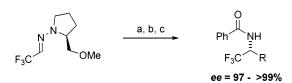
Efficient Asymmetric Synthesis of α-Trifluoromethyl-Substituted Primary Amines via Nucleophilic 1,2-Addition to Trifluoroacetaldehyde SAMP– or RAMP–Hydrazone


Dieter Enders* and Kazumasa Funabiki[†]

Institut für Organische Chemie, Rheinisch-Westfälische Technische Hochschule, Professor-Pirlet-Strasse 1, 52074 Aachen, Germany

enders@rwth-aachen.de

Received March 20, 2001

a) RLi, Et₂O, -78 °C, b) benzoylation, c) SmI₂,THF-DMPU, rt

An efficient asymmetric synthesis of α -trifluoromethyl-substituted primary amines via nucleophilic 1,2-addition of alkyllithium reagents to trifluoroacetaldehyde SAMP- or RAMP-hydrazone followed by benzoylation and Sml₂-promoted nitrogen-nitrogen single bond cleavage is described.

The development of novel methods for the asymmetric synthesis of fluorine-containing molecules is one of the most challenging topics in organofluorine chemistry.¹ Many successful procedures for the enantioselective synthesis of α -trifluoromethylated alcohols have hitherto appeared.² In contrast, there have been only a few reports on the asymmetric synthesis of α -trifluoromethyl-substituted primary amines. In these reports, where there still remain unsatisfactory enantioselectivities, chemical yields, and/or diversity.³

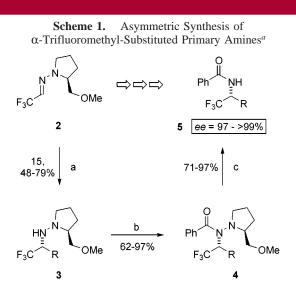
on the special electronic properties of the trifluoromethyl group,⁴ it is of particular interest to develop more general, efficient, and enantioselective routes to the title compounds.

ORGANIC LETTERS

2001 Vol. 3, No. 10

1575-1577

The 1,2-addition of organometallic reagents to CN double bonds is one of the most efficient routes to α -branched amines.⁵ Among them, the asymmetric 1,2-addition reaction using SAMP⁶ or RAMP as a chiral auxiliary provides a

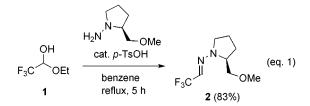

[†] On leave from Department of Chemistry, Faculty of Engineering, Gifu University, 1-1, Yanagido, Gifu 501-1193, Japan.

^{(1) (}a) Enantiocontrolled Synthesis of Fluoro-organic Compounds; Soloshonok, V. A., Ed.; John Wiley & Sons: Chichester, 1999. (b) Asymmetric Fluoroorganic Chemistry: Synthesis, Application, and Future Directions; Ramachandran, P. V., Ed.; American Chemical Society, Washington, DC, 1999. (c) Iseki, K. Tetrahedron **1998**, 54, 13887.

⁽²⁾ For reviews, see: (a) Ramachandran, P. V.; Brown, H. C. In ref 1a, p 179. (b) Soloshonok, V. A. In ref 1a, p 229. (c) Fujisawa, T.; Shimizu, M. In ref 1a, p 557. (d) Mikami, K.; Yajima, T. In ref 1a, p 557. (e) Ramachandran, P. V.; Brown, H. C. In ref 1b, p 22.

^{(3) (}a) Pirkle, W. H.; Hauske, J. R. J. Org. Chem. **1977**, 42, 2436. (b) Wang, Y.; Mosher, H. S. Tetrahedron Lett. **1991**, 32, 987. (c) Soloshonok, V. A.; Ono, T. J. Org. Chem. **1997**, 62, 3030. (d) Ishii, A.; Higashiyama, K.; Mikami, K. Synlett **1997**, 1381. (e) Ishii, A.; Miyamoto, F.; Higashiyama, K.; Mikami, K. Chem. Lett. **1998**, 119. (f) Ishii, A.; Miyamoto, F.; Higashiyama, K.; Mikami, K. Tetrahedron Lett. **1998**, 39, 1199. (g) Prakash, G. K. S.; Mandal. M.; Olah, G. A. Angew. Chem. **2001**, 113, 609; Angew. Chem., Int. Ed. **2001**, 40, 589. For a review on functionalized α -trifluoromethylated amines using the sulfinyl or 1-phenylethyl group as a chiral auxiliary, see: (h) Bravo, P.; Zanda, M. In ref 1a, p 107. (i) Bravo, P.; Bruche, L.; Crucianell, M.; Viani, F.; Zanda, M. In ref 1b, p 98. (j) Soloshonok, V. A. In ref 1b, p 74.

^{(4) (}a) Ojima, I.; Kato, K.; Jameison, F. A. Bioorg. Med. Chem. Lett. **1992**, 2, 219. (b) Shirlin, D.; Tarnus, C.; Baltzer, S. Bioorg. Med. Chem. Lett. **1992**, 2, 651.



^{*a*} (a) RLi, -78 °C; (b) catalytic DMAP, Et₃N, PhCOCl, rt or *n*-BuLi, PhCOCl, -78 °C to rt; (c) SmI₂, THF–DMPU, rt.

promising synthetic route to enantioenriched amines, which has been successfully applied for the asymmetric synthesis of natural products.⁷

Herein we describe the highly enantioselective synthesis of α -trifluoromethylated amines via nucleophilic 1,2-addition of alkyl- or phenyllithium reagents to trifluoroacetaldehyde SAMP- or RAMP-hydrazone, followed by benzoylation and SmI₂-promoted nitrogen-nitrogen single bond cleavage, as described in Scheme 1.

Trifluoroacetaldehyde SAMP-hydrazone **2** was readily obtained in 83% yield from commercially available trifluoroacetaldehyde ethyl hemiacetal **1** and SAMP in the presence of a catalytic amount of *p*-TsOH in benzene (eq 1).⁸

Trifluoroacetaldehyde RAMP-hydrazone was prepared in the same manner in 66% yield.

(8) Trifluoroacetaldehyde SAMP-hydrazone is much more stable than trifluoroacetaldehyde imines. Therefore in contrast the hydrazone can be purified by flash column chromatography.

When 3 equiv of *n*-BuLi was added slowly to an Et₂O solution of **2** at -78 °C and the reaction mixture was gradually warmed to room temperature, a low yield (36%) of the product **3a** was obtained together with a complex mixture, probably due to the low stability of trifluoromethy-lated lithium hydrazide (Table 1, entry 1).

 Table 1.
 Screening of the Reaction Conditions of Nucleophilic

 1,2-Addition
 1

entry ^a	<i>n</i> -BuLi (equiv)	solvent	yield (%) ^b	de (%) ^c
1^d	3	Et ₂ O	36	>96 (>98)
2	1.5	Et ₂ O	63	>96 (>98)
3	3	Et ₂ O	79	>96 (>98)
4	1.5	THF	43 (37)	82 (>98)
5	3	THF	45 (39)	82 (>98)

^{*a*} The reactions were carried out with trifluoroacetaldehyde SAMPhydrazone **2** at -78 °C for 1 h. ^{*b*} Yields of isolated products. Values in parentheses are for the major diastereomer. ^{*c*} Measured by ¹⁹F NMR before isolation. Values in parentheses after column chromatography. ^{*d*} After *n*-BuLi was added at -78 °C, the reaction mixture was warmed to room temperature overnight.

Treatment of **2** with 1.5 equiv of *n*-BuLi in Et₂O at low temperature (-78 °C) for a shorter reaction time (1 h) gave trifluoromethylated hydrazine **3a** in 63% yield (entry 2). The use of 3 equiv of *n*-BuLi gave a higher yield (entry 3). Employing THF as reaction solvent resulted in unsatisfactory yields of **3a** with decrease in diastereoselectivities (entries 4 and 5). The major diastereoisomer was readily separated by flash column chromatography.

The results of the reaction of 2 with various alkyllithium reagents as well as PhLi are summarized in Table 2.⁹

Table 2. Reaction of Trifluoroacetaldehyde SAMP- orRAMP-Hydrazone 2 with RLi

	2				
entry ^a	R	product	yield (%) b	de (%) ^c	$[\alpha]_{D}$ (<i>c</i> , CHCl ₃) ^{<i>d</i>}
1	<i>n</i> -Bu	3a	79	>96 (>98)	-39.7 (0.88)
2^e	<i>n</i> -Bu	3a′	74	>96 (>98)	+43.5 (0.95)
3	Et^{f}	3b	48	>96 (>98)	-42.3 (0.90)
4	n - \Pr^{f}	3c	65	>96 (>98)	-45.9 (1.15)
5	<i>n</i> -Hex	3d	68	>96 (>98)	-39.7 (0.90)
6	t-Bu	3e	58 (50)	72 (>98)	-33.8 (1.25)
7	Ph	3f	15^g	86 (88)	-38.2 (1.20)

^{*a*} The reactions were carried out with trifluoroacetaldehyde SAMP– hydrazone **2** and RLi (3 equiv) in Et₂O at -78 °C for 1 h. ^{*b*} Yields of isolated products. Values in parentheses are for the major diastereomer. ^{*c*} Measured by ¹⁹F NMR before isolation. Values in parentheses after column chromatography. ^{*d*} All optical rotations were measured in Uvasol grade CHCl₃ at 26 °C. ^{*e*} Trifluoroacetaldehyde RAMP–hydrazone was used instead of **2**. ^{*f*} Prepared from *t*-BuLi and the corresponding RI according to ref 10. ^{*s*} There were many unidentified byproducts in the ¹⁹F NMR of the crude reaction mixture.

Commercially available alkyllithiums, such as *n*-BuLi and *n*-hexyllithium, reacted well in the nucleophilic 1,2-addition to give the corresponding trifluoromethylated hydrazines 3a,a',d in good yields with excellent diastereoselectivity

⁽⁵⁾ For reviews, see: (a) Denmark, S. E.; Nicaise, O. J.-C. J. Chem. Soc., Chem. Commun. 1996, 999. (b) Enders, D.; Reinhold: U. Tetrahedron: Asymmetry 1997, 8, 1895. (c) Bloch, R. Chem. Rev. 1998, 98, 1407. (d) Kobayashi, S.; Ishitani, H. Chem. Rev. 1999, 99, 1069. (e) Merino, P.; Franco, S.; Merchan, F. L.; Tejero, T. Synlett 2000, 442.

^{(6) (}a) Enders, D.; Klatt, M. In *Encyclopedia of Reagents for Organic Synthesis*; Paquette, L. A., Ed.; John Wiley & Sons: Chichester, 1995; Vol. 1, p 178. (b) Enders, D. In *Asymmetric Synthesis*; Morrison, J. D., Ed.; Academic Press: New York, 1984; Vol. 3, p 275. (c) Enders, D.; Fey, P.; Kipphardt, H. *Org. Synth.* **1987**, *65*, 173, 183.

⁽⁷⁾ For a review on the synthesis of alkaloids, see: Enders, D.; Thiebes, C. Pure Appl. Chem. In press.

(entries 1, 2, and 5). Ethyllithium and *n*-propyllithium, easily prepared from *t*-BuLi and the corresponding alkyl iodide,¹⁰ also reacted with hydrazone 2 to provide the corresponding hydrazines **3c,d** in 48 and 65% yields, respectively (entries 3 and 4). Treatment of of 2 with *t*-BuLi gave a moderate yield of 3e in moderate de (entry 6). However, the diastereomer could be readily separated by column chromatography, affording diastereomerically pure **3e**. When hydrazone 2 was treated with PhLi under the same conditions, 15% of the product **3f** was obtained in 86% de along with a complex mixture of byproducts (entry 7). Unfortunately, even in the presence of the trifluoromethyl group, the reaction of 2 with 3 equiv of MeLi in Et₂O or toluene at -78 °C did not proceed efficiently, giving only a small amount of the product together with recovery of 2 (58-75%). Raising the reaction temperature from -78 °C to room temperature in analogy to fluorine-free hydrazones as well as using MeMgI at -20°C or MeCeCl₂ at -78 °C in place of MeLi did not improve the reaction.

The absolute configuration of the stereogenic center generated by the 1,2-addition using SAMP was established unambiguously as R by X-ray crystallography of **3e**.¹¹

Significantly, after benzoylation, the chiral auxiliary was easily cleaved by treatment of **4** with 3 equiv of SmI_2^{12} in the presence of 1,3-dimethyltetrahydro-2(1*H*)-pyrimidone (DMPU)¹³ in THF at room temperature for 30 min, affording the (*R*)-*N*-benzoyl α -trifluoromethylated amines **5** without detectable epimerization or racemization (Table 3).¹⁴

(9) General Procedure of 1,2-Addition to Trifluoroacetaldehyde SAMP–Hydrazone. A solution of *n*-BuLi (1.6 M) in hexane (3.08 mmol) was slowly added to a dry Et₂O (1 mL) solution of trifluoroacetaldehyde SAMP–hydrazone 2 (1.03 mmol) at -78 °C. After being stirred at that temperature for 1 h, the reaction mixture was quenched with a mixture of crushed ice, a saturated NaHCO₃ solution (50 mL), and Et₂O (30 mL). The aqueous portion was extracted with Et₂O (30 mL × 3), and the combined organic layers weredried over anhydrous Na₂SO₄ and concentrated in vacuo. After the isomer ratio was determined, flash column chromatography of the residue on silica gel eluting with pentane–Et₂O (10/1) gave **3a** in 79% yield.

(10) (a) Bailey, W. F.; Punzalan, E. R. J. Org. Chem. 1990, 55, 5404.
(b) Negishi, E.; Swanson, D. R.; Rousset, C. J. J. Org. Chem. 1990, 55, 5406.

(11) Details of X-ray structure analysis will be described in a full paper. (12) SmI₂ (0.1 M in THF) was purchased from Aldrich Chemical Co. Inc. The purity of SmI₂ is very important for high yields. For the pioneering work for SmI2-induced cleavage of the nitrogen-nitrogen single bond of hydrazines, see: (a) Souppe, J.; Danon, L.; Namy, J. L.; Kagan, H. B. J. Organomet. Chem. 1983, 250, 227. For examples in MeOH or t-BuOH, see: (b) Burk, M. J.; Feaster, J. E. J. Am. Chem. Soc. 1992, 114, 6266. (c) Atkinson, S. R.; Kelly, B. J.; Williams, J. Tetrahedron 1992, 48, 7713. (d) Burk, M. J.; Martinez, J. P.; Feaster, J. E.; Cosford, N. Tetrahedron 1994, 50, 4399. (e) Overman, L. E.; Rogers, B. N.; Tellew, J. E.; Trenkle, W. C. J. Am. Chem. Soc. 1997, 119, 7159. (f) Kobayashi, S.; Hirabayashi, R. J. Am. Chem. Soc. 1999, 121, 6942. For examples in THF in the presence of HMPA, see: (g) Sturino, C. F.; Fallis, A. G. J. Am. Chem. Soc. 1994, 116, 7447. (h) Kadota, I.; Park, J.-Y.; Yamamoto, Y. J. Chem. Soc., Chem. Commun. 1996, 841. (i) Friestad, G. K.; Qin, J. J. Am. Chem. Soc. 2000, 122, 8329.

(13) DMPU was distilled over CaH₂ in vacuo. Beck, A. K.; Seebach, D. In *Encyclopedia of Reagents for Organic Synthesis*; Paquette, L. A., Eds.; John Wiley & Sons: Chichester, 1995; Vol. 3, p 2123.

Table 3.	SmI ₂ Cleavage of the N–N Single Bond of
Trifluoron	nethylated SAMP- or RAMP-Hydrazides 4

entry ^a	R	product	yield (%) b	ee (%) ^c	$[\alpha]_{\mathbb{D}}$ (<i>c</i> , CHCl ₃) ^{<i>d</i>}
1	<i>n</i> -Bu	5a	87	98	+40.8 (0.80)
2^{e}	<i>n</i> -Bu	5a	4 (90)		
3^{f}	<i>n</i> -Bu	5a′	95	97	-40.2 (0.95)
4	<i>n</i> -Pr	5 b	83	98	+29.6(0.82)
5	<i>n</i> -Hex	5c	97	98	+43.6 (0.90)
6	t-Bu	5 d	71	>99	+22.9 (0.85)
7	Ph	5e	73	g	-2.58 (0.66)

^{*a*} The reactions were carried out with hydrazide **4** and SmI₂ (3 equiv) in the presence of DMPU in THF at room temperature for 30 min. ^{*b*} Isolated yields. Values in parentheses refer to the recovery of **4**. ^{*c*} Measured by HPLC analysis using a chiral stationary phase column (DAICEL OD or (*S*,*S*)-Whelk-O, 1-heptane/2-propanol = 9/1 or 95/5). ^{*d*} All optical rotations were measured in Uvasol grade CHCl₃ at 25 or 27 °C. ^{*e*} MeOH was used as a solvent in the absence of DMPU. ^{*f*} RAMP—hydrazide **4a**' was used. ^{*g*} The ee could not be determined yet.

As shown in Table 3, various SAMP– or RAMP– hydrazides 4 participated successfully in the reaction to provide the corresponding amides 5 in good to excellent yields with excellent ee (up to >99%).¹⁵ The reaction in MeOH gave a trace amount of the product **5a**, together with recovery of the starting hydrazide (90%).

In summary, we have succeeded in the highly enantioselective synthesis of α -trifluoromethylated amines through the 1,2-addition of various organolithium species to trifluoroacetaldehyde SAMP- or RAMP-hydrazone and subsequent SmI₂-promoted cleavage of the nitrogen-nitrogen single bond.

Further studies toward the asymmetric synthesis of trifluoromethylated bioactive compounds are now in progress.

Acknowledgment. We thank Degussa AG, BASF AG, Bayer AG, and Aventis for the donation of chemicals. We also thank Dr. G. Raabe for the X-ray structure analysis of **3e** as well as Dr. J. Runsink for measuring the ¹⁹F NMR spectra. K.F. is grateful to the Alexander von Humboldt Foundation for a postdoctoral fellowship (2000–2001).

OL015869G

⁽¹⁴⁾ General Procedure. A THF solution of SmI₂ (0.9 mmol, 8.8 mL of a 0.1 M THF solution) was added dropwise to a THF solution (2 mL) of SAMP-hydrazide 4a (0.29 mmol) and DMPU (0.5 mL) at room temperature under argon. After 30 min at room temperature, the reaction mixture was quenched with a mixture of a diluted NaHCO₃ solution (50 mL) and CH₂Cl₂ (20 mL), extracted with CH₂Cl₂ (30 mL \times 2), dried over anhydrous Na₂SO₄, and concentrated in vacuo. The residue was subjected to flash chromatography on silica gel using pentane–Et₂O (5/1) as the eluent, affording 5a in 87% yield.

⁽¹⁵⁾ This result is also the first example for SmI₂-induced cleavage of the nitrogen—nitrogen single bond of SAMP— or RAMP—hydrazides in our laboratory. Very recently, Lassaletta and Llera reported the removal of the (*S*)-(-)-1'-methoxy-1'-ethylpropyl)pyrrolidyl group by the use of SmI₂, see: Fernández, R.; Ferrete, A.; Lassaletta, J. M.; Llera, J. M.; Monge, A. Angew. Chem. 2000, 112, 3015; Angew. Chem., Int. Ed. 2000, 39, 2893.