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Tandem reaction to 3-(2-quinolyl) chromones from ynones and 
quinoline N-oxides under transition metal- and additive-free 
conditions
Jing Liu, Dan Ba, Yanhui Chen, Si Wen, and Guolin Cheng,*

A novel method to synthesis of 3-(2-quinolyl) chromones through a 
tandem [3+2] cycloaddition/ring-opening/O-arylation from ynones 
and quinoline N-oxides has been developed. This protocol proceeds 
under transition metal- and additive-free conditions and can be 
amplified to gram level in 91% yield. 3-(1-isoquinolyl) and 3-(2-
pyridyl) chromones are also successfully synthesized using 
isoquinoline and pyridine N-oxides under basic conditions. Various 
heteroarene-contaning chromones were afforded in 30-98% yields, 
which are difficult to be obtained and are compounds of interest in 
pharmaceutical chemistry and chemical biology.

Chromones are widely distributed in nature, and are used as 
bactericides, antioxidants, and drugs due to their remarkable 
biological properties.1 The increasing incidences of tumor, 
malarial, bronchial, and pneumonia diseases have stimulated 
the preparation of chromone-based drugs.2 Although 
multitudinous synthetic protocols have been developed for the 
synthesis of chromones,3,4  there are few methods to access the 
3-aryl chromones, which are of vital importance because they 
possess increased biological activities.5 The palladium-catalyzed 
Suzuki and Stille couplings of 3-iodochromones with aryl 
boronic acids or aryl stannanes are the commonly used 
methods for the synthesis of 3-aryl chromones.6,7 The preparing 
of nucleophilic coupling partners such as heteroaryl boronic 
acids and stannanes is challenging. The oxidative [4+2] 
cycloaddition of salicylaldehydes and internal alkynes using 
Rh,8a Co, 8b Ru,8c represents an attractive route to 2,3-diaryl 
chromones (Scheme 1A). Recently, Wu and co-workers 
reported the transition metal-catalyzed three-component 
reactions for the assembly of 2,3-diaryl chromones (Scheme 
1B).9 However, those synthetic methods are not transferable to 
heteroaryl substituted substrates, probably due to the strong 
coordinative properties of heteroarenes.
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Scheme 1 Methods for the synthesis of 3-(hetero)aryl chromone derivatives

In the past decade, the intramolecular O-arylation through 
transition metal-catalyzed Ullmann reaction10 or base-
promoted nucleophilic aromatic substitution (SNAr)11 have been 
well developed to access 2-substituted chromones (Scheme 1C). 
However, transition-metals or strong bases are commonly 
required. Thus, the development of new transition metal- and 
additive-free synthetic method that addresses the 
aforementioned shortcoming would therefore offer new 
opportunities to incorporate heteroaryl chromones into drug 
candidates.

Recently, we have discovered a base-promoted Michael 
addition/Smiles rearrangement/N-arylation cascade reaction 
for the synthesis of 1,2,3-trisubstituted 4-quinolones from 
ortho-holagenphenyl ynones.12a In our sustaining interest in 
ynones chemistry,12 herein, we report a novel and efficient 
method for the synthesis of 3-heteroaryl chromones through 
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tandem [3+2] cycloaddition/ring-opening/O-arylation reaction 
from easily obtained ynones and heteroarene N-oxides 
(Scheme 1D).13 While this work was under review, an elegant 
work was reported by Wang, in which 3-(2-quinolyl) chromones 
were synthesized via acid-mediated cascade reaction of 
quinoline N-oxides with ortho-hydroxyphenyl ynones.14

Our study was initiated by employing 1-(2-fluorophenyl)-3-
phenylprop-2-yn-1-one 1a and quinoline N-oxide 2a as the 
model substrates to screen the reaction parameters. The 
reaction was conducted using 1a (0.1 mmol), 2a (0.15 mmol), 
and DMF (0.5 mL) at 120 °C under air for 12 h to afford the 
desired chromone product 3a in 90% yield. The effect of the 
solvent was subsequently investigated, and other solvents, such 
as CH3CN, tert-butanol, DCE, and 1,4-dioxane, all could give 3a 
in good yields. 92% yield of 3a could be obtained using toluene, 
and no product was observed when water was used as solvent. 
Then, the optimal conditions were identified as 1a (0.1 mmol), 
2a (0.15 mmol), and toluene (0.5 mL) at 120 °C under air for 12 
h. 

With the optimized protocols in hand, we firstly investigated 
the scope of ynones (Scheme 2). Having proved the perfect 
matching of this reaction system with a range of ynone 
derivatives, the desired chromone products were afforded in 
30%-98% yields (3a−k). Ynones possessing halogens on R2 could 
furnish the corresponding chromone derivatives (3b) and (3c) in 
good yields (86% and 78%). In addition, the electron-donating 
groups (methyl, n-propyl, and methoxyl) on R2 for the 
corresponding ynones could also afford the target products in 
82%, 80%, and 84% yields, respectively (3d, 3e, and 3f). 
Similarly, meta-fluoro substituted substrate also could afford 
the desired product in 82% yield (3g). On the other hand, the 
reaction was conducted by using heteroarene-substituted
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Scheme 2 Scope of the ynones

ynone, an excellent yield of product was obtained (3h, 98%). 
These results indicated that the reactivity was not sensitive to 
the electronic properties of R2. Importantly, the ynone with n-
butyl and cyclopropyl groups could give the products in 56% and 
87% yields, respectively (3i and 3j). The target product was 
afforded in a poor yield (3k, 30%), when R2 was a t-butyl group, 
probably because of the increased steric hindrance. 
Remarkably, the presence of halogen (F) on the aroyl moiety of 
ynone was well tolerated (3l, 76%), which makes this reaction 
particularly attractive for further transformation. Ynone with an 
electron-withdrawing group on the aroyl moiety could also 
deliver the corresponding product (3m) in 72% yield. However, 
a complex mixture was obtained and the desired product (3n) 
was formed in a trace amount using ynone with an electron-
donating group as substrate.

We next turned our attention to investigation of the scope of 
quinoline N-oxides for this transformation. Quinoline N-oxides 
with different functional groups were investigated under the 
standard reaction conditions using ynone 1a as the coupling 
partner (Scheme 3). In general, quinoline N-oxides bearing both 
electron-donating substituents and electron-withdrawing 
substituents all could give the desired products in moderate to 
excellent yields (4a−j). Remarkably, halogen group (Br) and 
electron-donating group (methyl) at the C3-position of the 
quinoline N-oxides were well tolerable, affording the 
corresponding product in good yields (4a and 4b, 62% and 60%), 
which suggested that the steric hindrance on the quinoline N-
oxides had a significant effect. The structure of 4a was 
unambiguously confirmed by single-crystal X-ray 
crystallography. Halogen group (Cl) on the 4-position of the 
quinoline ring could lead this reaction system in 76% yield (4c). 
On the other hand, the target product could be afforded in 
excellent 94% yield from 4-methyl quinoline N-oxide (4d). The 
electron-donating groups (methyl and methoxyl) at the 
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C6-position of the quinoline N-oxide also could afford the 
desired products 4f and 4g both in higher yield (86%), 
comparing to electron-withdrawing group (Br, 4e, 88%). 
Introduction of a nitro group at the C6-position led to a slightly 
lower yield (4h, 76%). The methyl and benzyloxyl groups at the 
C8-position could afford the target products in good yields (4i 
and 4j, 86% and 88%).
Inspired by these exciting results, we further investigated the 
effect of the X substituent on the aroyl moiety of the ynones 
(Scheme 4). However, poor yields were observed when the 
fluoro group was replaced by chloro, bromo, and methoxyl 
groups (Scheme 4, Condition A). To our delight, good yields 
could be obtained when the reaction was conducted under 
basic conditions (Scheme 4, Condition B). Subsequently, 
chromones 3o and 3p were synthesized in good yields from 
ortho-chloro aroyl ynones. In addition, the desired products 
could be afforded in 43-75% yields by using isoquinoline N-
oxide as the substrates (4k−m). Significantly, the reaction also 
proceeded and the desired product 4n was afforded in 34% 
yield by using pyridine N-oxide as the substrate.

A gram-scale conversion was performed using 1a and 2a as 
substrates, and excellent isolated yields of 3a were obtained, 
indicating the practicality of this method (Scheme 5a). To 
explore the mechanistic hypothesis, control experiments were 
performed. The reaction of ynones 1 and quinoline N-oxides 2 
could give the 1,3-dione products (5a−g) in 45-90% yields under 
the standard conditions (Scheme 5b). Subsequently, the 
intermediate 6 was independently synthesized in 80% yield 
from ynone 1a and quinoline N-oxide 2a, and the target product 
3a was afforded in 99% yield from intermediate 6 (Scheme 5c).
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On the basis of the experimental results and literature 
reports,11,13 the reaction mechanism was proposed as shown in 
Scheme 6. Initially, the base-promoted regioselective [3+2] 
cycloaddition of ynone 1 and quinoline N-oxide 2 affords 
intermediate A. Then, a ring-opening process of intermediate A 
by N−O bond cleavage generates the key enol intermediate B, 
which then is reversibly converted to 1,3-dione 6. Subsequently, 
the species C is formed via intramolecular cyclization of B. 
Finally, rearomatization of C by elimination of HF provided 
chromones 3 (Scheme 6).

In summary, we have developed a general and practical 
strategy for the synthesis of 2,3-disubstituted chromone 
derivatives through regioselective [3+2] cycloaddition, ring-
opening, and O-arylation cascade reaction from ynones and N-
oxides. This transition metal-free protocol can be completed in 
one step with construction of one C−C bond and two C−O 
bonds. The successful incorporation of heteroaryl groups into 
chromone cores makes this method highly important in drug 
discovery.
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