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Abstract: The performance of several 1,3,2-oxazaborolidines as chiral catalysts in the
reduction of acetophenone has bezn compared, to gain insight into the more relevant structural
factors as far as yield and enantioselectivity are concerned. B-Alkyl-4,5.5-triphenyl-1,3,2-
oxazaborolidines have emerged as effective catalysts for this reaction when nitrogen is not
substituted. The origin of the enantioselectivity for this kind of catalysts is discussed.

Enantioselective methodology is an active field in Organic Chemistry and much effort has been devoted to
the development of efficient catalytic versions of synthetically useful reactions. Regarding the enantioselective
ketone reduction methods, one of the more successful has been based on the use of borane and a chiral 1,2-
aminoalcohol as pioneered by Itsuno et al.! Corey et al.2 soon afterwards isolated the oxazaborolidine derived
from a,a-diphenyl-2-pyrrolidinemethanol and applied it in the reduction of ketones with borane (CBS
method). Ever since, other chiral 1,3,2-oxazaborolidines have been reported by several groups.3

In connection with a research line aimed at obtaining chiral auxiliaries from non-expensive natural
products, avoiding either tedious stepwise syntheses or racemic resolutions, we have prepared ephedrine-
derived (la-g) and pseudoephedrine-derived (2) 1,3,2-oxazaborolidines*5 and we have evaluated their
performance as reagents in the reduction of acetophenone with BH;:Me,S (or BH,:THF) as the source of
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In practice, to either 0.2 or 1.0 mmol of oxazaborolidines (la-g, 2) in 3 ml of anh. THF, maintained at
0°C under Ar, 1.2 mmol of BH;:Me,S (or, indistinctly, BH,:THF) was added;$ ten min later on, 1 mmol of
acetophenone was introduced, and the reaction was monitored by TLC. The main results are summarised in
Table 1. Itis to be noted that:
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(i) The reaction rate decreases with B-substitution (compare entries 3 and 4 with entry 1, corresponding to
the BH derivative 1a) but the e.c. does not practically change. This agrees with the results reported for oxaza-
borolidines arising froin diphenylprolinol.3d.7

(ii) Although not pointed out in Table 1 for the sake of simplicity, 1e, 1f, and 1g gave poor reduction
yields (15-60%) and very low e.e. (10-22%) values. Thus, large substituents and/or electron-withdrawing
groups on the nitrogdn are not suitable, likely because the N-BH; interaction is disfavoured. This is in
accordance with the mechanism proposed by Corey et al.28 for analogous reactions, in which the borane
(R2BH) is activated by coordination to the nitrogen. In this connection, we have observed by !B NMR
spectroscopy that, in mixing BH3:THF with equimolar amounts of cither 1d, 1e, 1f, or 1g in THF, the
signals corresponding to BH3:THF (ca. -1 ppm, external ref.= BF;:Et,0) and the oxazaborolidines (30-35
ppm) did not change; in fact, quartet signals at ca. -15 ppm, as expected for the complexes 1d:BH3 and so on,
did not appear.

Table 1. Reduction of acetophenone with BH3:Me;S in the presence of 1-2

Entry Reagent (equiv.) t (min)? Yield (%)P ee. (%)° Config.
1 la (1) <5 95 72 R
2 1a (0.2) 10 9 63 R
3 1b (1) 45 98 69 R
4d 1c (1) 60 78 68 R
sd 1c (0.2) 60 74 66 R
6 1d (1) 60 77 10 R
7 2(1) <5 90 22 S

8 First) TLC control 5 min after the ketone addition. b Isolated yields. Crude yields were
quantitative (TLC). € Determined from the 'H-NMR spectrum of Mosher's ester. 9 Reaction
was quenched after 60 min; 10-15% of ketone was recovered.

(iii) The scarce enmantioselectivity induced by 2, as well as the fact that enantiomer S slightly predominates
for the first time, must be attributed to the phenyl group (now trans to CH,). Whereas in compound 1 the
approach of both borane and acetophenone is towards the o face, in 2 the complexes arising from approaches
to o and B faces (see 3 and 4, respectively) may have similar energies. Apparently, the transition state related
to complex 4, of a bit lower energy, is responsible for the slight e.e. in favour of (S)-1-phenylethanol.
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For future work, it was also interesting to elucidate the causes of the observed enantioselectivity in la and
related cases. A complex like 5, in agreement with literature precedents,23 explains the origin of the major
enantiomer via hydride transfer from N-BHj; to carbonyl groups. However, in our opinion, the main question
is which complex (6, 7,0r8) gives rise to the minor enantiomer.
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Really, (S)-1-phenylethanol could come from 6, but this may be ruled out by the fact that different
substituents on the boron do not change significantly the enantioselectivity (sce entries 1-5 of Table 1).
Previous work? has demonstrated that, even though complexation through the o face is desired, it is necessary
a large substituent on the o face of position 5 to enhance the enantioselectivity. This requirement may be related
with the convenience of either blocking the oxygen atom (to destabilize intermediate 7) or disfavouring an
arrangement like 8 in which the methyl group is located inside the oxazaborolidine ring, due to the steric
repulsion between that methyl group and the a-substituent at C-5, as shown in 9.
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To discard one or another of these two possibilities, i.e. whether enantiomer S arises from 7 or 8, as well
as to look for a better catalyst, we have synthesised oxazaborolidines 10-13.10
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Compounds 10a and 10b did not show any catalytic activity; this fact suggests that the minor steregisomer
did not come from the O-BH; complex 7, but from the complex with an "endo" conformation (8).!! On the
other hand, oxazaborolidine 11 afforded (R)-1-phenylethanol in 91% yield and with 88% e.e. The
comparison of 11 and 1¢ confirms that the presence of an a-phenyl group improves the enantioselectivity. By
contrast, 12 showed a poor catalytic activity, a fact that may be due to the steric interaction between the methyl
and phenyl groups in the assumed complex with BHj (see 12:BH;). B-Butyl-4,5,5-triphenyl-1,3,2-oxaza-
borolidine 13 gave the best result in the acetophenone reduction: 9% yield and 96% e.e.
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In summary, the experimental results suggest that, in the oxazaborolidine-catalysed reduction of

acetophenone with borane, the minor stereoisomer arises from an "endo” conformation such as 8/9. Thus, to
improve the stereoselectivity, this arrangement should be hindered. From many points of view (availability of
chiral precursors, easy preparation of catalysts, efficiency, and selectivity) B-alkyl-4,5,5-triphenyl-1,3,2-
oxazaborolidines (e.g. 13) seem to be reagents of choice for this kind of reactions. Synthetic aplications of
these catalysts are in course.
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