Synthesis of $(\eta^6$ -arene)tricarbonylchromium derivatives of 1,4-dihydro-3,1-benzoxazines

E. V. Sazonova, A. N. Artemov, V. I. Faerman, N. A. Aksenova, A. A. Timofeeva, Yu. A. Zaytseva, N. V. Somov, and N. Yu. Grishina*

Lobachevsky State University of Nizhny Novgorod, 5 korp., 23 prosp. Gagarina, 603950 Nizhny Novgorod, Russian Federation. Fax: +7 (831) 465 8162. E-mail: zarovkinan@mail.ru

A series of (η^6 -arene)tricarbonylchromium derivatives of 1,4-dihydro-3,1-benzoxazines was synthesized and characterized. The compounds were obtained by two alternative methods, namely, by the reaction of triammine(tricarbonyl)chromium with 1,4-dihydro-3,1-benzoxazines (method *A*) and by the condensation of (η^6 -2-aminobenzyl alcohol)tricarbonylchromium with various aldehydes and ketones (method *B*). The composition and structure of obtained compounds were established by different physicochemical methods of analysis, such as HPLC, UV, IR, ¹H NMR spectroscopy, mass spectrometry, and X-ray diffraction.

Key words: $(\eta^6$ -arene)tricarbonylchromium, 1,4-dihydro-3,1-benzoxazines, heterocyclic compounds, triammine(tricarbonyl)chromium.

Heterocycles are important structural fragments in the molecules of various organic compounds with biological activity.^{1,2} The presence of metal tricarbonyl fragments, in particular, the chromium tricarbonyl group, can significantly expand the field of application of these compounds. There are known derivatives containing (η^6 -benzene) $Cr(CO)_3$ groups and heterocyclic fragments, which have properties making them promising for use in molecular biotechnology and biomedicine. In particular, peptide nucleic acids, reagents for labeling proteins, bioprobes, and tracers for drugs containing (η^6 -arene)- $Cr(CO)_3$ fragments were obtained. The use of $Cr(CO)_3$ complexes for biomedical purposes is primarily due to their unique spectroscopic characteristics, in particular, the presence of very intense characteristic absorption bands of CO groups in the mid-IR region, which allows sensitive detection even in complex biological matrices.³

Heterocyclic (η^6 -benzene)Cr(CO)₃ derivatives are widely used in fine organic synthesis because of their high chemical potential of both the heterocyclic rings and the Cr(CO)₃ group, which, due to its bulkiness and pronounced electron-withdrawing properties, is capable of promoting highly diastereo- and enantioselective syntheses.⁴⁻⁹

Continuing our research on the synthesis of $(\eta^6$ -arene)-Cr(CO)₃ complexes with N,O-heterocyclic rings in the composition,^{10–16} we obtained chromium-containing 1,4-dihydro-3,1-benzoxazines.

Results and Discussion

Earlier, we have shown¹⁶ that in the reaction of triammine(tricarbonyl)chromium (1) with N-phenyl-

substituted oxazolidines and oxazinanes, the p, π -conjugation of the lone electron pair of the nitrogen atom of the heterocyclic ring with the phenyl substituent decreases the nucleophilicity of the nitrogen atom, which prevents the formation of the N–Cr σ -bond and finally leads to $(\eta^{6}\text{-arene})Cr(CO)_{3}$ derivatives of these compounds. To synthesize the target chromium-containing heterocycles, in this work we used two approaches. The first consisted in the reaction of triammine(tricarbonyl)chromium (TATC (1)) with the corresponding 1,4-dihydro-3,1benzoxazines $2\mathbf{a} - \mathbf{k}$ (Scheme 1, method A), in the molecules of which there is a conjugation of the nitrogen atom with the arene part. The second method consisted in the construction of heterocyclic fragments by the condensation reaction of $(\eta^6-1-amino-2-hydroxymethylbenzene)$ tricarbonylchromium (3) with various carbonyl compounds $4\mathbf{a}-\mathbf{k}$ (see Scheme 1, method *B*).

To synthesize chromium-containing 1,4-dihydro-3,1benzoxazines 5a-k by method A, at the first stage of our work we obtain heterocycles 2a-k using a procedure described in the work,¹⁷ which consisted in the reaction of amino alcohols with carbonyl compounds in THF and the presence of magnesium sulfate. Heating of carbonyl compounds 4a-k and 2-aminobenzyl alcohol at $50-100 \,^{\circ}$ C for 3-10 h gave products $2a-k^{18-22}$ in good yields (see Experimental). At the second stage, the reaction of heterocyclic compounds 2a-k with TATC (1) in dioxane upon heating (120 $^{\circ}$ C) for 4-6 h (see Experimental) gave the target products 5 (see Scheme 1, method A). It was found that compounds 5h,j,k containing prop-1-en-1-yl, 2-furyl, and 2-pyridyl substituents, respectively, cannot be obtained by this method (only starting compo-

Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 1, pp. 171-178, January, 2021.

1066-5285/21/7001-0171 © 2021 Springer Science+Business Media LLC

nents were recovered from the reaction mixtures). This experimental fact was not surprising, since it is known^{23,24} that most unsaturated hydrocarbons, as well as some heterocycles such as furan and pyridine derivatives, do not give the corresponding $Cr(CO)_3$ - π -complexes when reacting with chromium hexacarbonyl or TATC.

Method *B* turned out to be more versatile: the condensation reactions of chromium-containing amino alcohol **3** with carbonyl compounds $4\mathbf{a}-\mathbf{k}$ under conditions similar to the processes for the preparation of heterocycles $2\mathbf{a}-\mathbf{k}$ (see Experimental) made it possible to successfully synthesize the entire series of chromium-containing 1,4-dihydro-3,1-benzoxazines $5\mathbf{a}-\mathbf{k}$ (see Scheme 1). The final product yields varied within the ranged of 25–85%. The presence of the Cr(CO)₃ group in the amino alcohol molecule did not significantly affect the course of condensation reactions in comparison with the reactions in which compounds $2\mathbf{a}-\mathbf{k}$ were prepared.

Note that (η^{6} -1-amino-2-hydroxymethylbenzene)tricarbonylchromium (**3**) was obtained and characterized by us for the first time. Its synthesis was carried out by the reaction of TATC (**1**) with 2-aminobenzyl alcohol in refluxing dioxane for 1.5 h (Scheme 2). Product **3**, obtained in 91% yield, was a yellow crystalline solid with m.p. 113–114 °C. The spectral characteristics of amino alcohol **3** are given in the Experimental.

Reagents and conditions: dioxane, 120 °C, 1.5 h.

Since most of the target heterocycles 5 contain two asymmetric centers (one of which is located at position 2

of the heterocyclic ring and has a tetrahedral chirality, while the other with planar chirality is located in the benzene part of the ligand), these substances can exist as two racemic diastereomers, which for compounds **5e**—**k** we designated as *trans* and *cis* isomers, indicating the mutual position of substituent R^2 and $Cr(CO)_3$ group relative to the heterocyclic ring.

Comparing the syntheses of compounds 5 by methods A and B showed that in the reaction of heterocycles 2d-k with TATC (1), diastereomers were formed in a ratio close to 1 : 1, while the condensation method, as a rule, gave a higher content of *trans* isomers in the mixture of product (Table 1). The greatest effect on the ratio of dia-

Table 1. The ratio of diastereomers of compounds 5d-k obtained by methods *A* and B^a

Compound	Ratio trans/cis			
	Method A	Method B		
5d ^b	1.0 : 1.0	1.0 : 1.0		
5e	1.0:1.0	1.3:1.0		
5f	1.0:1.0	1.6:1.0		
5g	1.0:1.0	2.0:1.0		
5h	c	1.2:1.0		
5i	1.2:1.0	3.0:1.0		
5j	c	3.3:1.0		
5k		d		

^{*a*} Determined from the ratio of peak areas of the products in HPLC chromatograms at $\lambda = 318$ nm. ^{*b*} The data are given for diastereomers **5d**.

The data are given for diastercomers 5

^c Method A did not give the compound.

^d Only *trans*-isomer was formed.

Com-	Yield	l (%) ^a	M.p./°C	IR (KBr),		
pound	A	B		$\nu(C=O)/cm^{-1}$		
5a	64	35	117-119	1940, 1866, 1848		
5b	79	85	130-132	1936, 1860, 1835		
5c	76	81	160-162	1938, 1855, 1832		
5d ^b	39	33	120-122	1937, 1878, 1841		
trans-5e	42	25	111-112	1947, 1859		
trans-5f	36	43	141-142	1941, 1865		
trans-5g	32	42	116-117	1962, 1894		
trans-5h		30	98-100	1957, 1865		
trans-5i	40	56	150-152	1967, 1874		
cis-5i	35	18	163-165	1947, 1869, 1844		
trans-5j		52	123-125	1950, 1865, 1850		
trans-5k	c	33	137-138	1947, 1881, 1854		

Table 2. Some characteristics of the compounds 5a-k

^{*a*} The yield is given for the purified product after column chromatography and recrystallization.

^b The data are given for isolated diastereomer **5d**.

^{*c*} Method *A* did not give the compound.

stereomers was exerted by the presence of bulky phenyl, 2-furyl, and 2-pyridyl groups in the composition of carbonyl compounds (see Table 1).

Products **5a**—**k** obtained by both methods were isolated from the reaction mixtures by column chromatography on silica gel, eluting with a mixture of hexane—ethyl acetate. Compounds presented in Table 2 were isolated in the pure form and characterized by HPLC, UV, IR, ¹H NMR spectroscopy, and mass spectrometry. The *cis*isomers of products **5e**—**k** (except for compound *cis*-**5i**) were isolated by column chromatography in mixtures with some amounts of the corresponding *trans*-products. In a number of cases, it was possible to describe ¹H NMR spectra of *cis*-isomers based on the spectrum of a mixture of diastereomers (see Experimental). All of the isolated compounds 5a-k were yellow crystalline substances, relatively stable in air, the purity of which was confirmed by HPLC. Their IR spectra exhibited strong absorption bands of stretching vibrations of the CO groups of Cr(CO)₃ fragments in the region of 1832-1967 cm⁻¹ (see Table 2), as well as other absorption bands characteristic of the heterocycles under study (see Experimental).

¹H NMR spectroscopy also confirmed the structure of 1,4-dihydro-3,1-benzoxazines 5a-k: the spectra exhibited the signals for the protons of the heterocyclic ring, substituents R^1 and R^2 , as well as $(\eta^6$ -arene)Cr(CO)₃ fragments (see Experimental). The signals of the methylidene group of the $C(4)H_2$ atom in the heterocyclic ring turned out to be very informative, which allowed us to distinguish the diastereomers of compounds 5e-k. As can be seen from Table 3, the OCH₂ group of *cis*-isomeric products resonates as two doublets with a spin-spin coupling constant of 14.1–14.5 Hz and a difference in the chemical shift values of these protons at a level of 0.32–0.46 ppm, while for trans-isomers this is either one signal (singlet or doublet), or two closely positioned doublets with a difference in the chemical shift values of no more than 0.09 ppm. The reason for this difference is the spatial arrangement of the considered protons. In cis-isomer, one of the protons of the OCH₂ fragment is shielded simultaneously by both the $Cr(CO)_3$ group and the R^2 substituent at the C(2) atom, which ultimately leads to a significantly greater difference in the chemical shift values of these protons as compared to that for *trans*-isomer, in which there is no such double shielding and the protons are more equivalent. For compound 5d, the protons of the OCH₂ fragment are nonequivalent in both diastereomers due to the shielding by the $Cr(CO)_3$ group, the methyl or ethyl substituent of one of the proton in the pair. This is reflected in the separation of the doublets of these protons in the ¹H NMR spectra by ~ 0.3 ppm for each diastereomer (see Experimental).

Com-	trans-5		cis-5	
pound 5	δ(OCH ₂)	$\Delta(\delta(OCH_2))$	δ(OCH ₂)	$\Delta(\delta(OCH_2))$
	(<i>J</i> /Hz)		(<i>J</i> /Hz)	
e	4.71 (d, 2 H, <i>J</i> = 5.5)	0	4.38 (d, 1 H, <i>J</i> = 14.1); 4.77 (d, 1 H, <i>J</i> = 14.1)	0.39
f	4.72 (s, 2 H)	0	a	<i>a</i>
g	4.72 (s, 2 H)	0	4.41 (d, 1 H, J = 14.1); 4.77 (d, 1 H, J = 14.1)	0.36
h	4.71 (d, 2 H, $J = 2.0$)	0	a	<i>a</i>
i	4.78 (d, 1 H, $J = 14.5$); 4.87 (d, 1 H, $J = 14.5$)	0.09	4.57 (d, 1 H, <i>J</i> = 14.5); 5.03 (d, 1 H, <i>J</i> = 14.5)	0.46
j	4.64 (d, 1 H, $J = 14.5$); 4.69 (d, 1 H, $J = 14.5$)	0.05	4.52 (d, 1 H, $J = 14.5$); 4.98 (d, 1 H, $J = 14.5$)	0.46
k	4.90 (d, 1 H, J = 14.5); 4.98 (d, 1 H, J = 14.5)	0.08	b	b

Table 3. Chemical shift values for the OCH₂ protons of *trans*- and *cis*-isomers of heterocycles 5e-k

^a Spectrum for *cis*-isomer was not recorded.

^b Only *trans*-isomer was obtained.

Fig. 1. Molecular structure of the compound *cis*-5i.

The structures of compounds **5c**, *trans*-**5e**, and *cis*-**5i** containing spirocyclohexane, methyl, and phenyl substituents at the C(2) atom, respectively, was also confirmed by X-ray diffraction data. The specific features of the structures of compounds **5c** and *trans*-**5e** were described earlier in the works.^{25,26} The molecular structure of *cis*-**5i** complex is shown in Fig. 1. Table 4 contains the principal bond lengths and bond angles in this compound.

X-ray diffraction analysis of compound cis-5i confirmed that the phenyl substituent and the $Cr(CO)_3$ group are located on the same side of the heterocyclic ring. It was shown that the heterocyclic part of molecule *cis*-5i has a *half-chair* conformation: all atoms, except for the oxygen atom, lie practically in the same plane. The hybridization of the nitrogen atom is close to sp^2 (the angle C(9)-N(1)-C(11) is equal to 119.4(2)°). The bond lengths of the heterocyclic ring are in the range 1.377(3)— 1.497(5) Å, while the C(8)-C(9) distance is closer to that in arenes and is equal to 1.398(4) Å. The distance between the heterocyclic ring and the phenyl substituent (C(11)-C(12)) is equal to 1.502(5) Å. The Cr-C_{arene} bond lengths in cis-5i are close to each other and lie in the range 2.196(3) - 2.331(3) Å. The Cr-C(CO) distances are 1.810(3) - 1.819(4) Å, and the angles in the Cr(CO)₃ fragment are close to 90° (87.8(2)–91.2(2)°), which is typical of $(\eta^{6}$ -arene)Cr(CO)₃ complexes.²⁷

For the obtained series of $(\eta^6$ -arene)tricarbonylchromium derivatives 5a-k, electron impact mass spectra were recorded and their fragmentation was studied. As in the case of other transition metal carbonyl complexes.²⁸ the primary fragmentation of molecular ions [M]⁺ consisted in the stepwise dissociation of three carbonyl groups, which led to the formation of fragments $[F_1]^+$ (see Scheme 3). Further, for all analyzed samples the main direction of fragmentation was the elimination of water molecule to obtain $[F_2]^+$ and further elimination of substituent R^2 (in the case of compound **5c**, the elimination of the C_5H_{10} fragment) with the formation of $[F_3]^+$ (see Scheme 3, Table 5). The elimination of water and the substituent at the C(2) atom from dihydro-3,1-benzoxazine molecules during fragmentation under electron impact is confirmed by the literature data.29

In conclusion, this study resulted in the synthesis of new (η^6 -arene)tricarbonylchromium derivatives of 1,4-dihydro-3,1-benzoxazines **5a**—**k**, which were characterized by various methods. These compounds were obtained by two alternative methods, namely, by the reaction of heterocyclic compounds **2a**—**k** with triammine(tricarbonyl)-

Table 4. Principal bond distances (d) and bond angles (ω) for the structure cis-5i

Bond	d/Å	Bond	d/Å	Bond	d/Å	Angle	ω/deg
C(10) - O(1)	1.425(4)	C(14)-C(15)	1.355(8)	C(4)—Cr(1)	2.242(3)	C(9)–N(1)–C(11)	119.4(2)
C(11)-O(1)	1.409(4)	C(15) - C(16)	1.355(8)	C(5) - Cr(1)	2.196(3)	N(1)-C(11)-O(1)	109.3(3)
C(11) - N(1)	1.461(5)	C(16) - C(17)	1.377(6)	C(6) - Cr(1)	2.217(3)	C(10) - O(1) - C(11)	111.3(2)
C(9) - N(1)	1.377(3)	C(12) - C(17)	1.370(6)	C(7) - Cr(1)	2.205(3)	C(8) - C(10) - O(1)	110.1(3)
C(8) - C(9)	1.398(4)	C(4) - C(9)	1.412(5)	C(8) - Cr(1)	2.257(3)	C(9) - C(8) - C(10)	118.5(3)
C(8) - C(10)	1.497(5)	C(4) - C(5)	1.389(5)	C(9) - Cr(1)	2.331(3)	C(8) - C(9) - N(1)	119.6(2)
C(11) - C(12)	1.502(5)	C(5) - C(6)	1.396(4)	C(1) - Cr(1)	1.815(3)	C(1) - Cr(1) - C(2)	91.2(2)
C(12)-C(13)	1.387(5)	C(6) - C(7)	1.396(5)	C(2) - Cr(1)	1.810(3)	C(2) - Cr(1) - C(3)	87.8(2)
C(13)-C(14)	1.375(6)	C(7) - C(8)	1.411(5)	C(3)-Cr(1)	1.819(4)	C(1) - Cr(1) - C(3)	90.6(2)
C(8)-C(10) C(11)-C(12) C(12)-C(13) C(13)-C(14)	1.497(5) 1.502(5) 1.387(5) 1.375(6)	C(4)-C(5) C(5)-C(6) C(6)-C(7) C(7)-C(8)	1.389(5) 1.396(4) 1.396(5) 1.411(5)	C(9)-Cr(1) C(1)-Cr(1) C(2)-Cr(1) C(3)-Cr(1)	2.331(3) 1.815(3) 1.810(3) 1.819(4)	C(8)-C(9)-N(1) C(1)-Cr(1)-C(2) C(2)-Cr(1)-C(3) C(1)-Cr(1)-C(3)	119.6(2) 91.2(2) 87.8(2) 90.6(2)

Scheme 3

Table 5. Mass spectrometry data for compounds 5a-k (EI, 70 eV), m/z (I_{rel} (%))

Com- pound	$[M]^+$	$[F_1]^+$	[F ₂] ⁺	[F ₃] ⁺
5a	271 (100)	187 (15)	169 (29)	168 (28)
5b	299 (33)	215 (100)	197 (68)	182 (59)
5c	339 (23)	255 (100)	237 (46)	167 (5)
5d ^a	313 (37)	229 (100)	211 (54)	182 (22)
trans-5e	285 (67)	201 (100)	183 (51)	168 (60)
trans-5f	299 (36)	215 (40)	197 (52)	168 (25)
trans-5g	327 (64)	243 (100)	225 (28)	168 (65)
trans-5h	311 (52)	227 (98)	209 (100)	168 (25)
trans-5i	347 (36)	263(76)	245 (28)	168 (12)
cis-5i	347 (19)	263 (85)	245 (21)	168 (6)
trans-5j	337 (39)	253 (79)	235 (67)	168 (52)
trans-5k	348 (15)	264 (100)	246 (63)	168 (43)

^{*a*} The data are given for isolated diastereomer **5d**.

chromium 1 (method A) and by the condensation of chromium-containing amino alcohol 3 with carbonyl compounds 4a-k (method B). It was shown that method B allows one to synthesize a wider range of N-H-substituted products.

Experimental

Solvents were distilled over sodium metal at atmospheric pressure. Ethyl acetate was dried over calcium chloride and distilled.³⁰ Commercial paraformaldehyde (4a) and acetaldehyde (4e) (Sigma-Aldrich) were used without preliminary purification. Aldehydes and ketones 4b-d, 4f-k were purified by distillation at atmospheric or reduced pressure. 2-Aminobenzyl alcohol (Sigma-Aldrich) was purified by recrystallization from a mixture of hexane—ethyl acetate (10 : 1). Compounds $2a-d_{f}$, $i_{1}^{18} 2e_{1}^{19} 2g_{2}^{20} 2h$, $2j_{1}^{21}$ and $2k^{22}$ were obtained by condensation of aldehydes and ketones 4a-k with 2-aminobenzyl alcohol in THF in the presence of magnesium sulfate according to a procedure similar to that described in the work.¹⁷ The reaction time and temperature, as well as the yields of compounds 2a-k are presented in Table 6. Triammine(tricarbonyl)chromium (1) was synthesized according to the known method.³¹

Products **5a–k** were isolated and purified by column chromatography using Acros 0.035–0.070 mm silica gel under argon atmosphere, eluent hexane—ethyl acetate. HPLC analysis was carried out on a Knauer Smartline 5000 chromatograph with a S 2600 UV diode array detector (UV spectra of eluates were recorded in the range of 200–500 nm), a Diasfer-110-S16 column, 5 µm, 4.6×250 mm, eluent acetonitrile—water (84 : 16); the flow rate of the eluent was 0.7 mL min⁻¹. IR spectra were recorded on an FTIR-8400S instrument (Shimadzu) in the wave number range of 500–4000 cm⁻¹ in KBr pellets. ¹H NMR spectra were recorded in acetone-d₆ on an Agilent DD2 NMR 400NB spectrometer (400 MHz). Mass spectrometric studies were carried out on a Trace DSQII instrument, ionization by electron impact (70 eV), *m/z* range of 70–500, temperature programming from 50 to 450 °C at a heating rate of 100 deg min⁻¹.

(n⁶-1-Amino-2-hydroxymethylbenzene)tricarbonylchromium (3). 2-Aminobenzyl alcohol (5.00 g, 41 mmol), TATC (1) (7.6 g, 41 mmol), and dioxane (60 mL) were placed into a pre-deaerated and then filled with argon two-neck flask, equipped with a reflux condenser and a gas burette with dibutyl phthalate. The reaction mixture was heated for 1.5 h in an oil bath at 120 °C until 2.7 L of ammonia were evolved. Then, the flask was cooled and filled with argon. The resulting mixture was filtered on a Schott filter filled with aluminum oxide, the solvent was evaporated. The residue was recrystallized from a mixture of hexane-ethyl acetate (9:1). Product 3 was obtained as a yellow powder. The yield was 91%, m.p. 113-114 °C. HPLC: one peak, $\tau = 4.6$ min. UV (MeCN, H₂O), λ /nm: 218, 315. IR (KBr), v/cm⁻¹: 3591, 3477, 3364 (v(N-H, O-H)); 3090 (v(C_{arene}-H); 2846 (v(C−H); 1956, 1855, 1836 (v(C=O)); 1630, 1547 $(v(C_{arene} - C_{arene}); 671 (\omega(C_{arene} - H)))$. MS (EI, 70 eV), m/z $(I_{rel}(\%)): 259 [M]^+ (31), 203 [M - 2 CO]^+ (8.3), 175 [M - 3 CO]^+$ (25), 157 $[M - 3 CO - H_2O]^+$ (100), 52 $[Cr]^+$ (49). ¹H NMR (acetone-d₆, 400 MHz), δ: 4.35-4.54 (m, 3 H, CH₂OH); 4.90 (td, 1 H, H_{arene} , J = 6.3 Hz, J = 0.8 Hz); 5.14 (dd, 1 H, H_{arene} , J = 6.7 Hz, J = 0.8 Hz); 5.27 (br.s, 2 H, NH₂), 5.69–5.74 (m, 1 H, H_{arene}); 5.88 (dd, 1 H, H_{arene} , J = 6.3 Hz, J = 1.2 Hz).

Synthesis of tricarbonylchromium derivatives of 1,4-dihydro-3,1-benzoxazines 5a—k (general procedure). Method *A*. The reagent TATC (1) (24 mmol) and one of compounds 2a—k (24 mmol), and dioxane (60 mL) were placed into a pre-deaerated and then filled with argon two-neck flask, equipped with a reflux condenser and a gas burette with dibutyl phthalate. The reaction mixture was heated in an oil bath at 120 °C for 4—6 h,

Table 6. Reaction time (τ) , temperature (T), and yields of compounds $2\mathbf{a} - \mathbf{k}$

2	τ/h	<i>T</i> /°C	Yield (%)
a	3	50	68
b	7	50	91
c	10	50	45
d	10	50	43
e	3	60	75
f	10	60	74
g	10	60	57
h	10	50	55
i	3	100	85
j	10	50	48
k	8	50	42

then, the flask was cooled and filled with argon. The resulting mixture was filtered on a Schott filter filled with aluminum oxide, the solvent was evaporated. The residue was subjected to column chromatography to isolate reaction products, which were recrystallized from a mixture of hexane—ethyl acetate. The yellow crystals formed were filtered on a Schott filter and then dried in a desiccator.

Method B. (η^{6} -1-Amino-2-hydroxymethylbenzene)tricarbonylchromium (3) (1.6 g, 6 mmol), carbonyl compound 4a or 4e (12 mmol) or one of compounds 4b–d,f–k (6 mmol), anhydrous MgSO₄ (2.0 g, 16 mmol), and tetrahydrofuran (5 mL) were placed into a 10-mL glass tube. The tube was deaerated in liquid nitrogen, vacuum-sealed, and heated at 25–80 °C for 5–9 h. Then the tube was cooled to room temperature (if necessary) and unsealed, the reaction mixture was concentrated *in vacuo*. Further product isolation was carried out in accordance with the procedure described in method *A*.

Yields and melting points of compounds 5a-k are given in Table 2, conditions for the synthesis of these substances are summarized in Table 7.

η⁶-(1,4-Dihydro-2*H***-3,1-benzoxazine)tricarbonylchromium (5a). HPLC: one peak, \tau = 4.9 min. UV (MeCN, H₂O), λ/nm: 218, 318, 430. IR (KBr), v/cm⁻¹: 3412 (v(N-H)); 3099 (v(C_{arene}-H)); 2858 (v(C-H)); 1940, 1866, 1848 (v(C=O)); 1558, 1489 (v(C_{arene}-C_{arene})); 819, 677 (ω(C_{arene}-H)). MS,** *m/z* **(***I***_{rel} (%)): 271 [M]⁺ (100), 270 [M - H]⁺ (77), 215 [M - 2 CO]⁺ (18), 187 [M - 3 CO]⁺ (15), 187 [M - 3 CO - 2 H]⁺ (20), 169 [M - 3 CO - H₂O]⁺ (29), 168 [M - 3 CO - H₂O - H]⁺ (28), 167 [M - 3 CO - H₂O]⁺ (36), 52 [Cr]⁺ (14). ¹H NMR, δ: 4.52 (d, 1 H, NCH₂OC<u>H₂</u>,** *J* **= 14.1 Hz); 4.65-4.82 (m, 3 H, NCH₂OC<u>H₂</u>, NC<u>H₂OCH₂</u>); 5.03 (t, 1 H, H_{arene},** *J* **= 6.3 Hz); 5.16 (d, 1 H, H_{arene},** *J* **= 6.7 Hz); 5.66 (t, 1 H, H_{arene},** *J* **= 6.7 Hz); 5.79 (d, 1 H, H_{arene},** *J* **= 6.3 Hz); 6.04 (br.s, 1 H, HN).**

η⁶-(2,2-Dimethyl-1,4-dihydro-2*H*-3,1-benzoxazine)tricarbonylchromium (5b). HPLC: one peak, $\tau = 5.8$ min. UV (MeCN, H₂O), λ/nm: 219, 317, 447. IR (KBr), v/cm⁻¹: 3402 (v(N–H)); 2946 (v(C–H)); 1936, 1860, 1835 (v(C=O)); 1556, 1490 (v(C_{arene}-C_{arene})); 750, 634 (ω(C_{arene}-H)). MS, *m/z* (*I*_{rel} (%)): 299 [M]⁺ (33), 243 [M – 2 CO]⁺ (14), 215 [M – 3 CO]⁺ (100), 197 [M – 3 CO – H₂O]⁺ (68), 182 [M – 3 CO – H₂O – Me]⁺ (59), 52 [Cr]⁺ (73). ¹H NMR, δ: 1.37 (s, 3 H, Me); 1.51 (s, 3 H, Me); 4.43 (d, 1 H, OCH₂, *J* = 14.9 Hz); 4.76 (d, 1 H, OCH₂, *J* = 14.9 Hz); 4.96 (td, 1 H, H_{arene}, *J* = 6.3 Hz, *J* = 0.8 Hz); 5.06 (dd, 1 H, H_{arene}, *J* = 6.7 Hz, *J* = 0.8 Hz); 5.64 (td, 1 H, H_{arene}, *J* = 7.0 Hz, *J* = 1.2 Hz); 5.84 (d, 1 H, H_{arene}, *J* = 6.3 Hz); 6.20 (br.s, 1 H, HN).

 $η^{6}$ -(2-Spirocyclohexane-1,4-dihydro-3,1-benzoxazine)tricarbonylchromium (5c). HPLC: one peak, τ = 7.7 min. UV (MeCN, H₂O), λ/nm: 219, 317, 446. IR (KBr), v/cm⁻¹: 3396

Table 7. Reaction time (τ) and temperature (T) of synthesis for compounds **5a**-**k** by methods *A* and *B*

Com-	τ/	′h	<i>T</i> /°C	Com-	1	:/h	<i>T</i> /°C
pound 5	A	B	(<i>B</i>)	pound 5	Α	B	(<i>B</i>)
a	4	5	25	g	5	8	50
b	4	8	40	h	5	7	50
c	6	8	40	i	4	8	80
d	4	8	40	j	5	7	50
e	5	9	40	k	4	6	40
f	6	7	50				

(v(N-H)); 3128 (v(C_{arene}-H)); 2937 (v(C-H)); 1938, 1855, 1832 (v(C=O)); 1562, 1493 (v(C_{arene}-C_{arene})); 818, 788, 677 (ω (C_{arene}-H)). MS, *m/z* (I_{rel} (%)): 339 [M]⁺ (23), 283 [M - 2 CO]⁺ (6), 255 [M - 3 CO]⁺ (100), 237 [M - 3 CO - H₂O]⁺ (46), 167 [M - 3 CO - C₅H₁₀]⁺ (5), 157 [M - 4 CO - C₅H₁₀]⁺ (12), 52 [Cr]⁺ (65). ¹H NMR, δ : 1.23–1.39 (m, 1 H, C₅H₁₀); 1.42–1.75 (m, 7 H, C₅H₁₀); 1.80–1.93, 1.95–2.03 (both m, 1 H each, C₅H₁₀); 4.42 (d, 1 H, OCH₂, *J* = 14.5 Hz); 4.73 (d, 1 H, OCH₂, *J* = 14.5 Hz); 5.09 (d, 1 H, H_{arene}, *J* = 6.3 Hz); 5.64 (t, 1 H, H_{arene}, *J* = 6.3 Hz); 5.83 (d, 1 H, H_{arene}, *J* = 6.3 Hz); 6.15 (br.s, 1 H, HN).

η⁶-(2-Ethyl-2-methyl-1,4-dihydro-2*H*-3,1-benzoxazine)tricarbonylchromium (5d). *Diastereomer 1*. HPLC: one peak, $\tau = 7.0$ min. UV (MeCN, H₂O), λ /nm: 213, 315, 432. IR (KBr), ν /cm⁻¹: 3411 (ν (N–H)); 2924 (ν (C–H)); 1937, 1878, 1841 (ν (C=O)); 1561, 1493 (ν (C_{arene}-C_{arene})); 808, 675 (ω (C_{arene}-H)). MS, *m/z* (I_{rel} (%)): 313 [M]⁺ (37), 257 [M – 2 CO]⁺ (15), 229 [M – 3 CO]⁺ (100), 211 [M – 3 CO – H₂O]⁺ (54), 182 [M – 3 CO – H₂O – Et]⁺ (22), 52 [Cr]⁺ (9). ¹H NMR, δ: 0.89 (t, 3 H, MeCCH₂Me, *J* = 7.4 Hz); 1.45 (s, 3 H, MeCCH₂Me); 1.57–1.68 (m, 1 H, CH₂Me); 1.69–1.80 (m, 1 H, CH₂Me); 4.42 (d, 1 H, OCH₂, *J* = 14.9 Hz); 4.70 (d, 1 H, OCH₂, *J* = 14.9 Hz); 4.95 (td, 1 H, H_{arene}, *J* = 6.3 Hz, *J* = 0.8 Hz); 5.07 (dd, 1 H, H_{arene}, *J* = 6.7 Hz, *J* = 0.8 Hz); 5.60–5.67 (m, 1 H, H_{arene}); 5.83 (d, 1 H, H_{arene}, *J* = 6.3 Hz); 6.19 (br.s, 1 H, HN).

Diastereomer 2. ¹H NMR, δ : 0.99 (t, 3 H, MeCCH₂Me, J=7.4 Hz); 1.32 (s, 3 H, MeCCH₂Me); 1.70–1.81 (m, 1 H, CH₂Me); 1.82–1.92 (m, 1 H, CH₂Me); 4.44 (d, 1 H, OCH₂, J=14.5 Hz); 4.76 (d, 1 H, OCH₂, J=14.5 Hz); 4.95 (t, 1 H, H_{arene}, J=6.3 Hz); 5.09 (d, 1 H, H_{arene}, J=7.0 Hz); 5.63 (t, 1 H, H_{arene}, J=6.3 Hz); 5.82 (d, 1 H, H_{arene}, J=6.3 Hz); 6.16 (br.s, 1 H, HN).

trans-η⁶-(2-Methyl-1,4-dihydro-2*H*-3,1-benzoxazine)tricarbonylchromium (*trans*-5e). HPLC: one peak, $\tau = 5.3$ min. UV (MeCN, H₂O), λ /nm: 216, 317, 432. IR (KBr), ν /cm⁻¹: 3325 (ν (N-H)); 3099 (ν (C_{arene}-H)); 2991 (ν (C-H)); 1947, 1859 (ν (C=O)); 1558, 1530, 1489 (ν (C_{arene}-C_{arene})); 814, 673 (ω (C_{arene}-H)). MS, *m/z* (*I*_{rel} (%)): 285 [M]⁺ (67), 229 [M - 2 CO]⁺ (17), 201 [M - 3 CO]⁺ (100), 183 [M - 3 CO - H₂O]⁺ (51), 168 [M - 3 CO - H₂O - Me]⁺ (60), 52 [Cr]⁺ (40). ¹H NMR, δ: 1.34 (d, 3 H, Me, *J* = 5.9 Hz); 4.71 (d, 2 H, OCH₂, *J* = 5.5 Hz); 4.82 (q, 1 H, NCHO, *J* = 5.5 Hz); 5.09 (t, 1 H, H_{arene}, *J* = 6.3 Hz); 5.21 (d, 1 H, H_{arene}, *J* = 7.0 Hz); 5.64 (td, 1 H, H_{arene}, *J* = 7.0 Hz, *J* = 1.2 Hz); 5.73 (d, 1 H, H_{arene}, *J* = 6.3 Hz); 6.10 (br.s, 1 H, HN).

cis- η^{6} -(2-Methyl-1,4-dihydro-2*H*-3,1-benzoxazine)tricarbonylchromium (*cis*-5e). ¹H NMR, δ : 1.37 (d, 3 H, Me, J = 5.5 Hz); 4.38 (d, 1 H, OCH₂, J = 14.1 Hz); 4.73–4.80 (m, 2 H, OCH₂, NCHO); 4.92 (td, 1 H, H_{arene}, J = 6.3 Hz, J = 0.8 Hz); 5.00 (dd, 1 H, H_{arene}, J = 7.0 Hz, J = 0.8 Hz); 5.67 (td, 1 H, H_{arene}, J = 7.0 Hz, J = 1.2 Hz); 5.87 (d, 1 H, H_{arene}, J = 6.3 Hz); 5.95 (br.s, 1 H, HN).

trans-η⁶-(2-Ethyl-1,4-dihydro-2*H*-3,1-benzoxazine)tricarbonylchromium (*trans*-5f). HPLC: one peak, $\tau = 6.8$ min. UV (MeCN, H₂O), λ /nm: 219, 318. IR (KBr), v/cm⁻¹: 3357 (v(N-H)); 3100 (v(C_{arene}-H)); 2970 (v(C-H)); 1941, 1865 (v(C=O)); 1557, 1531, 1488 (v(C_{arene}-C_{arene})); 814, 673 (ω (C_{arene}-H)). MS, *m/z* (*I*_{rel} (%)): 299 [M]⁺ (36), 243 [M - 2 CO]⁺ (14), 215 [M - 3 CO]⁺ (40), 197 [M - 3 CO - H₂O]⁺ (52), 195 [M - 3 CO - H₂O - 2 H]⁺ (100), 168 [M - 3 CO -- H₂O - Et]⁺ (25), 52 [Cr]⁺ (81). ¹H NMR, δ: 0.99 (t, 3 H, Me, *J* = 7.8 Hz); 1.60-1.75 (m, 2 H, CH₂Me); 4.64 (t, 1 H, NCHO, *J* = 5.1 Hz); 4.72 (s, 2 H, OCH₂); 5.08 (td, 1 H, H_{arene}, *J* = 6.3 Hz, *J* = 0.8 Hz); 5.23 (dd, 1 H, H_{arene}, *J* = 7.0 Hz, *J* = 0.8 Hz); 5.64 (td, 1 H, H_{arene}, J = 6.3 Hz, J = 1.2 Hz); 5.74 (br.d, 1 H, H_{arene}, J = 6.7 Hz); 6.05 (br.s, 1 H, HN).

trans-n⁶-(2-Butyl-1,4-dihydro-2H-3,1-benzoxazine)tricarbonylchromium (trans-5g). HPLC: one peak, $\tau = 8.6$ min. UV (MeCN, H₂O), λ/nm: 219, 318 and 219, 318. IR (KBr), ν/cm^{-1} : 3374 ($\nu(N-H)$); 3108 ($\nu(C_{arene}-H)$); 2931 ($\nu(C-H)$); 1962, 1894 (v(C=O)); 1555, 1525, 1485 (v(C_{arene}-C_{arene})); 862, 671 (ω(C_{arene}-H)). MS (m/z (I_{rel} (%)): 327 [M]⁺ (64), 271 $[M - 2CO]^+(15), 243[M - 3CO]^+(100), 225[M - 3CO - H_2O]^+$ (28), 223 $[M - 3CO - H_2O - 2H]^+$ (68), 168 $[M - 3CO - H_2O$ - Bu]⁺ (65), 52 [Cr]⁺ (96). ¹H NMR, δ : 0.90 (t, 3 H, Me, J = 7.4 Hz); 1.31–1.41, 1.41–1.52 (both m, 2 H each, $Me(CH_2)_2CH_2$; 1.67 (td, 2 H, $Me(CH_2)_2CH_2$, J = 7.8 Hz, *J* = 5.5 Hz); 4.69 (br.d, 1 H, NCHO, *J* = 5.5 Hz); 4.72 (s, 2 H, OCH_2); 5.08 (td, 1 H, H_{arene}, J = 6.3 Hz, J = 0.8 Hz); 5.23 (dd, 1 H, H_{arene} , J = 7.0 Hz, J = 0.8 Hz); 5.64 (td, 1 H, H_{arene} , J = 7.0 Hz, J = 1.2 Hz); 5.74 (br.d, 1 H, H_{arene}, J = 6.3 Hz); 6.04 (br.s, 1 H, HN).

cis- η^6 -(2-Butyl-1,4-dihydro-2*H*-3,1-benzoxazine)tricarbonylchromium (*cis*-5g). ¹H NMR, δ : 0.90 (t, 3 H, Me, J = 7.4 Hz); 1.31–1.41, 1.41–1.52 (both m, 2 H each, Me(CH₂)₂CH₂); 1.67–1.78 (m, 2 H, Me(CH₂)₂CH₂); 4.41 (d, 1 H, OCH₂, J = 14.1 Hz); 4.60–4.65 (m, 1 H, NCHO); 4.77 (d, 1 H, OCH₂, J = 14.1 Hz); 4.93 (td, 1 H, H_{arene}, J = 7.0 Hz, J = 0.8 Hz); 5.02 (dd, 1 H, H_{arene}, J = 6.6 Hz, J = 0.8 Hz); 5.67 (td, 1 H, H_{arene}, J = 7.4 Hz, J = 1.2 Hz); 5.86 (br.d, 1 H, H_{arene}, J = 6.3 Hz); 5.90 (br.s, 1 H, HN).

trans-η⁶-[2-(Prop-1'-en-1'-yl)-1,4-dihydro-2*H*-3,1-benzoxazine]tricarbonylchromium (*trans*-5h). HPLC: one peak, τ =7.2 min. UV (MeCN, H₂O), λ /nm: 219, 318. IR (KBr), ν /cm⁻¹: 3357 (ν (N-H)); 3100 (ν (C_{arene}-H)); 2971 (ν (C-H)); 1957, 1865 (ν (C=O)); 1531, 1488 (ν (C_{arene}-C_{arene})); 814, 674 (ω (C_{arene}-H)). MS, *m/z* (*I*_{rel} (%)): 311 [M]⁺ (52), 255 [M - 2 CO]⁺ (8), 227 [M - 3 CO]⁺ (98), 209 [M - 3 CO - H₂O]⁺ (100), 168 [M - 3 CO - H₂O - (CH)₂Me]⁺ (25), 52 [Cr]⁺ (52). ¹H NMR, δ: 1.72 (dd, 3 H, Me, *J* = 6.3 Hz, *J* = 1.2 Hz); 4.71 (d, 2 H, OCH₂, *J* = 2.0 Hz); 5.05–5.12 (m, 2 H, NCHO, H_{arene}); 5.27 (dd, 1 H, H_{arene}, *J* = 7.0 Hz, *J* = 0.8 Hz); 5.48–5.59 (m, 1 H, (C<u>H)</u>₂Me); 5.66 (td, 1 H, H_{arene}, *J* = 7.0 Hz, *J* = 1.2 Hz); 5.75 (d, 1 H, H_{arene}, *J* = 6.7 Hz); 5.90–6.02 (m, 1 H, (C<u>H)</u>₂Me); 6.07 (br.s, 1 H, HN).

trans-η⁶-(2-Phenyl-1,4-dihydro-2*H*-3,1-benzoxazine)tricarbonylchromium (*trans*-5i). HPLC: one peak, $\tau = 6.2$ min. UV (MeCN, H₂O), λ /nm: 218, 318, 430. MS, *m/z* (I_{rel} (%)): 347 [M]⁺ (36), 291 [M – 2 CO]⁺ (5), 263 [M – 3 CO]⁺ (76), 261 [M – 3 CO – 2 H]⁺ (100), 245 [M – 3 CO – H₂O]⁺ (28), 243 [M – 3 CO – H₂O – 2 H]⁺ (67), 168 [M – 3 CO – H₂O – Ph]⁺ (12), 157 [M – 3 CO – PhCHO]⁺ (6), 77 [Ph]⁺ (32), 52 [Cr]⁺ (55). IR (KBr), v/cm⁻¹: 3327 (v(N–H)); 2925 (v(C–H)); 1967, 1874 (v(C=O)); 1549, 1525, 1477 (v(C_{arene}-C_{arene})); 780, 710, 661 (ω (C_{arene}-H)). ¹H NMR, δ: 4.78 (d, 1 H, OCH₂, J = 14.5 Hz); 4.87 (d, 1 H, OCH₂, J = 14.5 Hz); 5.68–5.74 (m, 2 H, H_{arene}, NCHO); 5.82 (d, 1 H, H_{arene}, J = 6.3 Hz); 6.31 (br.s, 1 H, HN); 7.38–7.47 (m, 3 H, H_{Ph}); 7.48–7.56 (m, 2 H, H_{Ph}).

cis- η^6 -(2-Phenyl-1,4-dihydro-2*H*-3,1-benzoxazine)tricarbonylchromium (*cis*-5i). HPLC: one peak, $\tau = 5.8$ min. UV (MeCN, H₂O), λ /nm: 216, 320, 431. IR (KBr), v/cm⁻¹: 3410 (v(N–H)); 2916 (v(C–H)); 1947, 1869, 1844 (v(C=O)); 1652, 1558 (v(C_{arene}-C_{arene})); 750, 710, 670 (ω (C_{arene}-H)). MS, *m/z* (I_{rel} (%)): 347 [M]⁺ (19), 291 [M – 2 CO]⁺ (5), 263 [M – 3 CO]⁺ (85), 261 $[M - 3 CO - 2 H]^+$ (100), 245 $[M - 3 CO - H_2O]^+$ (21), 243 $[M - 3 CO - H_2O - 2 H]^+$ (50), 168 $[M - 3 CO - H_2O - Ph]^+$ (6), 77 $[Ph]^+$ (6), 52 $[Cr]^+$ (21). ¹H NMR, 8: 4.57 (d, 1 H, OCH₂, *J* = 14.5 Hz); 4.98 (dd, 1 H, H_{arene}, *J* = 6.3 Hz, *J* = 0.8 Hz); 5.03 (d, 1 H, OCH₂, *J* = 14.5 Hz); 5.15 (d, 1 H, H_{arene}, *J* = 6.7 Hz); 5.63 (d, 1 H, NCHO, *J* = 2.7 Hz); 5.73 (td, 1 H, H_{arene}, *J* = 7.0 Hz, *J* = 1.2 Hz); 5.95 (d, 1 H, H_{arene}, *J* = 6.3 Hz); 6.12 (br.s, 1 H, HN); 7.37-7.46 (m, 3 H, H_{Ph}); 7.58-7.69 (m, 2 H, H_{Ph}).

trans-η⁶-[2-(2'-Furyl)-1,4-dihydro-2*H*-3,1-benzoxazine]tricarbonylchromium (*trans*-5j). HPLC: one peak, $\tau = 6.1$ min. UV (MeCN, H₂O), λ /nm: 219, 318. IR (KBr), v/cm⁻¹: 3360 (v(N-H)); 3099 (v(C_{arene}-H)); 2865 (v(C-H)); 1950, 1865, 1850 (v(C=O)); 1568, 1479 (v(C_{arene}-C_{arene})); 741, 673 (ω(C_{arene}-H)). MS, *m/z* (*I*_{rel} (%)): 337 [M]⁺ (39), 281 [M - 2 CO]⁺ (4), 253 [M - 3 CO]⁺ (79), 235 [M - 3 CO --H₂O]⁺ (67), 168 [M - 3 CO - H₂O - C₄H₃O]⁺ (52), 52 [Cr]⁺ (100). ¹H NMR, δ: 4.64 (d, 1 H, OCH₂, *J* = 14.5 Hz); 4.69 (d, 1 H, OCH₂, *J* = 14.5 Hz); 5.10 (td, 1 H, H_{arene}, *J* = 6.3 Hz, *J* = 0.8 Hz); 5.33 (dd, 1 H, H_{arene}, *J* = 7.0 Hz, *J* = 0.8 Hz); 5.72 (td, 1 H, H_{arene}, *J* = 6.3 Hz, *J* = 1.2 Hz); 5.82 (d, 1 H, H_{arene}, *J* = 6.3 Hz); 5.84 (d, 1 H, NCHO, *J* = 2.7 Hz); 6.44–6.47 (m, 1 H, C₄H₃O); 6.50 (br.s, 1 H, HN); 6.54 (d, 1 H, C₄H₃O, *J* = 3.1 Hz); 7.60 (dd, 1 H, C₄H₃O, *J* = 2.0 Hz, *J* = 0.8 Hz).

cis- η^{6} -[2-(2'-Furyl)-1,4-dihydro-2*H*-3,1-benzoxazine]tricarbonylchromium (*cis*-5j). ¹H NMR, δ : 4.52 (d, 1 H, OCH₂, J = 14.5 Hz); 4.96–5.02 (m, 2 H, OCH₂, H_{arene}); 5.20 (br.d, 1 H, H_{arene}, J = 6.7 Hz); 5.72–5.74 (m, 1 H, H_{arene}); 5.77 (d, 1 H, NCHO, J = 3.1 Hz); 5.91 (br.d, 1 H, H_{arene}, J = 6.3 Hz); 6.30 (br.s, 1 H, HN); 6.48 (dd, 1 H, C₄H₃O, J = 3.1 Hz, J = 1.6 Hz); 6.69 (d, 1 H, C₄H₃O, J = 3.5 Hz); 7.59 (dd, 1 H, C₄H₃O, J = 2.0 Hz, J = 0.8 Hz).

 Table 8. Basic crystallographic data and structure refinement statistics for compound *cis*-5i

Parameter	Value
Molecular formula	C ₁₇ H ₁₃ CrNO ₄
Molecular weight	347.28
Space group	P2(1)/c
a/Å	11.9124(10)
b/Å	8.3651(8)
c/Å	15.5815(12)
α/deg	90
β/deg	103.043(8)
γ/deg	90
$V/Å^3$	1512.6(2)
Ζ	4
$d_{\rm calc}/{ m mg}~{ m m}^{-3}$	1.525
μ/mm^{-1}	0.776
θ -Range for data collection/deg	3.447-26.372
Number of reflections	
collected	21489
unique with $I > 2\sigma(I)$	2276
R _{int}	0.0721
$GOOF(F^2)$	1.044
$R_1 (I \ge 2\sigma(I))$	0.0475
ωR_2 (all data)	0.139
Residual electron density	-0.399/0.353
$(\rho_{min}/\rho_{max})/e$ Å ⁻³	

trans-η⁶-[2-(2'-Pyridyl)-1,4-dihydro-2*H*-3,1-benzoxazine]tricarbonylchromium (*trans*-5k). HPLC: one peak, $\tau = 6.1$ min. UV (MeCN, H₂O), λ /nm: 218, 319, 432. IR (KBr), v/cm⁻¹: 3234 (v(N-H)); 3096 (v(C_{arene}-H)); 2922 (v(C-H)); 1947, 1881, 1854 (v(C=O)); 1557, 1530, 1500 (v(C_{arene}-C_{arene})); 788, 677 (ω (C_{arene}-H)). MS, *m/z* (I_{rel} (%)): 348 [M]⁺ (15), 347 [M - H]⁺ (21), 292 [M - 2 CO]⁺ (7), 264 [M - 3 CO]⁺ (100), 246 [M - 3 CO - H₂O]⁺ (63), 168 [M - 3 CO - H₂O - C₅H₄N]⁺ (43), 52 [Cr]⁺ (17). ¹H NMR, 8: 4.90 (d, 1 H, OCH₂, J = 14.5 Hz); 4.98 (d, 1 H, OCH₂, J = 14.5 Hz); 5.15 (t, 1 H, H_{arene}, J = 6.3 Hz); 5.56 (d, 1 H, H_{arene}, J = 6.7 Hz); 5.72 (td, 1 H, H_{arene}, J = 7.0 Hz, J = 1.2 Hz); 5.75 (s, 1 H, NCHO); 5.81 (d, 1 H, H_{arene}, J = 6.3 Hz); 6.52 (br.s, 1 H, H_N); 7.41 (ddd, 1 H, H_{py}, J = 5.5 Hz, J = 4.7 Hz, J = 0.8 Hz); 7.64 (d, 1 H, H_{py}, J = 7.8 Hz); 7.90 (td, 1 H, H_{py}, J = 7.8 Hz, J = 1.6 Hz); 8.57 (br.dd, 1 H, H_{py}, J = 4.7 Hz, J = 0.8 Hz).

X-ray diffraction study of complex cis-5i. Single crystals of compound cis-5i were obtained by crystallization from a mixture of hexane-ethyl acetate (4:1). The X-ray diffraction experiment was carried out on an Oxford Diffraction Gemini S diffractometer (graphite monochromator, λ (Mo-K α) = 0.71073 Å, temperature 297(2) K, ω-scan technique). The crystallographic data and the main refinement parameters for compound cis-5i are given in Table 8. Analytical correction for absorption.³² The primary fragment of the structure was found by direct methods. Parameters of the remaining atoms, including hydrogen atoms, were determined from the difference synthesis of the electron density and refined by the least-squares method based on F_{hkl}^2 . The positions of hydrogen atoms were refined in the main cycle of the least squares method in the isotropic approximation. All calculations were performed using the SHELX33 and WinGX34 software package. The structure cis-5i was deposited with the Cambridge Crystallographic Data Center (CCDC 1986599) and is available at ccdc.cam.ac.uk/structures.

The authors are grateful to the staff of the Chemical Department of the Lobachevsky State University of Nizhny Novgorod T. I. Liogon'kaya for the registration of IR spectra and Yu. B. Malysheva for the registration of ¹H NMR spectra.

This work was financially supported by the Ministry of Science and Higher Education of the Russian Federation (Project No. 0729-2020-0039) in the framework of the Basic part of the Russian state assignment.

References

- L. I. Kasyan, V. A. Pal'chikov, A. V. Tokar', Oksaazageterotsikly na osnove aminospirtov, epoksidov i aziridinov [Oxaazaheterocycles Based on Amino Alcohols, epoxides, and Aziridines], DNU, Dnepropetrovsk, 2012, 644 pp. (in Russian).
- 2. D. I. Bugaenko, A. V. Karchava, M. A. Yurovskaya, *Russ. Chem. Rev.*, 2018, **87**, 272.
- Bioorganometallics: Biomolecules, Labeling, Medicine, Ed. G. Jaouen, Willey-VCH, 2005, 444 pp.
- A. Berger, J. P. Djukic, Ch. Michon, *Coord. Chem. Rev.*, 2002, 225, 215.
- M. F. Semmelhack, in *Comprehensive Organometallic Chemistry II*, Eds E. W. Abel, F. G. A. Stone, G. Wilkinson, Pergamon Press, Oxford, UK, 1995, **12**, 1017.

- M. Rosillo, G. Domínguez, J. Perez-Castells, *Chem. Soc. Rev.*, 2007, 36, 1589.
- Transition Metal Arene π-Complexes in Organic Synthesis and Catalysts, Ed. E. P. Kündig, in Topics in Organometallic Chemistry, 7, Springer, 2004.
- C. Mukai, I. J. Kim, W. J. Cho, M. Kido, M. Hanaoka, J. Chem. Soc., Perkin Trans. 1, 1993, 2495.
- A. R. Pape, K. P. Kaliappan, E. P. Kündig, *Chem. Rev.*, 2000, 100, 2917.
- A. N. Artemov, E. V. Sazonova, E. A. Mavrina, N. Yu. Zarovkina, *Russ. Chem. Bull.*, 2012, **61**, 2076.
- 11. A. N. Artemov, E. V. Sazonova, N. Yu. Zarovkina, *Russ. Chem. Bull.*, 2013, **62**, 1382.
- N. Yu. Zarovkina, E. V. Sazonova, A. N. Artemov, G. K. Fukin, Russ. Chem. Bull., 2014, 63, 970.
- N. Yu. Zarovkina, E. V. Sazonova, A. N. Artemov, G. K. Fukin, *Russ. Chem. Bull.*, 2015, 64, 923.
- N. Yu. Grishina, E. V. Sazonova, A. N. Artemov, G. K. Fukin, V. I. Faerman, *Russ. Chem. Bull.*, 2017, 66, 313.
- A. N. Artemov, E. V. Sazonova, N. A. Krylova, E. A. Zvereva, N. A. Pechen, G. K. Fukin, A. V. Cherkasov, V. I. Faerman, N. Yu. Grishina, *Russ. Chem. Bull.*, 2018, 67, 884.
- A. N. Artemov, E. V. Sazonova, N. A. Aksenova, G. K. Fukin, A. V. Cherkasov, V. I. Faerman, N. Yu. Grishina, *Russ. Chem. Bull.*, 2019, 68, 1548.
- 17. L. Peng, Z. Liu, J. Wang, L. Wu, Tetrahedron Lett., 2007, 48, 7418.
- 18. F. W. Holly, A. C. Cope, J. Am. Chem. Soc., 1944, 66, 1875.
- H. Surburg, M. Gürtert, B. Schwarze, J. Essential Oil Research, 1990, 2, 307.
- H. V. Mierde, P. V. D. Voort, F. Verpoort, *Tetrahedron Lett.*, 2009, 50, 201.
- F. I. Zubkov, E. V. Nikitina, T. R. Galeev, V. P. Zaytsev, V. N. Khrustalev, R. A. Novikov, D. N. Orlova, A. V. Varlamov, *Tetrahedron*, 2014, **70**, 1659.
- F. Fülöp, M. Dahlqvist, K. Pihlaja, *Acta Chem. Scand.*, 1991, 45, 273.
- 23. W. E. Silverthorn, Adv. Organomet. Chem., 1975, 13, 47.
- 24. K. H. Pannel, B. L. Kalsotra, C. Parkanyil, J. Heterocycl. Chem., 1978, 15, 1057.
- G. K. Fukin, A. V. Cherkasov, E. V. Baranov, R. V. Rumyantcev, E. V. Sazonova, A. N. Artemov, *Chem. Select.*, 2019, 4, 10976.
- 26. G. K. Fukin, A. V. Cherkasov, R. V. Rumyantcev, N. Yu. Grishina, E. V. Sazonova, A. N. Artemov, A. I. Stash, *Mendeleev Commun.*, 2019, **29**, 346.
- 27. L. J. Farrugia, C. Evans, D. Lentz, M. Roemer, J. Am. Chem. Soc., 2009, 131, 1251.
- 28. J. Müller, P. Göser, Chem. Ber., 1969, 102, 3314.
- E. V. Gromachevskaya, F. V. Kvitkovskii, T. P. Kosulina, V. G. Kul'nevich, *Chem. Heterocycl. Compd.*, 2003, 39, 137.
- A. Weissberger, E. Proskauer, J. A. Riddick, E. E. Toops, Jr., Organic Solvents; Physical Properties and Methods of Purifi-cation, Intersci. Publ. Inc., New York—London, 1955, 552 pp.
- M. D. Rausch, G. A. Moser, E. S. Zaiko, A. L. Lipman, J. Organomet. Chem., 1970, 23, 185.
- 32. R. C. Clark, J. S. Reid, Acta Crystallogr., Sect. A, 1995, 51, 887.
- 33. G. M. Sheldrick, Acta Crystallogr., Sect. C, 2015, 71, 3.
- 34. L. J. Farrugia, J. Appl. Crystallogr., 1999, 32, 837.

Received May 18, 2020; in revised form August 27, 2020; accepted October 7, 2020