## Synthesis and transformations of 3-(1*H*-pyrrol-1-yl)thieno[2,3-b]pyridines

E. A. Kaigorodova,<sup>a</sup> A. A. Osipova,<sup>a</sup> L. D. Konyushkin,<sup>b</sup> and G. D. Krapivin<sup>a</sup>\*

<sup>a</sup>Kuban State Technological University,
 2 ul. Moskovskaya, 350072 Krasnodar, Russian Federation.
 Fax: +7 (861) 57 6592. E-mail: organics@kubstu.ru
 <sup>b</sup>N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences,
 47 Leninsky prosp., 119991 Moscow, Russian Federation.
 Fax: +7 (095) 135 5328. E-mail: LeonidK@chemical-block.com

Reactions of 2,5-dimethoxytetrahydrofuran with 3-aminothieno[2,3-*b*]pyridines afford a number of substituted 3-(1*H*-pyrrol-1-yl)thieno[2,3-*b*]pyridines. The possibility of the reaction and the yield of the product are determined by the character of a substituent in position 2 of thieno[2,3-*b*]pyridine. The Curtius rearrangement of 2-acylazido-3(1*H*-pyrrol-1-yl)thieno[2,3-*b*]pyridines yields 4,5-dihydropyrido[3',2':4,5]thieno[2,3-*e*]pyrrolo[1,2-*a*]pyrazin-4-ones. The molecular and crystal structures of ethyl 4-methoxymethyl-6-methyl-3-(1*H*-pyrrol-1-yl)thieno[2,3-*b*]pyridine-2-carboxylate were determined by X-ray diffraction analysis.

**Key words:** 3-aminothieno[2,3-*b*]pyridines, 2,5-dimethoxytetrahydrofuran, 3-(1*H*-pyrrol-1-yl)thieno[2,3-*b*]pyridines, 4,5-dihydropyrido[3',2':4,5]thieno[2,3-*e*]pyrrolo[1,2-*a*]pyrazin-4-ones, IR spectroscopy, UV spectroscopy, <sup>1</sup>H NMR spectroscopy, <sup>13</sup>C NMR spectroscopy, X-ray diffraction analysis.

In recent years, the potentialities of the synthesis of conjugated and fused compounds containing a thieno[2,3-*b*]pyridine fragment have been under extensive investigations.<sup>1-3</sup> Earlier,<sup>4</sup> we obtained systems simultaneously containing pyrrole, thiophene, and pyridine rings. The present work was devoted to the directed synthesis, properties, and transformations of 3(1H-pyrrol-1-yl)thieno[2,3-*b*]pyridine derivatives.

Alkylation of 3-cyanopyridine-2(1H)-thiones 1a-c with halides 2a-l in the presence of KOH followed by the Thorpe–Ziegler cyclization of alkyl derivatives gave a number of 3-aminothieno[2,3-*b*]pyridines 3a-p (Scheme 1). Compounds 3a-c,f-k,n were reported earlier,  $^{3,5-8}$  while products 3d,e,l,m,o,p were obtained for the first time.

Pyrrolylthienopyridines were synthesized by reactions of 3-aminothieno[2,3-*b*]pyridines **3** with 2,5-dimethoxytetrahydrofuran in boiling conc. AcOH; the molar ratio of the reagents was 1 : 1.2 (see Scheme 1). When their equimolar ratio is used, the reaction time extends approximately two times, while the yield of the product decreases by 5 to 7%. The starting reagents are well soluble in acetic acid, which ensures the necessary reaction temperature as well. As the result, 3-(1H-pyrrol-1-yl)thieno[2,3-*b*]pyridines containing aryl (compounds **5a,b**), hetaryl (5-nitro-2-furyl, **6**), ester (**7a**-**k**), and tertiary amide fragments (**8a**) in position 2 of the thiophene ring were obtained in good yields (Table 1). Scheme 1



$$R^{1} = CH_{2}OMe, R^{2} = H (1a, 3a-k, 5a, 6, 7b, e, k, 8a);$$
  

$$R^{1} = Me, R^{2} = H (1c, 3n, 7c), Cl (1b, 3l, m, o, p, 5b, 7a, d, f);$$

 $R^3 = p - NO_2C_6H_4$  (2a, 3a, l, 5a, b);  $M_0$  (2b, 3b, 6);

 $\begin{array}{l} \label{eq:coord} \text{COOMe} \ (\textbf{2c}, \textbf{3m}, \textbf{7a}); \ \text{COOEt} \ (\textbf{2d}, \textbf{3c}, \textbf{n}, \textbf{o}, \textbf{7b}, \textbf{c}, \textbf{d}); \\ \text{COOPh} \ (\textbf{2e}, \textbf{3d}, \textbf{p}, \textbf{7e}, \textbf{f}); \ \text{COOC}_6 H_4 \text{Cl} \text{-} p \ (\textbf{2f}, \textbf{3e}, \textbf{7k}); \\ \text{CONPh}_2 \ (\textbf{2g}, \textbf{3f}, \textbf{8a}); \ \text{CONHPh} \ (\textbf{2h}, \textbf{3g}); \ \text{CONH}_2 \ (\textbf{2i}, \textbf{3h}); \\ \text{COOH} \ (\textbf{2j}, \textbf{3i}); \ \text{CN} \ (\textbf{2k}, \textbf{3j}); \ \text{COPh} \ (\textbf{2l}, \textbf{3k}); \\ \text{X} = \text{Br} \ (\textbf{2a-d}, \textbf{l}), \ \text{Cl} \ (\textbf{2e-h}, \textbf{k}), \ (\textbf{2i}, \textbf{j}) \end{array}$ 

A substituent in position 2 of thieno[2,3-*b*]pyridine was found to significantly affect the possibility of its reac-

Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 4, pp. 817-823, April, 2004.

1066-5285/04/5304-0853 © 2004 Plenum Publishing Corporation

| Com-<br>pound | Yield<br>(%) | M.p.<br>/°C | Found<br>Calculated (%) |                     |                       | Molecular<br>formula      |
|---------------|--------------|-------------|-------------------------|---------------------|-----------------------|---------------------------|
|               |              |             | С                       | Н                   | N                     |                           |
| 3d            | 85           | 123—124     | <u>62.16</u><br>62.18   | <u>4.90</u><br>4.91 | <u>8.51</u><br>8.53   | $C_{17}H_{16}N_2O_3S$     |
| 3e            | 87           | 121-122     | <u>56.26</u><br>56.28   | <u>4.17</u><br>4.17 | $\frac{7.70}{7.72}$   | $C_{17}H_{15}ClN_2O_3S$   |
| 31            | 92           | >300        | <u>53.95</u><br>53.98   | <u>3.61</u><br>3.62 | <u>12.57</u><br>12.59 | $C_{15}H_{12}ClN_3O_2S$   |
| 3m            | 80           | 205-206     | <u>48.78</u><br>48.80   | $\frac{4.10}{4.10}$ | <u>10.33</u><br>10.35 | $C_{11}H_{11}CIN_2O_2S$   |
| 3n            | 75           | 159—160     | <u>57.56</u><br>57.58   | <u>5.65</u><br>5.54 | <u>11.16</u><br>11.19 | $C_{12}H_{14}N_2O_2S$     |
| 30            | 83           | 194—195     | <u>50.60</u><br>50.62   | <u>4.59</u><br>4.60 | <u>9.81</u><br>9.84   | $C_{12}H_{13}ClN_2O_2S$   |
| 3p            | 84           | 238-239     | <u>57.72</u><br>57.74   | <u>3.93</u><br>3.94 | <u>8.40</u><br>8.42   | $C_{16}H_{13}ClN_2O_2S$   |
| 5a            | 86           | 203-204     | <u>63.29</u><br>63.31   | <u>4.51</u><br>4.52 | $\frac{11.05}{11.07}$ | $C_{20}H_{17}N_{3}O_{3}S$ |
| 5b            | 84           | 239—240     | <u>59.44</u><br>59.45   | <u>3.68</u><br>3.68 | <u>10.93</u><br>10.95 | $C_{19}H_{14}CIN_3O_2S$   |
| 6             | 86           | 200-201     | <u>58.51</u><br>58.53   | $\frac{4.07}{4.09}$ | <u>11.36</u><br>11.38 | $C_{18}H_{15}N_{3}O_{4}S$ |
| 7a            | 86           | 202-203     | <u>56.16</u><br>56.16   | $\frac{4.06}{4.08}$ | <u>8.71</u><br>8.73   | $C_{15}H_{13}CIN_2O_2S$   |
| 7b            | 93           | 111-112     | <u>61.78</u><br>61.80   | <u>5.48</u><br>5.49 | <u>8.45</u><br>8.48   | $C_{17}H_{18}N_2O_3S$     |
| 7c            | 90           | 148—149     | <u>63.96</u><br>63.98   | <u>5.36</u><br>5.37 | <u>9.32</u><br>9.33   | $C_{16}H_{16}N_2O_2S$     |
| 7d            | 92           | 140—141     | <u>57.38</u><br>57.40   | <u>4.50</u><br>4.52 | <u>8.36</u><br>8.37   | $C_{16}H_{15}ClN_2O_2S$   |
| 7e            | 94           | 124—125     | <u>66.63</u><br>66.65   | <u>4.78</u><br>4.79 | $\frac{7.38}{7.40}$   | $C_{21}H_{18}N_2O_3S$     |
| 7f            | 93           | 148—149     | <u>62.73</u><br>62.74   | <u>3.95</u><br>3.95 | <u>7.30</u><br>7.32   | $C_{20}H_{15}ClN_2O_2S$   |
| 7k            | 91           | 162—163     | <u>61.07</u><br>61.09   | <u>4.14</u><br>4.15 | <u>6.76</u><br>6.78   | $C_{21}H_{17}ClN_2O_3S$   |
| 8a            | 88           | 149—150     | $\frac{71.48}{71.50}$   | <u>5.10</u><br>5.11 | <u>9.24</u><br>9.26   | $C_{27}H_{23}N_3O_2S$     |
| 8b            | 84           | 168—169     | <u>63.82</u><br>63.84   | <u>6.48</u><br>6.48 | <u>11.73</u><br>11.75 | $C_{19}H_{23}N_3O_2S$     |
| 8c            | 88           | 145—146     | <u>65.75</u><br>65.77   | <u>6.56</u><br>6.57 | $\frac{10.94}{10.96}$ | $C_{21}H_{25}N_3O_2S$     |
| 8d            | 84           | 150-151     | <u>67.48</u><br>67.50   | <u>5.40</u><br>5.41 | <u>10.71</u><br>10.73 | $C_{22}H_{21}N_3O_2S$     |

Table 1. Physicochemical characteristics and yields of compounds 3d,e,l-p and 5-8

tion with dimethoxytetrahydrofuran and the yield of the product. On attempted involvement of thieno[2,3-b]pyridines containing carboxy, cyano, and phenacyl groups in position 2 (compounds 3i-k) in this reaction, the starting reagents were recovered. Primary and secondary amides (in contrast to tertiary ones, which smoothly react with dimethoxytetrahydrofuran) give complex mixtures of products difficult to separate.

By alkaline hydrolysis of esters **7b**,**d** (Scheme 2, Table 2), carboxylic acids **9a**,**b** were obtained. Amination

of ester **7b** with butyl-, benzyl-, and cyclohexylamines 10a-c easily gives secondary 3-(1H-pyrrol-1-yl)thieno[2,3-*b*]pyridine-2-carboxamides **8b**-d (see Scheme 2). The reactions of esters **7b**, c with hydrazine hydrate in ethanol afforded the corresponding hydrazides **11a**, **b** (see Table 2).

Unlike the corresponding starting thieno[2,3-b]pyridines **3a,c**—**p**, which are colored substances, 3-(1*H*-pyrrol-1-yl)thieno[2,3-b]pyridines **5**, **7**—**9**, and **11** form colorless crystals. The exception is 2-(5-nitro-2-furyl) de-

| Com-<br>pound | Yield<br>(%) | M.p.<br>/°C          | Found<br>Calculated (%) |                     |                       | Molecular<br>formula                              |
|---------------|--------------|----------------------|-------------------------|---------------------|-----------------------|---------------------------------------------------|
|               |              |                      | С                       | Н                   | N                     |                                                   |
| 9a            | 96           | 233—234              | <u>59.56</u><br>59.59   | <u>4.66</u><br>4.67 | <u>9.24</u><br>9.27   | $C_{15}H_{14}N_2O_3S$                             |
| 9b            | 96           | 256—257              | <u>54.80</u><br>54.82   | <u>3.60</u><br>3.61 | <u>9.11</u><br>9.13   | $C_{14}H_{11}ClN_2O_2S$                           |
| 11a           | 85           | 174—175              | <u>56.93</u><br>56.95   | <u>5.09</u><br>5.10 | <u>17.69</u><br>17.71 | $C_{15}H_{16}N_4O_2S$                             |
| 11b           | 81           | 219—220              | <u>58.74</u><br>58.72   | <u>4.91</u><br>4.93 | <u>19.55</u><br>19.57 | $C_{14}H_{14}N_4OS$                               |
| 12a           | 68           | 280—281<br>(decomp.) | <u>60.17</u><br>60.19   | $\frac{4.38}{4.38}$ | $\frac{14.02}{14.04}$ | $C_{15}H_{13}N_3O_2S$                             |
| 12b           | 72           | >300                 | <u>62.43</u><br>62.44   | <u>4.11</u><br>4.12 | <u>15.58</u><br>15.60 | C <sub>14</sub> H <sub>11</sub> N <sub>3</sub> OS |

 Table 2. Physicochemical characteristics and yields of compounds 9, 11, and 12



 $\begin{array}{l} {\sf R}^1 = {\sf CH}_2 {\sf OMe}, \, {\sf R}^2 = {\sf H} \, (\textbf{9a}), \, {\sf R}^1 = {\sf Me}, \, {\sf R}^2 = {\sf Cl} \, (\textbf{9b}); \\ {\sf R}^1 = {\sf CH}_2 {\sf OMe} \, (\textbf{11a}), \, {\sf Me} \, (\textbf{11b}) \\ {\sf R}^4 = {\sf CONHBu} \, (\textbf{8b}), \, {\sf CONHBn} \, (\textbf{8c}), \, {\sf CONHC}_6 {\sf H}_{11} \, (\textbf{8d}); \\ {\sf R}^4 = {\sf Bu} \, (\textbf{10a}), \, {\sf Bn} \, (\textbf{10b}), \, {\sf C}_6 {\sf H}_{11} \, (\textbf{10c}) \end{array}$ 

rivative **6**. Apparently, the decolorization is due to steric hindrances arising when the pyrrole ring is formed. The pyrrole ring cannot be coplanar with the thieno[2,3-*b*]pyridine system already bearing bulky substituents in positions 2 and 4 and thus is approximately perpendicular to it, which breaks the conjugation between the pyrrole and thiophene rings. This is indicated by the anomalous upfield shift ( $\delta$  5.47) of the signal for the H(3)<sub>Fur</sub> proton in the <sup>1</sup>H NMR spectrum of nitrofuryl derivative **6** (Table 3), which can be associated with the position of this proton

within the "shielding cone" of the perpendicular pyrrole ring.

To verify the assumption that the pyrrole and the thienopyridine fragments are mutually perpendicular in compounds 5-9 and 11, X-ray diffraction analysis of ethyl 4-methoxymethyl-6-methyl-3-(1H-pyrrol-1-yl)thieno[2,3-*b*]pyridine-2-carboxylate (7b) was carried out. The projection of the 3D model of compound 7b is shown in Fig. 1. Interatomic distances and bond and torsion angles are given in Tables 4-6.

As can be seen from the presented data, the interatomic distances and bond angles in structure **7b** have standard values. The thienopyridine fragment is planar with an average deviation of 0.0117 Å (plane *I*). The pyrrole ring is also planar to within 0.0017 Å (plane *2*). The angle between planes *I* and *2* is  $85.1^\circ$ ; *i.e.*, there is no efficient conjugation between the aromatic thienopyridine and pyrrole fragments (which is confirmed by the elec-



Fig. 1. Projection of the molecular model of compound 7a.

| Com-  | UV,                              | IR,                                | <sup>1</sup> H NMR,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|-------|----------------------------------|------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| pound | $\lambda_{max}/nm~(log\epsilon)$ | $\nu/cm^{-1}$                      | δ ( <i>J</i> /Hz)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 5a    | 217 (3.69),                      | 1560 (C=C);                        | 2.67 (s, 3 H, 6-Me); 3.23 (s, 3 H, OMe); 4.02 (s, 2 H, CH <sub>2</sub> O); 6.35 (m, 2 H,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|       | 241 (3.63),                      | 1315 (N-O);                        | $H_{\beta}$ pyrrole); 6.73 (m, 2 H, $H_{\alpha}$ pyrrole); 7.27 (d, 2 H, H(2) and H(6) arom.,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|       | 343 (3.65)                       | 1150 (C-O-C)                       | J = 8.5 ); 7.37 (s, 1 H, H <sub>Pv</sub> ); 8.13 (d, 2 H, H(3) and H(5) arom., $J = 8.5$ )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 5b    | 208 (3.82),                      | 1580 (C=C);                        | 1.97, 2.73 (both s, 3 H each, 4-Me, 6-Me); 6.34 (m, 2 H, H <sub>8</sub> pyrrole);                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|       | 244 (3.77),                      | 1310 (N-O)                         | 6.78 (m, 2 H, H <sub><math>\alpha</math></sub> pyrrole); 7.33 (d, 2 H, H(2) and H(6) arom., $J = 8.6$ );                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|       | 340 (3.72)                       |                                    | 8.13 (d, 2 H, H(3) and H(5) arom., $J = 8.6$ )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 6     | 312 (4.14),                      | 3100 (C-H);                        | 2.67 (s, 3 H, 6-Me); 3.22 (s, 3 H, OMe); 4.02 (s, 2 H, CH <sub>2</sub> O);                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|       | 389 (3.72)                       | 1580 (C=C);                        | 5.47 (d, 1 H, H(3) <sub>Fur</sub> , $J = 5.2$ ); 6.47 (m, 2 H, H <sub><math>\beta</math></sub> pyrrole);                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|       |                                  | 1360 (N-O);                        | 6.83 (m, 2 H, $H_{\alpha}$ pyrrole); 7.37 (s, 1 H, $H_{Py}$ );                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|       |                                  | 1150 (C-O-C)                       | 7.47 (d, 1 H, H(4) <sub>Fur</sub> , $J = 5.2$ )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 7a    | 212 (3.93),                      | 1710 (C=O);                        | 1.87, 2.73 (both s, 3 H each, 4-Me, 6-Me); 3.75 (s, 3 H, COOMe);                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|       | 246 (3.84),                      | 1530 (C=C);                        | 6.27 (m, 2 H, $H_{\beta}$ pyrrole);                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|       | 298 (3.62)                       | 1230 (C-O-C)                       | 6.73 (m, 2 H, $H_{\alpha}$ pyrrole)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 7b    | 222 (3.77),                      | 1700 (C=O);                        | 1.16 (t, 3 H, COOCH <sub>2</sub> <u>Me</u> ); 2.63 (s, 3 H, 6-Me); 3.23 (s, 3 H, OMe);                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|       | 238 (3.71),                      | 1530 (C=C);                        | 3.93 (s, 2 H, $CH_2O$ ); 4.17 (q, 2 H, $COOC\underline{H}_2Me$ );                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|       | 298 (3.69)                       | 1230 (C–O–C);                      | 6.27 (m, 2 H, $H_{\beta}$ pyrrole); 6.73 (m, 2 H, $H_{\alpha}$ pyrrole);                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| _     | 220/2 5()                        | 1100 (C-O-C)                       | 7.32 (s, 1 H, H <sub>Py</sub> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 7c    | 228(3.76),                       | 1690 (C=0);                        | 1.1/ (t, 3 H, COUCH <sub>2</sub> <u>Me</u> ); 1.91, 2.59 (both s, 3 H each, 4-Me, 6-Me);<br>4.17 (c, 2 H, OCH M, $L = 7.23$ ); (22 (c, 2 H, H each s));                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|       | 241(3.72),                       | 15/0 (C=C);                        | 4.1/ (q, 2 H, $OCH_2Me$ , $J = 7.2$ ); 6.23 (m, 2 H, $H_\beta$ pyrrole);                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 7.1   | 298 (3.03)                       | 1250 (C-O-C)                       | $0.72 \text{ (m, 2 H, H}_{\alpha} \text{ pyrrole)}; 7.03 \text{ (s, 1 H, H}_{\text{Py}})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| /a    | 212(3.95),                       | 1/03 (C=0);<br>1520 (C=C);         | 1.1/ (I, 5 H, OCH <sub>2</sub> Me, $J = 7.2$ ); 1.87, 2.75 (both s, 5 H each, 4-Me, 6-Me);<br>4.17 (a, 2 H, OCH Ma $I = 7.2$ ); 6.27 (m, 2 H, H, purela);                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|       | 240(3.83),<br>208(3.64)          | 1330(C-C);                         | 4.17 (q, 2 $\Pi$ , OC $\Pi_2$ )Me J = 7.2), 0.27 (III, 2 $\Pi$ , $\Pi_\beta$ pyrrole),<br>6.73 (m, 2 $\Pi$ , $\Pi$ , here a pyrrole)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 70    | 298(3.04)                        | 1243(C=0=C)                        | $2.67 (s, 2.H, 6.M_{\odot}) \cdot 2.23 (s, 2.H, 0.M_{\odot}) \cdot 2.07 (s, 2.H, 0.H, 0.) \cdot 2.07 (s, 2.H, 0.H, 0.H, 0.) \cdot 2.07 (s, 2.H, 0.H, 0.H, 0.H, 0.H, 0.H, 0.) \cdot 2.07 (s, 2.H, 0.H, 0.H, 0.H, 0.H, 0.H, 0.H, 0.H, 0$ |
| 70    | 208(3.94),<br>227(3.78)          | 1090 (C=0),<br>1525 (C=C);         | $6.31 (m 2 H H_{o} \text{ pyrrole}): 6.85 (m 2 H H pyrrole):$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|       | 305(3.78)                        | 1325 (C - C),<br>1245 (C - C - C). | 7.05-7.50  (m 5  H  Ph)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|       | 505 (5.70)                       | 1105 (C-O-C)                       | $7.43 (s. 1 H, H_{Pa})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 7f    | 211 (3.75),                      | 1690 (C=O);                        | 1.93, 2.78 (both s, 3 H each, 4-Me, 6-Me); 6.28 (m, 2 H, $H_{B}$ pyrrole);                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|       | 248 (3.58),                      | 1530 (C=C);                        | 6.71 (m, 2 H, $H_{\alpha}$ pyrrole);                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|       | 302 (3.45)                       | 1245 (C-O-C)                       | 7.01–7.21 (m, 5 H, Ph)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 7k    | 211 (3.79),                      | 1700 (C=O);                        | 2.67 (s, 3 H, 6-Me); 3.24 (s, 3 H, OMe); 3.97 (s, 2 H, CH <sub>2</sub> O);                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|       | 245 (3.64),                      | 1545 (C=C);                        | 6.32 (m, 2 H, $H_{\beta}$ pyrrole); 6.84 (m, 2 H, $H_{\alpha}$ pyrrole);                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|       | 299 (3.55)                       | 1260 (C-O-C);                      | 7.07 (d, 2 H, H(2) and H(6) arom., $J = 8.7$ );                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|       |                                  | 1100 (C-O-C)                       | 7.33 (d, 2 H, H(3) and H(5) arom., $J = 8.7$ ); 7.43 (s, 1 H, H <sub>Py</sub> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 8a    | 207 (4.12),                      | 1640 (C=O);                        | 2.57 (s, 3 H, 6-Me); 3.15 (s, 3 H, OMe); 3.83 (s, 2 H, CH <sub>2</sub> O);                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|       | 233 (3.97),                      | 1580 (C=C)                         | 6.27 (m, 2 H, $H_{\beta}$ pyrrole); 6.53 (s, 2 H, $H_{\alpha}$ pyrrole);                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|       | 308 (3.62)                       |                                    | $7.05 - 7.28 \text{ (m, 10 H, 2 Ph); } 7.06 \text{ (s, 1 H, H}_{Py})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 8b    | 208 (3.79),                      | 3410 (N-H);                        | 0.86 (t, 3 H, Me, $J = 6.9$ ); 1.23 (m, 4 H, CH <sub>2</sub> CH <sub>2</sub> ); 3.11 (t, 2 H, NCH <sub>2</sub> , $J = 6.9$ );                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|       | 303 (3.69),                      | 3100 (C-H);                        | 2.63 (s, 3 H, 6-Me); 3.23 (s, 3 H, OMe); 3.93 (s, 2 H, $CH_2O$ );                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|       |                                  | 1640 (C=0);                        | 5.6/ (br.s, 1 H, NH); 6.42 (m, 2 H, $H_{\beta}$ pyrrole); 6.93 (m, 2 H, $H_{\alpha}$ pyrrole);                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 80    | 209(2.91)                        | 1380 (C=C)                         | 7.01 (S, 1 H, H <sub>Py</sub> )<br>2.64 (s, 2 H, 6 Ms), 2.10 (s, 2 H, OMs), 2.01 (s, 2 H, CH, O),                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| oc    | 208(3.81),                       | 3393(N-H);                         | 2.04 (S, S $\Pi$ , 0-Me), 3.19 (S, S $\Pi$ , OMe), 3.91 (S, 2 $\Pi$ , C $\Pi_2$ O),<br>4.22 (d. 2 II, NCII, $I = 7.2$ ); 6.22 (m. 2 II, II, pyrapita); 6.42 (n. 1 II, NII);                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|       | 237(3.71),<br>200(2.50)          | 1020 (C=0);<br>1580 (C=C)          | 4.52 (u, 2 $\Pi$ , NC $\Pi_2$ , J = 7.2), 0.55 (III, 2 $\Pi$ , $\Pi_\beta$ pyrrole), 0.45 (8, 1 $\Pi$ , N $\Pi$ ),<br>6.02 (m, 2 $\Pi$ , $\Pi$ , N $\Pi$ ); 7.02, 7.27 (m, 5 $\Pi$ , Ph); 7.22 (c, 1 $\Pi$ , $\Pi$ )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 84    | 300(3.39)                        | 1380(C-C)<br>3410(N H)·            | $0.93 \text{ (m, 2 H, H}_{\alpha} \text{ pynole}), 7.03 - 7.27 \text{ (m, 5 H, FII)}, 7.53 \text{ (s, 1 H, H}_{py})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| ou    | 227(3.03),<br>300(3.58)          | 1610 (C=0):                        | H (6): 1.56 (m, 2 H, H (3) H (4) H (5)): 1.70 (m, 2 H, H (2) H (6)):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|       | 500 (5.58)                       | 1550 (C=C);                        | $2.65 (s 3 H 6 Me) \cdot 3.23 (s 3 H 0 Me) \cdot 3.63 (m 1 H CHN) \cdot 3.93 (s 2 H$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|       |                                  | 100 (C - O - C)                    | $CH_{2}(0)$ ; 5 46 (d 1 H NH); 6 43 (m 2 H H <sub>2</sub> nyrrole);                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|       |                                  |                                    | $6.93 (m, 2 H, H_{\alpha} \text{ pvrrole}); 7.33 (s, 1 H, H_{p})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 9a    | 212 (3.89).                      | 1670 (C=O):                        | 2.63 (s, 3 H, 6-Me); 3.20 (s, 3 H, OMe); 3.87 (s. 2 H, CH <sub>2</sub> O);                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|       | 239 (3.89).                      | 1570 (C=C):                        | $6.26 \text{ (m, 2 H, H_{\beta} pyrrole); } 6.73 \text{ (m, 2 H, H_{\alpha} pyrrole); }$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|       | 298 (3.57)                       | 1220 (C-O-C)                       | 7.33 (s, 1 H, $H_{Pv}$ ); 12.97 (br.s, 1 H, OH)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|       |                                  | . , ,                              | · • • • · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |

Table 3. UV, IR, and  $^{1}$ H NMR spectra of compounds 5–9, 11, and 12

(to be continued)

| Table 3 | (continued) |
|---------|-------------|
|---------|-------------|

| Com-<br>pound | UV, $\lambda_{max}/nm$ (loge) | IR,<br>v/cm <sup>-1</sup> | <sup>1</sup> H NMR,<br>δ ( <i>J</i> /Hz)                                                                         |
|---------------|-------------------------------|---------------------------|------------------------------------------------------------------------------------------------------------------|
| 9b            | 211 (3.86),                   | 1695 (C=O);               | 1.85, 2.71 (both s, 3 H each, C(4)Me, C(6)Me);                                                                   |
|               | 248 (3.83),                   | 1560 (C=C)                | 6.23 (m, 2 H, $H_{\beta}$ pyrrole); 6.73 (m, 2 H, $H_{\alpha}$ pyrrole);                                         |
|               | 298 (3.28)                    |                           | 12.97 (br.s, 1 H, OH)                                                                                            |
| 11a           | 208(3.44),                    | 3399, 3315                | 2.63 (s, 3 H, 6-Me); 3.20 (s, 3 H, OMe); 3.87 (s, 2 H, CH <sub>2</sub> O);                                       |
|               | 233 (3.49),                   | (N-H);                    | 4.23 (br.s, 2 H, NH <sub>2</sub> ); 6.37 (m, 2 H, H <sub>8</sub> pyrrole);                                       |
|               | 307 (3.47)                    | 1615 (C=O);               | 6.90 (m, 2 H, $H_{\alpha}$ pyrrole);                                                                             |
|               |                               | 1585 (C=C);               | 7.33 (s, 1 H, $H_{Pv}$ );                                                                                        |
|               |                               | 1090 (C-O-C)              | 7.47 (br.s, 1 H, NH)                                                                                             |
| 11b           | 301(3.38),                    | 3390, 3310                | 1.87, 2.57 (both s, 3 H each, 4-Me, 6-Me); 4.23 (br.s, 2 H, NH <sub>2</sub> );                                   |
|               |                               | (N-H);                    | 6.37 (m, 2 H, $H_{\beta}$ pyrrole); 6.93 (m, 2 H, $H_{\alpha}$ pyrrole);                                         |
|               |                               | 1620 (C=O);               | 7.03 (s, 1 H, $H_{Pv}$ );                                                                                        |
|               |                               | 1590 (C=C)                | 7.43 (br.s, 1 H, NH)                                                                                             |
| 12a           | 263 (4.00),                   | 1640 (C=O);               | 2.59 (s, 3 H, 10-Me); 3.48 (s, 3 H, OMe); 4.76 (s, 2 H, CH <sub>2</sub> O);                                      |
|               | 337 (3.81)                    | 1590 (C=C);               | 6.57 (m, 1 H, H(2) pyrrole); 7.07 (m, 1 H, H(3) pyrrole);                                                        |
|               | . ,                           | 1090 (C-O-C)              | 7.29 (s, 1 H, H <sub>Py</sub> ); 8.13 (m, 1 H, H(1) pyrrole); 11.82 (br.s, 1 H, NH)                              |
| 12b           | 262 (3.82),                   | 1620 (C=O);               | 2.49, 2.86 (both s, 3 H each, 10-Me, 8-Me); 6.63 (m, 1 H, H(2) pyrrole);                                         |
|               | 349 (3.87)                    | 1580 (C=C)                | 7.11 (m, 1 H, H(3) pyrrole); 7.19 (s, 1 H, H <sub>Py</sub> ); 8.09 (m, 1 H, H(1) pyrrole); 11.92 (br.s, 1 H, NH) |

**Table 4.** Selected bond lengths (*d*) in ethyl 4-methoxymethyl-6methyl-3-(1*H*-pyrrol-1-yl)thieno[2,3-*b*]pyridine-2-carboxylate 7b

| Bond         | $d/{ m \AA}$ | Bond          | $d/\text{\AA}$ |
|--------------|--------------|---------------|----------------|
| S(1) - C(3)  | 1.7270(19)   | C(1) - C(7)   | 1.435(3)       |
| S(1) - C(2)  | 1.7338(19)   | C(2) - C(15)  | 1.476(3)       |
| O(1) - C(9)  | 1.383(3)     | C(3) - C(7)   | 1.399(2)       |
| O(1)-C(10)   | 1.420(3)     | C(4) - C(5)   | 1.402(3)       |
| O(2)-C(15)   | 1.193(2)     | C(4) - C(8)   | 1.494(3)       |
| O(3)-C(15)   | 1.330(2)     | C(5) - C(6)   | 1.377(3)       |
| O(3)-C(16)   | 1.451(3)     | C(6) - C(7)   | 1.415(3)       |
| N(1) - C(4)  | 1.332(3)     | C(6) - C(9)   | 1.502(3)       |
| N(1) - C(3)  | 1.342(2)     | C(11) - C(12) | 1.352(3)       |
| N(2)-C(11)   | 1.369(2)     | C(12) - C(13) | 1.402(3)       |
| N(2) - C(14) | 1.372(2)     | C(13) - C(14) | 1.347(3)       |
| N(2) - C(1)  | 1.416(2)     | C(16)-C(17)   | 1.477(4)       |
| C(1)-C(2)    | 1.362(3)     |               |                |

tronic absorption spectra of compounds **5–9** and **11**). The carboxylate fragment is also planar (all the five atoms of the ethoxycarbonyl group are coplanar); the average deviation of the atoms from the plane is 0.0084 Å (plane 3). The planar ethoxycarbonyl group is rotated about plane *I* through an angle of 7° along the C(2)–C(15) bond; *i.e.*, there is an efficient conjugation ( $\pi$ , $\pi$ -interaction) between the aromatic thienopyridine fragment and the ethoxycarbonyl group.

The presence of the pyrrole ring in structures **5–9** and **11** was confirmed by <sup>1</sup>H NMR data. Their spectra contain multiplet signals for the protons at  $\delta$  6.23–6.47 ( $\beta$ -protons) and  $\delta$  6.59–6.93 ( $\alpha$ -protons), with spin-spin coupling constants characteristic of an *N*-substituted pyrrole.

In the IR spectra, the absorption band of CO stretching vibrations is shifted to the higher-frequency region by 20 to 55 (for esters 7a-k), 70 (for amide 8a), and ~20 cm<sup>-1</sup> (for acid 9a) compared to the spectra of the corresponding 3-aminothieno[2,3-*b*]pyridines  $3a-e,f,i,n^7$  (see Tables 2, 3 and Experimental).

Diazotization of 3-(1*H*-pyrrol-1-yl)thieno[2,3-*b*]pyridine-2-carbohydrazides **11a,b** (Scheme 3) gave acyl azides **13a,b**, which are colorless crystals growing dark in air.

Scheme 3



 $R = CH_2OMe(\mathbf{a}), Me(\mathbf{b})$ 

Structure **13** was confirmed by IR spectroscopic data. In the IR spectra of compounds **13**, an intense absorption band for the stretching vibrations of the azido group ap**Table 5.** Selected bond angles ( $\omega$ ) in ethyl 4-methoxymethyl-6-methyl-3-(1*H*-pyrrol-1-yl)thieno[2,3-*b*]pyridine-2-carboxylate **7b** 

| Bond angle            | ω/deg      |
|-----------------------|------------|
| C(3) - S(1) - C(2)    | 90.70(9)   |
| C(9) - O(1) - C(10)   | 111.8(2)   |
| C(15)-O(3)-C(16)      | 117.11(18) |
| C(4) - N(1) - C(3)    | 115.46(16) |
| C(11) - N(2) - C(14)  | 108.67(17) |
| C(11) - N(2) - C(1)   | 126.70(16) |
| C(14) - N(2) - C(1)   | 124.42(16) |
| C(2) - C(1) - N(2)    | 123.53(17) |
| C(2) - C(1) - C(7)    | 113.18(16) |
| N(2) - C(1) - C(7)    | 123.28(15) |
| C(1) - C(2) - C(15)   | 127.59(17) |
| C(1) - C(2) - S(1)    | 112.72(14) |
| C(15) - C(2) - S(1)   | 119.69(14) |
| N(1)-C(3)-C(7)        | 126.65(17) |
| N(1)-C(3)-S(1)        | 120.46(14) |
| C(7) - C(3) - S(1)    | 112.88(13) |
| N(1) - C(4) - C(5)    | 122.59(18) |
| N(1) - C(4) - C(8)    | 116.45(19) |
| C(5) - C(4) - C(8)    | 121.0(2)   |
| C(6) - C(5) - C(4)    | 121.80(19) |
| C(5) - C(6) - C(7)    | 116.64(17) |
| C(5) - C(6) - C(9)    | 121.66(18) |
| C(7) - C(6) - C(9)    | 121.69(17) |
| C(3) - C(7) - C(6)    | 116.84(16) |
| O(3) - C(15) - C(2)   | 110.02(17) |
| O(3)-C(16)-C(17)      | 106.7(2)   |
| C(3) - C(7) - C(1)    | 110.51(15) |
| C(6) - C(7) - C(1)    | 132.64(16) |
| O(1) - C(9) - C(6)    | 111.51(18) |
| C(12) - C(11) - N(2)  | 107.68(19) |
| C(11)-C(12)-C(13)     | 107.9(2)   |
| C(14) - C(13) - C(12) | 107.69(19) |
| C(13) - C(14) - N(2)  | 108.01(19) |
| O(2)-C(15)-O(3)       | 124.37(19) |
| O(2) - C(15) - C(2)   | 125.60(18) |

**Table 6.** Selected torsion angles ( $\theta$ ) in ethyl 4-methoxymethyl-6-methyl-3-(1*H*-pyrrol-1-yl)thieno[2,3-*b*]pyridine-2-carboxylate **7b** 

| Torsion angle                                                                                        | θ/deg                    |
|------------------------------------------------------------------------------------------------------|--------------------------|
| C(5)-C(6)-C(9)-O(1) $C(6)-C(9)-O(1)-C(10)$ $C(2)-C(1)-N(2)-C(11)$                                    | -9.6<br>-174.6<br>-88.6  |
| $\begin{array}{l} S(1)-C(2)-C(15)-O(2)\\ C(2)-C(15)-O(3)-C(16)\\ C(15)-O(3)-C(16)-C(17) \end{array}$ | 175.9<br>-176.2<br>178.1 |

pears at  $2150-2130 \text{ cm}^{-1}$  and the bands of C=O stretching vibrations are shifted to the higher-frequency region by 50 to 65 cm<sup>-1</sup> compared to those for the starting hydrazides **11**. Thermal decomposition of acyl azides **13a,b** affords tetracyclic products **12a,b** containing an amide CO group (see Table 3, IR spectra). The <sup>1</sup>H NMR spectra of compounds **12a,b** show three signals of equal intensity for the protons of the 1,2-disubstituted pyrrole ring (see Table 3). The <sup>1</sup>H—<sup>1</sup>H NOESY 2D homonuclear spectrum of compound **12b** contains no cross peak corresponding to the spin-spin coupling between the N(5)H and C(3)H protons. This suggests that these protons are very distant from each other, thus confirming structure **12**.

## Experimental

<sup>1</sup>H NMR spectra were recorded on a Bruker WM-250 instrument (250.13 MHz) in DMSO- $d_6$ —CCl<sub>4</sub> (1:3). <sup>1</sup>H—<sup>1</sup>H NOESY 2D homonuclear spectra and <sup>13</sup>C NMR spectra with complete proton decoupling were recorded on a DRX-500 spectrometer in DMSO- $d_6$ . IR spectra were recorded on a Specord IR75 instrument (NaCl prisms, suspensions of KBr in Vaseline oil). UV spectra were recorded on a Specord UV-VIS instrument in EtOH.

The physicochemical characteristics of the compounds obtained are given in Tables 1-3.

**3-Amino-4-methoxymethyl-6-methylthieno**[2,3-*b*]pyridines (3d,e,l,m,o,p). Solutions of a corresponding 3-cyanopyridine-2(1H)-thione (10 mmol) in 20–25 mL of DMF, 10% KOH (5.6 mL), and alkyl halide (10 mmol) were mixed. The reaction mixture was kept for 15 min and 10% KOH (5.6 mL) was added. The mixture was stirred at ~20 °C for 2.5–3 h and then diluted with water (10 mL). The precipitate was filtered off, washed with water, and dried. Compounds **3d,e,l,m,p** were recrystallized from DMF, while compound **3o** was recrystallized from EtOH.

IR, v/cm<sup>-1</sup>: **3d**, 3400, 3310, 1660, 1595, 1100; **3e**, 3410, 3320, 1680, 1595, 1080; **3l**, 3480, 3405, 1580, 1518, 1230; **3m**, 3420, 3320, 1660, 1595; **3o**, 3480, 3340, 1650, 1590; **3p**, 3510, 3370, 1660, 1580.

<sup>1</sup>H NMR,  $\delta$ : **3d**, 2.63 (s, 3 H, Me), 3.47 (s, 3 H, OMe), 4.83 (s, 2 H, CH<sub>2</sub>), 7.03 (br.s, 2 H, NH<sub>2</sub>), 7.17 (s, 1 H, H<sub>Py</sub>), 7.19–7.45 (m, 5 H, Ph); **3e**, 2.61 (s, 3 H, Me), 3.37 (s, 3 H, OMe), 4.70 (s, 2 H, CH<sub>2</sub>), 6.85–7.28 (m, 7 H,  $\Sigma$ NH<sub>2</sub>, H<sub>Py</sub>, H arom.); **3m**, 2.60, 2.73 (both s, 3 H each, Me(6), Me(4)), 3.75 (s, 3 H, COOMe), 6.02 (br.s, 2 H, NH<sub>2</sub>); **3o**, 1.32 (t, 3 H, Me, J = 7.1 Hz), 2.63, 2.85 (both s, 3 H each, Me(6), Me(4)), 4.27 (q, 2 H, CH<sub>2</sub>, J = 7.1 Hz), 6.77 (br.s, 2 H, NH<sub>2</sub>); **3p**, 2.63, 2.78 (both s, 3 H each, Me(6), Me(4)), 6.17 (br.s, 2 H, NH<sub>2</sub>), 7.15–7.39 (m, 5 H, Ph).

UV,  $\lambda_{max}/nm$  (log $\epsilon$ ): **3d**, 293 (5.52), 378 (4.78); **3e**, 208 (4.01), 219 (3.93), 292 (3.69), 382 (3.39); **3l**, 288 (3.65), 379 (3.16); **3m**, 289 (4.00), 373 (3.26); **3o**, 289 (4.11), 372 (3.29); **3p**, 292 (3.99), 427 (3.52).

Ethyl 4-methoxymethyl-6-methyl-3-(1H-pyrrol-1-yl)thieno[2,3-*b*]pyridine-2-carboxylate (7b). 2,5-Dimethoxytetrahydrofuran (0.46 mL, 3.5 mmol) was added to a stirred boiling solution of compound 3c (0.84 g, 3 mmol) in 4 mL of glacial AcOH. The reaction mixture was refluxed for 3 h, cooled, and diluted with ice water (15 mL). The precipitate that formed was filtered off, washed with water to a neutral reaction, dried, and recrystallized from EtOH–DMF (5 : 1). The yield of compound 7b was 0.92 g (93%). Compounds 5, 6, 7a,c–k, and 8a were obtained analogously. The completion of each reaction was determined by TLC in hexane—acetone (2 : 1). The reaction was prolonged until the spot of the starting 3-amino-thieno[2,3-b]pyridine disappeared. Compounds 5, 6, 7a,c-k, and 8a were recrystallized from aqueous DMF.

Crystals for X-ray diffraction analysis were obtained by repeated crystallization of compound **7b** from acetone. Colorless crystals are monoclinic,  $C_{17}H_{18}N_2O_3S$ , a = 8.490(2) Å, b = 20.497(4) Å, c = 9.975(2) Å;  $\alpha = 90.0(3)^\circ$ ,  $\beta = 103.80(3)^\circ$ ,  $\gamma = 90.00(3)^\circ$ , V = 1685.7(6) Å<sup>3</sup>,  $d_{calc} = 1.302$  g cm<sup>-3</sup>, space group P2(1)/c, Z = 4. The X-ray diffraction analysis was carried out at 293(2) K on a CAD4 automatic diffractometer (Mo-K $\alpha$  radiation, graphite monochromator,  $\theta/2\theta$  scan mode from 2.33° to  $2\theta_{max} = 24.98^\circ$ ). The crystal size is  $0.48 \times 0.35 \times 0.28$  mm. The number of reflections with  $I > 3\sigma$  was 2206. The structure was solved by the direct method with the SHELXTL program package<sup>9</sup> and refined in the anisotropic (isotropic for H atoms) approximation to  $R_1 = 0.0315$  and  $wR_2 = 0.0869$ . Atomic coordinates have been deposited with the Cambridge Crystallographic Database.

*N*-Butyl-4-methoxymethyl-6-methyl-3-(1*H*-pyrrol-1-yl)thieno[2,3-*b*]pyridine-2-carboxamide (8b). A solution of compound 7b (0.99 g, 3 mmol) in butylamine (4 mL, 41 mmol) was refluxed for 6.5 h. The reaction mixture was diluted with water (20 mL). The precipitate that formed was filtered off, washed with water, dried, and recrystallized from aqueous DMF (DMF—water, 3 : 1). The yield of carboxamide 8b was 0.92 g (86%). Compounds 8c,d were obtained analogously.

4-Methoxymethyl-6-methyl-3-(1*H*-pyrrol-1-yl)thieno[2,3-*b*]pyridinecarboxylic acid (9a). To a suspension of ester 7b (0.99 g, 3 mmol) in 10 mL of EtOH 30% KOH (4.54 mmol, 0.19 mL) was added. The reaction mixture was heated until it was completely homogeneous. On cooling, the mixture was acidified with 10% HCl to pH  $\approx$ 3. The precipitate that formed was filtered off, washed with water, dried, and recrystallized from dioxane. The yield of acid 9a was 0.87 g (96%). Compound 9b was obtained analogously.

4-Methoxymethyl-6-methyl-3-(1*H*-pyrrol-1-yl)thieno[2,3-*b*]pyridine-2-carbohydrazide (11a). Aqueous 85% hydrazine (0.85 mL, 27 mmol) was added to a suspension of ester 7b (0.99 g, 3 mmol) in 20 mL of EtOH. The reaction mixture was refluxed for 5 h, concentrated to 1/3 of the initial volume, and then diluted with water. Crystals of compound 11a were filtered off, washed with water, dried, and recrystallized from DMF. The yield of carbohydrazide 11a was 0.82 g (85%). Compound 11b was obtained analogously.

**4-Methoxymethyl-6-methyl-3-(1***H***-pyrrol-1-yl)thieno[2,3-***b***]pyridine-2-carbonyl azide (13a). Conc. H\_2SO\_4 (0.23 mL) was added to a solution of compound <b>11a** (1 g, 3.02 mmol) in 7 mL of glacial AcOH. The reaction mixture was cooled to +5 °C and then NaNO<sub>2</sub> (0.29 g, 4.23 mmol) in 1 mL of water was added for 10 min. The reaction mixture was warmed to ~20 °C, stirred for 1.5 h, and poured into water with finely crushed ice. The precipitate that formed was filtered off, washed with cold water to a neutral reaction, and dried in a desiccator over  $P_2O_5$ . The yield of azide **13a** was 0.65 g (65%), m.p. 112–113 °C (decomp.). IR, v/cm<sup>-1</sup>: 2130, 1680, 1580, 1095.

4,6-Dimethyl-3-(1*H*-pyrrol-1-yl)thieno[2,3-*b*]pyridine-2-carbonyl azide (13b) was obtained by analogy with compound 13a. The yield of azide 13b was 63%, m.p.  $108-109 \degree C$ (decomp.). IR, v/cm<sup>-1</sup>: 2150, 1670, 1580.

10-Methoxymethyl-8-methyl-4,5-dihydropyrido[3',2':4,5]thieno[2,3-*e*]pyrrolo[1,2-*a*]pyrazin-4-one (12a). A suspension of compound 13a (1 g, 3.05 mmol) in 20 mL of anhydrous toluene was refluxed for 40 min. On cooling, crystals were filtered off, dried, and recrystallized from DMF. The yield of compound 12a was 0.62 g (68%).

**8,10-Dimethyl-4,5-dihydropyrido**[**3**, <sup>2</sup>, <sup>2</sup>, <sup>4</sup>,5]thieno[**2**,3-*e*]pyrrolo[**1**,2-*a*]pyridin-4-one (**12b**) was obtained analogously. <sup>13</sup>C NMR, δ: 22.98 (C(8)<u>C</u>H<sub>3</sub>); 24.35 (C(10)<u>C</u>H<sub>3</sub>); 110.89 (C(2)H); 111.05 (C(3)); 111.45 (C(5a)); 120.75 (C(10b)); 122.11 (C(1)); 123.06 (C(9)); 123.88 (C(10a)); 126.79 (C(3a)); 138.38 (C(10)); 152.89 (C=O); 152.95 (C(8)) 154.09 (C(6a)).

This work was financially supported by the Russian Foundation for Basic Research (Project No. 03-03-96636).

## References

- 1. V. P. Litvinov, L. A. Rodinovskaya, Yu. A. Sharanin, A. M. Shestopalov, and A. Senning, *Sulfur Reports*, 1992, **13**, 1.
- V. P. Litvinov, S. G. Krivokolysko, and V. D. Dyachenko, *Khim. Geterotsikl. Soedin.*, 1999, 579 [*Chem. Heterocycl. Compd.*, 1999 (Engl. Transl.)].
- E. A. Kaigorodova, V. K. Vasilin, and G. D. Krapivin, *Aminotieno[2,3-b]piridiny v sinteze kondensirovannykh*  geterotsiklov [Aminothieno[2,3-b]pyridines in the Synthesis of Fused Heterocycles], 2001, 140 pp.; Available from VINITI, 2001, No. v1901 (in Russian).
- E. A. Kaigorodova, A. A. Osipova, V. K. Vasilin, L. D. Konyushkin, and G. D. Krapivin, *Khim. Geterotsikl. Soedin.*, 2003, 444 [*Chem. Heterocycl. Compd.*, 2003 (Engl. Transl.)].
- E. A. Kaigorodova, L. D. Konyushkin, S. N. Mikhailichenko, V. K. Vasilin, and V. G. Kul'nevich, *Khim. Geterotsikl. Soedin.*, 1996, 1432 [*Chem. Heterocycl. Compd.*, 1996 (Engl. Transl.)].
- E. A. Kaigorodova, V. K. Vasilin, L. D. Konyushkin, E. B. Usova, and G. D. Krapivin, *Molecules*, 2000, 5, 1085.
- E. A. Kaigorodova, L. D. Konyushkin, M. E. Niyazymbetov, S. N. Kvak, V. N. Zaplishnyi, and V. P. Litvinov, *Izv. Akad. Nauk SSSR, Ser. Khim.*, 1994, 2215 [*Russ. Chem. Bull.*, 1994, 43, 2095 (Engl. Transl.)].
- K. M. Hassan, A. M. Kamal El-Dean, M. S. K. Joussef, F. M. Atta, and M. S. Abbady, *Phosphorus, Sulfur, Silicon Relat. Elem.*, 1990, 47, 181.
- G. M. Sheldrick, *Computational Crystallography*, Oxford University Press, New York—Oxford, 1982, 506.

Received June 4, 2003; in revised form November 28, 2003