ASYMMETRIC SYNTHESIS OF trans- β -LACTAMS THROUGH TiCl _4-MEDIATED ADDITION TO IMINES.

Cesare Gennari[°], Isabella Venturini, Gabriele Gislon, Giuliana Schimperna Dipartimento di Chimica Organica e Industriale, Università di Milano, via Venezian 21, 20133 Milano, Italy

Abstract.- TiCl 4-mediated addition of the chiral silyl ketene acetal (2) to benzylideneaniline proceeds with high stereoselectivity to give, after cyclization, trans- β -lactam (7) in good yield and 95% e.e.

Since the discovery of thienamicin in 1976, more than 40 carbapenem and carbapenam antibiotics have been isolated from microorganisms so far.^{1a}

We reasoned that an entire group of these antibiotics, e.g. (1) characterized by the 5,6-trans arrangement of the β -lactam side chains,^{1b} could be easily synthesized via the stereocontrolled acid-catalyzed aldol type condensation of an ester silyl ketene acetal with an imine.

R=Et NS-5, PS-5, PS-7, OA-6129A R=iPr PS-6, PS-8

Although the acid-catalyzed silyl ketene acetal additions to imine-type compounds have been studied in some detail, $^{2a-g}$ only the $2nI_2$ promoted addition to N-trimethylsilyl imines was reported to proceed with a certain 5,6-trans-stereoselectivity.^{2g} On the other hand quite high asymmetric induction at carbon-5 was reported in the construction of the β -lactam ring via addition to chiral optically active imines.^{2b}

In this letter we wish to report our preliminary model studies in this field regarding the enantio- and diastereo-controlled synthesis of the β -lactam moiety of (1) by the use of the silyl ketene acetal derived from (1S,2R)-N-methylephedrine-O-propionate (2)³ (Scheme 1).

This silyl ketene acetal was recently shown to be a very useful reagent for the TiCl₄-mediated asymmetric synthesis of anti α -methyl- β -hydroxy esters.⁴ Asymmetric electrophilic formylation⁵ (TiCl₄/HC(OMe)₃) and amination⁶ (TiCl₄/^tBuOOC-N=N-COOBu^t) proved also to be quite successful.

By reaction of the silyl ketene acetal (2) with benzylideneaniline in the presence of excess TiCl_4 one of the possible four stereoisomers, anti-(3), was formed as the major product in 67% yield.⁷

227

Scheme 1. a) TiCl₄, CH₂Cl₂, -78°C (75%) b) LHDS, THF, -10°C (79%)

The minor isomer detectable by 200 MHz⁻¹H NMR spectroscopy in the crude reaction mixture was syn-(4) (anti-(3)/syn-(4) ratio \geq 10:1), while anti-(5) was present only in traces (anti-(3)/anti-(5) ratio \geq 38:1) and syn-(6) could not be detected (Scheme 2).

An authentic mixture of the four stereoisomers was synthesized by LDA enolization of (1S,2R)-N-methylephedrine-O-propionate (THF-HMPA, -78°C) and subsequent addition to benzylideneaniline.⁸ The enolate addition in THF (without HMPA) gave low yields of the cis- β -lactam (e.e. 30%),^{8,9} together with a mixture of the syn adducts (4) and (6) (ratio 5.1 : 1), and the bis-adduct (8) as a single diastereoisomer (¹H, ¹³C NMR).

The absolute configuration was proven by hydrogenolysis (H_2 , PdCl₂, CH₃CO₂H) of the product mixture derived from the TiCl₄-mediated reaction (see Scheme 2) to give the known acid (9).¹⁰

The same mixture was cyclized with LiN(TMS)₂ in THF to give, after flash-chromatography, trans- β -lactam (7) in 79% yield and 95% e.e.(> 38:1, ¹H NMR-Eu(hfc)₂).

A brief experimental procedure is given below.

A solution of benzylideneaniline (15.6 mmol) and of silyl ketene acetal (2) (15.6 mmol) in CH_2Cl_2 (62.8 ml) was slowly added (during 1 h) to a solution of TiCl₄ (31.2 mmol) in CH_2Cl_2 (31.2 ml) at -78°C, under nitrogen, with stirring. After 1 h at -78°C, the mixture was slowly warmed up to -40°C (during 2 h), then quenched with 1.5 N NaOH/ sat. NaHCO₃ aq. sol., and filtered through celite. The aq. phase was extracted with CH_2Cl_2 , and the combined organic extracts were dried (Na₂SO₄) and evaporated. The crude

product was filtered through silica gel (CH_2Cl_2 , then 97:3 CH_2Cl_2 -MeOH) to give the stereoisomeric mixture described in the main text in 75% yield. This mixture (11.7 mmol) was dissolved in dry THF (19.5 ml) and then slowly added to a solution of LiN(TMS)₂ (12.8 mmol) in THF (32 ml) at -10°C under nitrogen, with stirring. After 45 min at -10°C the mixture was quenched (NH_4Cl sat.sol.) and worked up as usual. Flash chromatography (n-hexane-EtOAc 9:1) gave pure trans- β -lactam (7) in 79% yield and 95% e.e.. Recrystallization (n-hexane/EtOAc) gave optically pure (7) as white crystals, m.p. = 136°C, $\left[\alpha\right]_D^{25} = -64.8°$ (c 1.0, CHCl₃).

Scheme 2.	-CH(NHPh)Ph δ(ppm)		J (Hz) (TiCl-mediated react.) <u>%ratio</u>	
R* Ph H NHPh	anti-(3)	4.47	7.00	89.2
R* OH NHPh	syn-(4)	4.83	4.66	8.5
R*-OH NHPh	anti-(5)	4.51	7.56	2.3
R*-O	syn- (6)	4.75	5.12	0.0

NOTES AND REFERENCES

- 1a) Y. Fukagawa, M. Okabe, T. Yoshioka, T. Ishikura, The Proceedings of the Third International Symposium on "Recent Advances in the Chemistry of β-lactam Antibiotics", Cambridge, England, 2-4 July 1984, <u>The Royal Society</u> of Chemistry, Special Publication No.52, p.163-182.
- 1b) For recent efforts in the enantioselective synthesis of (+) PS-5, see : D.A.Evans, E.B.Sjogren, <u>Tetrahedron Letters</u>, 1986, 3119; D.J.Hart, C.S. Lee, W.H. Pirkle, M.H. Hyon, A. Tsipouras, J.Am.Chem.Soc., 1986, 108, 6054.
- 2a) I. Ojima, S.Inaba, K.Yoshida, Tetrahedron Letters, 1977, 3643;
- b) I. Ojima, S.Inaba, <u>Tetrahedron Letters</u>, 1980, 2077; 1980, 2081;
- c) K. Ikeda, K.Achiwa, M. Sekiya, <u>Tetrahedron Letters</u>, 1983, 4707;
- d) J.E. Dubois, G. Axiotis, <u>Tetrahedron Letters</u>, 1984, 2143;
- e) K. Okano, T. Marimoto, M. Sekiya, J.Chem.Soc.Chem.Commun., 1984, 883.
- f) T. Shono, K.Tsubata, N. Okinaga, <u>J.Org.Chem</u>., 1984, <u>49</u>, 1056;
- g) E.W. Colvin, D.G. McGarry, J.Chem.Soc.Chem.Commun., 1985, 539.
- 3) Both the enantiomers of N-methylephedrine are commercially available (Fluka).
- 4) C. Gennari, A.Bernardi, L.Colombo, C.Scolastico, <u>J.Am.Chem.Soc</u>., 1985, <u>107</u>, 5812; C. Palazzi, L.Colombo, C. Gennari, <u>Tetrahedron Letters</u>, 1986, 1735.
- 5) C. Gennari, A.Bernardi, C.Scolastico, D.Potenza, <u>Tetrahedron Letters</u>, 1985, 4129.
- 6) C. Gennari, L.Colombo, G.Bertolini, J.Am.Chem.Soc., 1986, 108, 6394.
- 7) Both the imine and the ephedrine -NMe₂ group are expected to bind to TiCl₄, which usually ligates two electron-donating molecules to form cis-octahedral, six-coordinate complexes. Therefore the conformational freedom of the system is likely to be dramatically reduced, and the C-C bond formation occurs on the six-coordinate metal in a highly stereoselective way. Mechanistic aspects will be discussed more rigorously in a forthcoming full paper.
- 8) D.C. Ha, D.J.Hart, T.K. Yang, J.Am.Chem.Soc., 1984, 106, 4819.
- 9) C. Gluchowski, L. Cooper, D.E. Bergbreiter, M. Newcomb, <u>J.Org.Chem</u>., 1980, <u>45</u>, 3413.
- 10) Found [a]²⁵_D = 23.0° (neat), absolute conf.: R ; G. Helmchen, et al., <u>Angew.Chem.Int.Ed.Engl.</u>, 1979, <u>18</u>, 63, [a]²²_D = -25.4° (neat), R; A.W. Schrecker, <u>J.Org.Chem</u>., 1957, <u>22</u>, 33,[a]²²_D = -24.6° (neat), R.

(Received in UK 27 October 1986)