STEREOSELECTIVE SYNTHESIS OF CIS RING FUSED ENDO OR EXO OCTAHYDROPYRINDIN-4 ONES BY IMINO-DIELS-ALDER REACTION.

Renée PAUGAM and Lya WARTSKI

Laboratoire des Carbocycles Unité Associée au CNRS 0478 Institut de Chimie Moléculaire d'Orsay Université de Paris-Sud, 91405 ORSAY Cedex (France)

Abstract : The Diels-Alder reaction of trimethylsilylenolether of 1-acetylcyclopentene <u>1b</u> with benzylideneaniline <u>2</u>, catalyzed by AlCl₃, occurred with high **exo** or **endo** selectivity, depending upon kinetic or thermodynamic control. MeOH/Et₃N treatment of the intermediate cycloadducts <u>3</u> and <u>4</u> gave stereospecifically the *cis* ring fused **exo** or **endo** octahydropyrindin-4 ones <u>5</u> and <u>6</u> while α,β unsaturated ketones <u>8</u> or <u>9</u> were formed after acidic treatment. Basic isomerization of <u>6</u> afforded the corresponding *trans* ring fused **endo** ketone <u>7</u>.

The cycloaddition reactions between silyloxydienes and different dienophiles were extensively studied in the last decades (1-3). We have recently reported that the reaction of trimethylsilylenolether of 1-acetylcyclohexene <u>1a</u> and various imines led to *cis* and *trans* ring fused decahydroquinolin-4 ones (4). The recent obtention of only trans ring fused **endo** compounds, starting from 5-menthyloxy-2 [5H]-furanone and the diene <u>1a</u> or the analog <u>1b</u> derived from 1-acetylcyclopentene (5), prompted us to publish our results related to the condensation of the diene <u>1b</u> with benzylideneaniline <u>2</u> focusing on the peculiarity of this system.

The reaction of <u>1h</u> (1,2 eq.) and <u>2</u> (1 eq.) took place under Lewis acid catalysis (AlCl₃, 1 eq.) in CH₂Cl₂ at various times and temperatures. After aqueous HCO₃Na (0,1 M) treatment, carefully controlled, two enoxysilanes <u>3</u> and <u>4</u> were only detected next to starting materials by ¹H NMR analysis of the crude product (6). They were formed in good yield (75%).

Under kinetic control (-40°C, 15mn), the cycloadduct $\underline{3}$ was favoured ($\underline{3}/\underline{4} = 87/13$) while under thermodynamic control (r.t., 2hrs) $\underline{4}$ was strongly privileged ($\underline{3}/\underline{4} = 2/98$).

MeOH/Et3N treatment of $\underline{3}$ and $\underline{4}$ mixtures led stereospecifically and quantitatively to the corresponding ketones $\underline{5}$ and $\underline{6}$. Furthermore, nBu₄N⁺ F⁻ treatment of $\underline{3}$ gave only $\underline{5}$ as previously mentioned (4) while a mixture of ketones $\underline{6}$ and $\underline{7}$ in a 70/30 ratio, was obtained starting from $\underline{4}$. The same $\underline{6/7}$ ratio was observed when submitting $\underline{6}$ to these conditions.

The octahydropyrindine-4 ones were characterized by IR, MS and ¹H NMR analysis. It is well known that the stereochemistry at ring junction in hydrindan analogs is difficult to assign from the ¹H NMR data (7,8,9). However, the ³J_{H8H9} coupling constant values for 5 (J = 7.1 Hz) and 6 (J = 6.0 Hz) are in agreement with a *cis* ring fused structure. For 5, this assignment was confirmed by X-ray analysis which also indicated a *trans* relationship between C2-H2 and C8-H8 bonds (10).

It appeared thus that the cycloaddition reaction of <u>1a</u> (4) and <u>1b</u> with benzylidene aniline <u>2</u> in the presence of Lewis acid is highly regioselective as well as the condensation of the same dienes with 5-menthyloxy-2 [5H]-furanone under thermal conditions (5).

In the case of imine $\underline{2}$, a higher exo selectivity is observed with $\underline{1b}$ than with $\underline{1a}$, under kinetic control while under thermodynamic control the endo approach is strongly favoured with both dienes. On the other hand, with 5-methyloxy-2 [5H]-furanone, the endo ketone is the only one formed whatever the diene but there is no information on the intermediate species (5).

Protonation by MeOH/Et₃N at the ring junction of exo $\underline{3}$ or endo $\underline{4}$ enoxysilanes having a cyclopentyl group, led only to *cis* ring fused ketones as those derived from <u>1a</u>. In the same way, nBu₄N⁺ F⁻ treatment of exo enoxysilanes furnished the corresponding *cis* ring fused ketones with both dienes. On the contrary, the nBu₄N⁺ F⁻ treatment of endo cyclo adduct $\underline{3}$ afforded a mixture of *cis* and *trans* ring fused ketones while from analog adduct having a cyclohexyl group only the *trans* one was formed under these epimerizing conditions. These results differ also from those of Feringa who obtained only a *trans* ring fused ketone starting either from <u>1a</u> or <u>1b</u> (5).

Cycloadducts 3 and 4 treated by MeOH led to one α,β unsaturated ketone 8 by acid catalyzed ring opening, a behaviour different from cyclohexyl analogs (4) which were stable in this condition.

Furthermore, <u>8</u> gave bicyclic ketone <u>6</u> next to an other α , β unsaturated ketone <u>9</u> by aqueous HCl (1N)/MeOH treatment. The two opened ketones have been characterized by IR, MS, and ¹H NMR analysis (11). The ³J _{H1'H2'} coupling constant value of 4.6 Hz for <u>9</u> corresponds probably to a *cis* disubstituted cyclopentane. In cyclohexyl analog such a ring closure did not take place in these conditions and required TiCl₄ catalysis while it was observed in other related systems (1b,2,12). Moreover, the cyclohexyl analog of <u>9</u> has never been evidenced (4).

Nevertheless, the pericyclic mechanism of the reaction between <u>1b</u> and <u>2</u> is ascertained since ketone <u>8</u> was never detected in the crude product obtained after hydrolysis by aqueous hydrogenocarbonate.

In conclusion, the control of the stereoselectivity of the cyclocondensation of <u>1b</u> and <u>2</u> and the protonation of the enoxysilanes was realized as previously with <u>1a</u> and allowed the synthesis of unknown *cis* ring fused **exo** and **endo** ketones and *trans* ring fused **endo** ketone. On the other hand, it turned out that these dienes may give different stereochemical behaviour according to the 2π component, in connection with the discrepancy between Feringa's results and ours. Interpretation of this fact requires further investigations.

Acknowledgments:

We thank Dr. J.Seyden-Penne for helpful discussions, Mrs N. Platzer for her contribution to the 500MHz ¹H NMR analysis of $\underline{6}$ and Mrs M. Nierlich for X-ray analysis of $\underline{5}$

References and notes

- (a) Boger, D.L.; Weinreb, S.N. "Hetero Diels-Alder Methodology in Organic Synthesis", Academic Press, New-York, 1987. (b) Pfrengle, W.; Kunz, H. J. Org. Chem. 1989, <u>54</u>, 4261. (c) Danishefsky, S.J.; Kerwin, J.F. Tetrahedron Lett. 1982, <u>23</u>, 3739. (d) Danishefsky, S.J.; Myles, D.C.; Harvey, D.F., J.Am.Chem.Soc. 1987, <u>100</u>, 862 and references therein.
- 2. Midland, M.M.; McLoughlin, J.I. Tetrahedron Lett. 1988, 29, 4653.
- 3. Lamy-Schelkens, H.; Giomi, D.; Ghosez, L. Tetrahedron Lett. 1989, 30, 5887.
- 4. Le Coz, L.; Veyrat-Martin, C.; Wartski, L.; Seyden-Penne, J.; Bois, C.; Philoche-Levisalles, M. J. Org. Chem.. 1990, 55, 4870.
- 5. DeJong, J.C.; Jansen, J.F.G.A.; Feringa, B.L. Tetrahedron Lett. 1990, 31, 3047.
- 6. For <u>2</u>: ¹H NMR (200 MHz, CDCl₃) δ 0.30 (s, 9H, SiMe₃), 1.40-2.70 (m, 7H, cyclopentyl and H31), 3.09 (m, 1H, H32, ²J_{H31H32} = 16.5 Hz), 3.57 (m, 1H, H8), 4.85 (d, 1H, H2, ³J_{H2H31} = 7.3 Hz), 6.60-7.60 (m, 10H, phenyl).
 For <u>4</u>: ¹H NMR (200 MHz, CDCl₃) δ 0.05 (s, 9H, SiMe₃), 1.00-2.60 (m, 7H, cyclopentyl and H31), 2.72 (m, 1H, H32, ²J_{H31H32} = 15.6 Hz), 4.07 (m, 1H, H8), 4.72 (t, 1H, H2, ³J_{H2H31} = ³J_{H2H32} = 5.2 Hz), 6.70-7.50 (m, 10H, phenyl).
 The relative configuration of the C2H2 and C8H8 bonds in the adducts <u>3</u> and <u>4</u> is determined from that of the corresponding ketones <u>5</u> and <u>6</u>.
- 7. Fuchs, B. Top. Stereochem., 1979, 10, 1.
- 8. Lo Cicero, B.; Weisbuch, F.; Dana, G. J. Org. Chem. 1981, 46, 914.
- 9. Prasad, C.V.C.; Chan, T.H. J. Org. Chem. 1988, 54, 3242.
- 10. For $\underline{5}$: m.p. 129.3°C; ¹H NMR (200 MHz, C₆D₆) δ 2.56 (td, 1H, H9), 3.86 (m, 1H, H8, ³J_{H8H9} = 7.1 Hz), 4.74 (t, 1H, H2). For $\underline{6}$: Rf (cyclohexane/ether : 50/50) = 0.58; ¹H NMR (500 MHz, CDCl₃) δ 2.84 (qd, 1H, H9), 4.01 (q, 1H, H8, ³J_{H8H9} = 6.0 Hz), 4.74 (dd, 1H, H2). For $\underline{7}$: Rf (cyclohexane/ether : 80/20) = 0.33; ¹H NMR (250 MHz, CDCl₃) δ 2.50-3.15 (m, 3H, H31, H32 and H9), 3.28 (m, 1H, H8, ³J_{H8H9} = 10.3 Hz), 4.58 (dd, 1H, H2). Details of the ¹H NMR data of the octahydropyrindin-4 ones 5, 6 and 7 will be published elsewhere with the crystal and molecular stucture determination by X-ray analysis for 5 and molecular modeling (molecular mechanistics and ab initio calculations) for the three products.
- 11. For $\underline{\$}$: m.p. 134.9°C; ¹H NMR (200 MHz, CDCl₃) δ 1.90 (td, 2H, H4'), 2.50 (m, 4H, H3' and H5'), 3.17 (ddd, 2H, H2), 4.84 (dd, 1H, H3), 6.50-7.50 (m, 11H, phenyl and H2'). For $\underline{9}$: Rf (cyclohexane/ether : 80/20) = 0.27; ¹H NMR (250 MHz, CDCl₃) δ 1.50-2.30 (m, 6II, cyclopentyl), 3.18 (m, 1H, H1'), 4.27 (td, 1H, H2', ³J_{H1'H2'} - 4.6 Hz), 6.54-6.74 (m, 3H, phenyl), 6.80 (d, 1H, H3), 7.07-7.50 (m, 7H, phenyl), 7.60 (d, 1H, H2, ³J_{H2H3} = 16.0 Hz).
- 12. Le Coz,L. and Wartski,L., unpublished results.

(Received in France 26 July 1990)