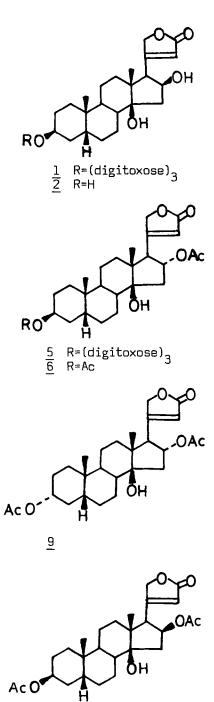
SYNTHESIS AND BIOLOGICAL ACTIVITY OF SOME CARDIOTONIC COMPOUNDS RELATED TO GITOXIGENIN

David C. Humber^{a*}, Paul S. Jones^b and Gordon H. Phillipps^b

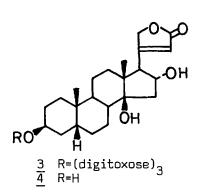
Departments of Microbiological Chemistry^a and Medicinal Chemistry^b, Glaxo Group Research Ltd., Greenford, Middlesex. UB6 OHE, England.

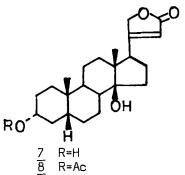
Received 4-24-65

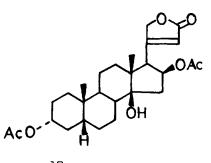
ABSTRACT

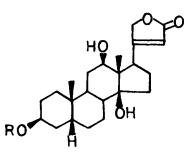

The four diastereomeric 3,16-diacetates 6, 9, 10 and 11 were prepared from gitoxin 1 by the routes shown in Schemes 1 and 2 and tested for inotropic activity in the isolated guinea-pig atrial preparation. In line with earlier findings in the digitoxigenin series, derivatives with a 3α -acetoxy function, viz 9 and 10, possessed high biological activity.

INTRODUCTION


Derivatives of gitoxin $[3\beta,14,16\beta$ -trihydroxy-5 β ,14 β -card-20(22)enolide, 3-O-(D-digitoxy1-D-digitoxy1-D-digitoxoside)] <u>1</u> have attracted considerable interest in recent years because of reports that with certain of them a partial separation of arrhythmogenic and positive inotropic effects can be achieved [1-3].


Epimerisation of the 16-hydroxyl group of the glycoside $\underline{1}$ or its genin $\underline{2}$ leads in both cases to a decrease in inotropic activity [4,5]. However, Repke [6] found that with the epimeric glycoside $\underline{3}$ there is a lower frequency of arrhythmias at maximum inotropic concentrations than with the natural isomer $\underline{1}$. Also, 16-epigitoxin $\underline{3}$ showed a wider dose range than gitoxin $\underline{1}$ between minimum and maximum inotropic effects [7]. Acetylation of the 16-hydroxyl group of either the natural, $\underline{1}$ and $\underline{2}$, or epimeric series, $\underline{3}$ and $\underline{4}$, resulted in a uniform increase in inotropic potency [8, 9]. More important, the 16-epi derivative $\underline{5}$ showed a substantial dissociation between the doses giving rise to toxic and to maximum therapeutic effects [9].


In a recent paper [10] we have observed that acetylation of


<u>11</u>

Digoxin:R=(digitoxose)3

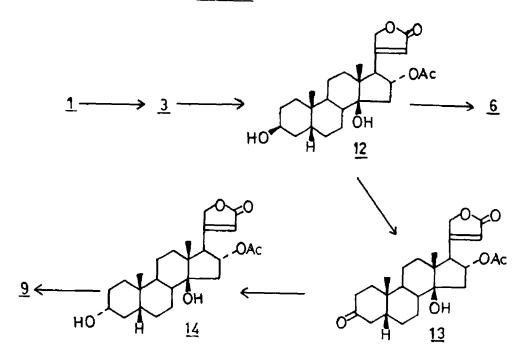
STEROIDE

weakly active 3-epidigitoxigenin $[3\alpha, 14-dihydroxy-5\beta, 14\beta-card-20(22)$ enolide] 7 gave the corresponding 3α -acetate 8 which possessed high inotropic activity. This result was not expected on the basis of established structure-activity relationships [1-3] but was found also to extend to related derivatives with modified 17β -ring systems [10]. As a continuation of these studies [10], this paper describes the preparation and pharmacological activity of the novel diacetates 9 and 10 derived from gitoxin 1. Also included for comparison purposes are biological results obtained for the known isomeric diacetates 6 [11] and 11 [12] and for a number of their synthetic precursors.

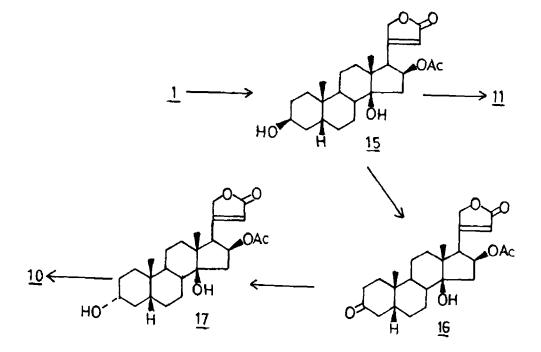
CHEMISTRY

The 3α , 16α -diacetate <u>9</u> and its 3β , 16α -isomer <u>6</u> were prepared as outlined in Scheme 1.

Epimerisation of gitoxin <u>1</u> to its 16α -isomer <u>3</u> [11] was effected by treatment with hot aqueous base [13] (21% yield). Acetylation of 16-epigitoxin <u>3</u> with acetic anhydride/pyridine followed by acid hydrolysis of the glycoside linkage gave the monoacetate <u>12</u> in 50% yield. Further acetylation of the monoacetate <u>12</u> gave the known 3 β ,1 6α -diacetate 6 [11] (87% yield).


Oxidation of the monoacetate <u>12</u> with Jones' reagent [14] gave a 53% yield (after chromatography) of the ketone <u>13</u>, which was then reduced with sodium borohydride to give a 66% yield of the 3α -hydroxy-16 α -acetate <u>14</u>. Acetylation of the monoacetate <u>14</u> by the usual procedure gave the 3α , 16α -diacetate <u>9</u> in 70% yield.

The two remaining 3,16-diacetates, 10 and 11, were prepared as


21

SCHEME 2

shown in Scheme 2.

Gitoxin <u>1</u> was converted to oleandrigenin [16 β -acetoxy-3 β ,14-dihydroxy-5 β ,14 β -card-20(22)-enolide] <u>15</u> [12] in 65% yield by the procedure described above for its 16 α -isomer <u>3</u> (viz acetylation followed by acid hydrolysis). Further acetylation of oleandrigenin <u>15</u> with acetic anhydride/pyridine in the presence of a catalytic amount of 4-dimethylaminopyridine provided the known 3 β ,16 β -diacetate <u>11</u> [12] (82% yield).

Oxidation of oleandrigenin <u>15</u> with Jones' reagent [14] gave the ketone <u>16</u> [15] in 67% yield, reduction of which with sodium borohydride gave the 3α -hydroxy-16 β -acetate <u>17</u> [15] (59% yield). Acetylation of the monoacetate <u>17</u> with acetic anhydride/pyridine furnished the 3α ,16 β -di-acetate <u>10</u> in 64% yield.

PHARMACOLOGICAL METHODS

The inotropic and chronotropic activities of the target compounds were determined using guinea-pig left and right atrial preparations as detailed previously [17].

Compounds were formulated as 1% solutions in dimethyl sulphoxide (DMSO) with subsequent dilutions being made with Krebs-Henseleit solution. DMSO has been shown to exert no inotropic effect at the concentrations used [18], which did not exceed 0.1% of the total organ bath volume.

In Table 1, 'inotropic effect' refers to the cumulative molar concentration required to increase left atrial force by 25%. 'Toxic effect' refers to the cumulative molar concentration producing a characteristic right atrial tachyarrhythmia in which the normal resting

rate of about 160 beats \min^{-1} increased to over 200 beats \min^{-1} . 'Potency' is the inotropic effect for the test compound divided by that for digoxin [3 β ,12 β ,14-trihydroxy-5 β ,14 β -card-20(22)-enolide, 3-0-(Ddigitoxy1-D-digitoxy1-D-digitoxoside] which was used as standard. All the concentration values quoted are geometric means.

PHARMACOLOGICAL RESULTS

Results obtained for the test compounds are given in Table 1.

COMPOUND	INOTROPIC EFFECT [®]	TOXIC EFFECT ^b	POTENCYC
Digoxin ^d 2 (gitoxigenin) [16] 4 [11] 6 [11] 9 10 11 [12] 12 13 14 15 15 15 17 [15]	3.0×10^{-7} M 4.0×10^{-6} M 1.3×10^{-4} M 3.2×10^{-5} M ^f 4.0×10^{-7} M 4.0×10^{-8} M 5.9×10^{-7} M 3.5×10^{-6} M 9.5×10^{-5} M 4.8×10^{-5} M 1.9×10^{-7} M 5.9×10^{-7} M 5.2×10^{-7} M	1.0 $\times 10^{-6}$ M 1.6 $\times 10^{-5}$ M 3.8 $\times 10^{-4}$ M 5.5 $\times 10^{-6}$ M 6.7 $\times 10^{-8}$ M 1.1 $\times 10^{-6}$ M 1.9 $\times 10^{-5}$ M 2.0 $\times 10^{-4}$ M 3.0 $\times 10^{-4}$ M 5.6 $\times 10^{-7}$ M 2.7 $\times 10^{-6}$ M 1.0 $\times 10^{-5}$ M	1.000 ^e 0.075 0.002 - 0.750 7.500 0.508 0.086 0.003 0.006 1.579 0.508 0.577

TABLE 1 - Biological activity on isolated guinea-pig atria

a/Cumulative concentration required to produce a 25% increase in left atrial force; b/cumulative concentration required to cause right atrial tachyarrhythmia; c/inotropic effect for the test compound divided by that for digoxin; d/Lanoxin (250 μ g/ml)-Burroughs Wellcome; e/by definition; f/maximum effect of 17% only.

In agreement with the findings of earlier workers [4, 5], 16-epigitoxigenin <u>4</u> was less active than its natural counterpart gitoxigenin <u>2</u>. Also as expected [8, 9], acetylation of the 16-hydroxyl function of gitoxigenin <u>2</u> and 16-epigitoxigenin <u>4</u>, to give oleandrigenin <u>15</u> and its

24

16-epi counterpart <u>12</u> respectively, led in both cases to an increase in activity.

Also anticipated from our earlier results in the digitoxigenin $[3\beta,14-dihydroxy-5\beta,14\beta-card-20(22)-enolide]$ series [10] and from longstanding structure-activity data [1-3], inversion of configuration at C₃ resulted in a drop in potency (compare activities of the 3-epi derivative <u>17</u> and oleandrigenin <u>15</u> and the alcohol <u>14</u> and its 3 β -counterpart <u>12</u>). The corresponding 3-ketones <u>16</u> and <u>13</u> showed the same order of activities as their 3α -hydroxy analogues <u>17</u> and <u>14</u> respectively.

Again in agreement with previous findings [1-3], acetylation of the 3 β -hydroxyl groups of oleandrigenin <u>15</u> and 16-epioleandrigenin <u>12</u>, to give the 3 β ,16 β -diacetate <u>11</u> and 3 β ,16 α -diacetate <u>6</u> respectively, resulted in loss of inotropic activity. However, in agreement with our unexpected findings in the digitoxigenin series [10], derivatives with a 3 α -acetoxy function were found to have higher than expected activities. Thus the 3 α ,16 β -diacetate <u>10</u> was approximately an order of magnitude more active than both its 3 β ,16 β -counterpart <u>11</u> and the digoxin employed as a standard. The 3 α ,16 α -diacetate <u>9</u> also showed a high activity which was substantially greater than its 3 β ,16 α -epimer 6.

All of the active compounds described in Table 1 gave rise to typical digitalis-like toxic effects at higher doses. Further studies would be necessary to ascertain if any of them showed any therapeutic advantage over existing steroidal cardiotonic agents.

CONCLUSION

The pharmacological results are largely in good agreement with previous data and with established structure-activity relationships.

STEROIDS

The high instropic potencies of the 3α -acetoxy compounds 9 and 10 support our earlier results with 3α -acetoxy compounds related to digitoxigenin [10] and are not readily accommodated by current theories for the digitalis receptor [19-22]. They also complement recent findings by the groups of Thomas [23] and Fullerton [24] with regard to stereochemical and conformational requirements of the sugar moiety of digitoxigenin D-glycosides.

EXPERIMENTAL SECTION

Melting points were determined in unsealed capillaries using an Electrothermal apparatus and are corrected. IR spectra were recorded on a Perkin Elmer Model 21 spectrophotometer. PMR spectra were determined on Perkin Elmer R32 (90 MHz) and Jeol MH 100 (100 MHz) spectrometers. UV spectra were run on a Pye Unicam SP8-200 UV/VIS spectrophotometer. Reaction extracts were dried over anhydrous MgSO_L and evaporated on a rotary evaporator. Petrol refers to petroleum ether (b.p. 60-80⁹). Column chromatography was performed on Merck Kieselgel 60 and preparative TLC on 2 mm layers of Merck Kieselgel F₂₅₄ + 366• Physical constants and spectral data (UV and IR) are given in

Table 2 and PMR values in Table 3.

16α -Acetoxy-3 β ,14-dihydroxy-5 β ,14 β -card-20(22)-enolide 12

Ac₂O (5 mL) was added to a solution of <u>3</u> [11, 13] (1.0 g, 1.3 mmol) in pyridine (10 mL). The mixture was stirred for 20 h, diluted with ice-cold $H_{2}O$ (100 mL) and extracted with CHCl₃ (3 x 100 mL). The combined extracts were washed with 2M HCl (2 x 100 mL) and $H_{2}O$ (100 mL) then dried and evaporated to give a white foam (1.17 g). This was dissolved in EtOH (200 mL)- H_2O (55 mL) and the solution brought to reflux and treated with hot 1M HCl (65 mL). The mixture was heated at reflux for 15 min, cooled to 20^0 and neutralised with 2M NaOH. The solution was concentrated to <u>ca</u>. 25 mL, diluted with H₂O (25 mL) and extracted with CHCl₂-EtOH (4: $\overline{1}$, 100 mL and 2 x 50 mL).² The combined extracts were washed with H_2O (100 mL), and evaporated to give a white foam which was purified by preparative TLC (CHCl₃-MeOH; 19:1) to afford 12 as a white foam (380 mg) which crystallised from EtOAc-petrol as colourless prisms (277 mg, 50.0%).

16α -Acetoxy-14-hydroxy-3-oxo-56,146-card-20(22)-enolide 13

Jones' reagent 14 (0.3 mL) was added over 5 min to a stirred solution of <u>12</u> (320 mg, 0.7 mmol) in dioxane (10 mL)-Me₂CO (7 mL) at 0 to 5° . The mixture was stirred for 20 min, treated with <u>i</u>-PrOH (1 mL), diluted with water (100 mL) and extracted with EtOAc (2 x 100 mL). The combined extracts were washed with water (100 mL), dried and evaporated

data	
spectral	
and	
constants	
Physical	
2 -	
TABLE	

°N N	No. m.p. ⁰ C Cryst ⁿ	Cryst ⁿ solvent	$\left[\alpha \right]_{D}^{a}$	solvent $\begin{bmatrix} \alpha \end{bmatrix}_{D}^{a} \lambda_{max}^{MeOH}$ nm (ε)	(ε)		v ^{CHBr3} cm ⁻¹ max	.cm ⁻¹	Lit	lit. constants/analysis ^b	is ^b
7	2 219-221	EtOH-H ₂ 0	+32 ^C 220	220	(14,630) 3550, 1788, 1760 ^d	3550,	1788,	1760 ^d	с. ш	m.p. 234 ⁰ , [α] _h +38.5	[16]
4	204-206	MeOH-Et 20	-29 ^C 221	221	(14,035) 3610, 1778, 1740	3610,	1778,	1740	d-u	m.p. 212-214 ⁰ ,[α] _D -25	[1]
9	289-294	EtOAc-petrol -11 218.5	-11	218.5	(14,710) 3590, 1780, 1742,	3590,	1780,	1742,	d. E	m.p. 295-298 ⁰ ,[α] _D -9	[11]
6	185-187	EtOAc-petrol +15 218	+15	218	(15,165) 3590, 1784, 1742	3590,	1784,	1742	C ₂₇ H ₃₈ 07	8 ⁰ 7	
10	222-224	EtOAc-petrol +13 217	+13	217	(14,610) 3590, 1780, 1740	3590,	1780,	1740	C ₂₇ H ₃₈ 07	8 ⁰ 7	
11	250-253	EtOAc-petrol -8.5 217	-8.5	217	(14,610) 3580, 1780, 1740	3580,	1780,	1740	m-p	m.p. 249 ⁰ , [α] _D -8	[12]
12	145-152 ^e	EtOAc-petrol -15 218.5	-15	218.5	(14,290) 3620, 1782, 1745	3620,	1782,	1745	C25H3(с ₂₅ н ₃₆ 0 ₆ .н ₂ 0	
13	279–282	MeOH	-4.5 218	218	(14,960) 3600, 1780, 1740,	3600,	1780,	1740, 171	1710 C ₂₅ H ₃₄ 0 ₆	40 ₆	
14	245-246	MeOH-Et 20	-7.5	-7.5 218.5	(14,655) 3620, 1780, 1742	3620,	1780,		C ₂₅ H ₃₆ 06	6 ⁰ 6	
15	220-221	CHCl ₃ -Et ₂ 0	-9.5 217.5	217.5	(13,810) 3630, 1770, 1735	3630,	1770,	1735	d. E	$225-228^{0}, [\alpha]_{n}-10$	[12]
16	260-261	MeOH	-4 217	217	(14,120)	3630,	1780,	(14,120) 3630, 1780, 1740, 1710 m.p. 250-252 ⁰	10 m.p. 1	250-252 ⁰	[15]
17	208-210	MeOH-Et ₂ 0	+3 ^f 217	217	(14,190) 3600, 1780, 1740	3600,	1780,	1740		m.p. 206-212 ⁰ , $[\alpha]_{D}$ -8 [15]	[15]
			,	. .] `

6 a/ cl.0, CHCl₃ at +21⁰; b/ elemental analyses for C and H were within ± 0.4% of theoretical values; in MeOH; d/ in nujol; e/ and 240–243⁰(double m.p.); f/ in EtOH. IABLE 3 - P.M. spectra (ô values; coupling constants in Hz in parentheses)

1					_								
					5.31t,d(8,4) 4.93 broad s 5.96 broad s 2.05s, 2.08s=16a-04c, 3a-04c	5.52t, d(8,4) 4.96 broad a 6.00 broad a 1.98s, 2.05s=168-04c, 3a-04c	0.968 0.988 3.22d(B) 5.15m(w/2,B) 5.53t,d(B,3) 4.98 fire m 6.00 fire m 1.988, 2.078=168-04c, 38-04c						
	Le Le			3P-OAc	Sa-OAc,	SP-OAc,	sp-OAc,						
	Other			a-OAc,	1=s80.1	.05s=1(.078=16	a-OAc	a-OAc	or-OAc	B-OAc	B-OAc	р-ОАс
				0.878 0.978 2.68d(4) 5.15m(w/2,8) 5.32t,d(8,4) 4.94 broad s 5.96 broad s 2.078=16a-04c, 3P-04c	.058, 2	.988, 2	.98s, 2	0.888 0.978 2.67d(4) 4.15m(w/2,8) 5.28t, d(8,4) 4.92 broad a 5.98 broad a 2.068=16a-04c	5.31t, d(8,4) 4.93 broad a 5.97 broad a 2.06s=16a-04c	0.878 0.938 2.68d(4) 3.65m(w/2,22) 5.30t, d(8,4) 4.93 broad a 5.97 broad a 2.07s=16a-04c	0.948 0.948 3.22d(8) 4.18m(w/2,8) 5.52t,d(9,2) 4.98 fire m 6.00 fire m 1.97s=168-04c	5.52t,d(9,2) 4.96 fire m 6.00 fire m 1.97s=168-04c	0.948 0.948 3.21d(8) 3.67m(w½22) 5.52t,d(9,2) 4.96 fire m 6.00 fire m 1.98s=16p-0Ac
		Ø	50	8 2	8 2	8	<u>г</u> Е	8	8	8	<u>г</u>	- <u></u>	
	23-H	broad	4.90 broad s 5.94 broad s	broad	broad	broad	fire	broad	broad	broad	fine	fine	fine I
		5.94	5.94	5.%	5.96	6.00	6.00	5.98	5.97	5.97	6.00	6.00	6.00
	Ŧ	s bed	oed s	s peo	oed s	ced s	E	s peq	s ped	oed s	e g	E	E a
	21-H	10 pr	8	1 2 12	53 Tel Tel	1 8	98 fi	22 Pu	56 FE	93 br	98 fi	% fi	96 fir
) 5.	4	4	4	4	4	4	4	4	4.0	4	4.6
н	H-91	m2,16		d(8,4	d(8,4	d(8,4	d(8,3	d(8,4	d(8,4	d(8,4	d(9,2	d(9,2	d(9,2
	9I	2 Me ₂ SD-d ₆ 0.848 0.898 3.05d(8) 3.94m(M2,8) 4.60m(M2,16) 5.10 broad a 5.94 broad a	4.37*	5.32t,	5.31t,	5.52t,	5.53t,	5.28t,	5.31t,	5.30t,	5.52t,	5.52t,	5.52t,
		(8¢	2,8) 	(8)			28) 28)	6	-	(Z	6		23)
	¥	tun(m)	tem (12)		/6m¥	*ES			ı		Bm(v)	1	7m(x)
		3.5	ň	5.1	4.7	4.7	5.1	4.1		3.6	4.1	<u> </u>	3.6
	17-H	<u>75d(8)</u>	52m*	58d(4)	5Bd(4)	(8) PZZ	2d(8)	57d(4)	3Bd(4)	3Bd(4)	2d(8)	(B)PT	1d(8)
		3.J.(32	3.2.	32.6	<u>m</u>	m	32.6	2.6	32.6	Ň	2.5	3.2
	19-H	0.89	0.89	0.97	9 4	* *	0.98	0.97	1.04	0.93	0.94	1.06	0.94
	0pd. Solvent 18-H ₃ 19-H ₃ 17-H	0.846	4 Me2SD-d6 0.758 0.898 2.52m* 3.94m (w2,8) 4.37*	0.878	0.878 0.948 2.68d(4) 4.76m*	0.948 0.948 3.22d(8) 4.75m*	0.968	0.88	0.918 1.048 2.68d(4)	0.878	0.94s	0.988 1.068 3.21d(8)	0.94a
	ænt	2-d	Å										
	Solv	Me	Me	6 0001 ₃	9 acci.	10 00Cl3		00CI.3	u acci.		ີເມີ	16 0001 ₃	17 00Cl ₃
	ष्ट्र	7	4	9	6	9	7	ศ	n	14	บ	16	17

*-decored or partly obscared signal; s=singlet; d=doublet; t=triplet; m=multiplet

to give a white solid which was purified by preparative TLC (CHCl₃-Me₂CO; 4:1) to give <u>13</u> as a white solid (170 mg, 53.0%). Crystallisation from MeOH afforded colourless prisms (105 mg, 33.0%).

<u>16α-Acetoxy-3α,14-dihydroxy-5β,14β-card-20(22)-enolide 14</u>

A solution of NaBH₄ (31 mg, 0.8 mmol) in dioxane-H $_2$ 0 (4:1, 2 mL) was added to a stirred solution of 13 (350 mg, 0.8 mmol) in the same solvent mixture (15 mL). The mixture was stirred for 15 min, and glacial HOAc (2 mL) and H $_2$ 0 (50 mL) were added. The solution was extracted with CHCl₃ (3 x 100 mL) and the combined extracts were washed with 5% aqueous NaHCO₃ (50 mL) and H $_2$ 0 (50 mL), dried and evaporated to give a white foam (363 mg). This was purified by chromatography on a column of silica gel (20 g) using CHCl₃-MeOH (19:1) to give 14 as a white foam (351 mg) which crystallised from MeOH-Et $_2$ 0 as colourless prisms (231 mg, 65.7%).

3α,16α-Diacetoxy-14-hydroxy-5β,14β-card-20(22)-enolide 9

Ac₂O (1 mL) was added to a solution of 14 (443 mg, 1.0 mmol) in pyridine (10 mL). The mixture was stirred for 17 h, diluted with icecold H₂O (100 mL) and extracted with EtOAc (100 mL). The organic extract was washed successively with 2M HC1, 5% aqueous NaHCO₃ and H₂O (50 mL each), dried and evaporated to give a white solid (477 mg). This was purified by chromatography on a column of silica gel (25 g) using CHCl₃-MeOH (39:1) to give <u>9</u> as a white solid (453 mg) which crystallised from EtOAc-petrol as colourless prisms (339 mg, 69.8%).

3α , 16 β -Diacetoxy-14-hydroxy-5 β , 14 β -card-20(22)-enolide 10

The reaction of <u>17</u> (433 mg, 1.0 mmol) with Ac₂O (1 mL) in pyridine (10 mL) as described above for the corresponding 16α -isomer <u>14</u> gave a crude product (431 mg) which was similarly purified by chromatography to give <u>10</u> as a white solid (430 mg). Crystallisation from EtOAc-petrol gave colourless prisms (305 mg, 64.2%).

ACKNOWLEDGEMENTS

We are indebted to Mr. I Machin and Dr. A. Sullivan (Pharmacology Departments, Glaxo Group Research Ltd., Greenford, Middlesex and Ware, Hertfordshire) for the biological results displayed in Table 1.

REFERENCES

- 1. Thomas, R., Boutagy, J., and Gelbart, A., J.PHARM.SCI. <u>33</u>, 1649 (1974).
- 2. Guntert, T.W., and Linde, H.H.A., EXPERIENTIA 33, 697 (1977).
- 3. Guntert, T.W., and Linde, H.H.A., <u>Chemistry and structure-activity relationships of cardioactive steroids, Chapter 2, in</u> <u>Cardiac Glycosides, Part 1, Experimental Pharmacology</u> (Greef, K., Editor), Springer-Verlag, Berlin (1981).
- Kovarikova, A., Kolarova, H., and Pitra, J., EXPERIENTIA <u>20</u>, 263 (1964).
- Haustein, K.-O., Megges, R., and Hauptmann, J., PHARMACOLOGY <u>10</u>, 65 (1973).
- 6. Repke, K.R.H., PHARMAZIE 27, 693 (1972).
- 7. Haustein, K.-O., Markwardt, F., and Repke, K.R.H., EUR. J. PHARMACOL. <u>10</u>, 1 (1970).
- 8. Haustein, K.-O., PHARMACOLOGY 11, 117 (1974).
- 9. Haustein, K.-O., and Hauptmann, J., ibid. 11, 129 (1974).

STEROIDS

- 10. Humber, D.C., Phillipps, G.H., Dodds, M.G., Dolamore, P.G., and Machin, I., STEROIDS 42, 189 (1983).
- Ragab, M.S., Linde, H., and Meyer, K., HELV. CHIM. ACTA 57, 474 11. (1962).
- 12. Hunger, A., and Reichstein, T., ibid. 33, 76 (1950).
- Lindig, C., and Repke, K., BRITISH PATENT 1,153,698 (1969). 13.
- Bowers, A., Halsall, T.G., Jones, E.R.H., and Lemin, A.J., J. 14. CHEM. SOC., 2555 (1953).
- 15. Hauser, E., Boffo, U., Meister, L., Sawlewicz, L., Linde, H.H.A., and Meyer, K., HELV. CHIM. ACTA 56, 2782 (1973).
- Smith, S., J. CHEM. SOC. 23 (1931). 16.
- 17. Humber, D.C., Jones, P.S., Phillipps, G.H., Dodds, M.G., and Dolamore, P.G., STEROIDS <u>42</u>, 171 (1983). Burges, R.A., Blackburn, K.J., and Spilker, B.A., LIFE SCI. <u>8</u>,
- 18. 1325 (1969).
- Fullerton, D.S., Yoshioka, K., Rohrer, D.C., From, A.H.L., and 19. Ahmed, K., MOL. PHARMACOL. 17, 43 (1980); SCIENCE 205, 917 (1979).
- 20. Thomas, R., Allen, J., Pitts, B.J.R., and Schwartz, A., EUR. J. PHARMACOL. 53, 227 (1979).
- Rohrer, D.C., Fullerton, D.S., Yoshioka, K., From, A.H.L., and 21. Ahmed, K., in: Advances in Chemistry: Computer Assisted Drug Design (Christoffersen, R.E., and Olsen, E.C., Editors), American Chemical Society, Symposium Series 112 (1979) p. 259.
- 22. Thomas, R., Brown, L., Boutagy, J., and Gelbart, A., CIRC. RES. SUPP. I 46 167 (1980).
- Brown, L., Boutagy, J., and Thomas, R., ARZNEIM. FORSCH. 31, 1059 23. (1981).
- 24. Fullerton, D.S., Kihara, M., Deffo, T., Kitatsuji, E., Ahmed, K., Sumat, B., From, A.H.L., and Rohrer, D.C., J. MED. CHEM. 27, 256 (1984).