hydrochloric acid) with a pH varying from 5.0 to 70 

9.0, the yields varying from 78% to 31% acompanying with 
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protonolysis product of arylboronic acid and Heck-type 

product. It is evident that the 1,4-addition reaction also 

involves transmetallation, insertion of the C=C double bond 

of acrylate to C-Ru bond, and the protonolysis steps as 

proposed in the literature.12 The bulkiness of the catalyst and 5 

the right acidity and coordinating ability of the phenols may 

work jointly to facilitate the enolization and protonolysis of 

the enolized intermediate as depicted in Scheme 1. 

In summary, we have developed a straightforward and 

efficient Ru-catalyzed 1,4-addition reactions of organoboronic 10 

acids to acrylates and acryamide. It is noteworthy that the use 

of phenols as additives efficiently suppressed the β-hydride 

elimination products, and the protonolysis and self-coupling 

of the arylboronic acids. As a result, only one equivalent 

arylboronic acids was used, the acrylates can still efficiently 15 

undergo full conversion. 
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