ISSN 1070-4280, Russian Journal of Organic Chemistry, 2017, Vol. 53, No. 5, pp. 808–811. © Pleiades Publishing, Ltd., 2017. Original Russian Text © Yu.M. Artyushkina, I.E. Mikhailov, G.A. Dushenko, O.I. Mikhailova, Yu.V. Revinskii, O.N. Burov, S.V. Kurbatov, 2017, published in Zhurnal Organicheskoi Khimii, 2017, Vol. 53, No. 5, pp. 789–792.

> SHORT COMMUNICATIONS

Spectral Luminescent Properties of 2-Aryl-5-(2,4,6-trimethylphenyl)-1*H*-1,3,4-oxadiazoles

Yu. M. Artyushkina^{*a,b*}, I. E. Mikhailov^{*a,c*},* G. A. Dushenko^{*a,c*}, O. I. Mikhailova^{*c*}, Yu. V. Revinskii^{*a*}, O. N. Burov^{*b*}, and S. V. Kurbatov^{*b*}

^a Southern Scientific Center of Russian Academy of Sciences, pr. Chekhova 41, Rostov-on-Don, 344006 Russia *e-mail: mikhail@ipoc.sfedu.ru

^b Southern Federal University, Rostov-on-Don, Russia

^c Research Institute of Physical and Organic Chemistry, Southern Federal University, Rostov-on-Don, Russia

Received December 21, 2016

Abstract—Reaction of aroylhydrazides with 2,4,6-trimethylbenzoyl chloride in the presence of Et₃N afforded N-(mesityl)aroylhydrazides, which through subsequent cyclization at treatment with SOCl₂ resulted in 2-aryl-5-(2,4,6-trimethylphenyl)-1*H*-1,3,4-oxadiazoles. For 2-hydroxyphenyl derivative containing a stable O–H N intramolecular bond a low quantum luminescence yield is observed (φ 0.006–0.038) due to the nonradiative deactivation of the agitated state by ESPIT mechanism.

DOI: 10.1134/S1070428017050281

2,5-Diaryl-1,3,4-oxadiazoles possess a wide range of versatile biological activity [1], and also interesting photophysical properties [2] that allow making on their basis organic [3, 4] and metal complex [5] luminophores, capable of effective radiation in a shortwave region of visible spectrum [6]. In this connection extending the range of such compounds and exploring their spectral luminescent properties is an actual task.

To this end we prepared by the reaction of hydrazides 1a-1c with 2,4,6-trimethylbenzoyl chloride in the presence of triethylamine benzoylbenzohydrazides 2a-2c, which at subsequent cyclization with thionyl chloride afforded 2-aryl-5-(2,4,6-trimethyl-phenyl)-1*H*-1,3,4-oxadiazoles 3a-3c.

In absorption spectra of oxadiazoles **3a–3c** a maximum of longwave band is observed at 261–311 nm which is

due to $\pi \rightarrow \pi^*$ electron transitions indicating the existence of these compounds in solutions as benzoic structures of type 3. IR and ¹H NMR spectra of oxadiazoles 3a-3c are consistent with their benzoic structures, and in the case of compound 3b they indicate the presence of a stable intramolecular hydrogen bond between ortho-phenol hydroxy group and the nearest nitrogen atom of the azole ring (O-H N). Namely, in the IR spectrum of 2-(2-hydroxyphenyl)-5-(2,4,6-trimethylphenyl)-1*H*-1,3,4-oxadiazole **3b** a wide band of OH group absorption is present at 3439 cm⁻¹ typical of intramolecular hydrogen bonds that is absent in compounds 3a and 3c. More than that, the presence of a stable intramolecular hydrogen bond O-H N in oxadiazole **3b** is indicated by the shift of the stretching vibrations of the $C^2 = N^3$ bond (1627 cm⁻¹) to the region of low frequencies by 20 and 13 cm⁻¹ as compared to

similar absorption in IR spectra of oxadiazoles **3a** (1647 cm⁻¹) and **3c** (1640 cm⁻¹), in which this interaction is not present. In ¹H NMR spectrum of oxadiazole **3b** in CDCl₃ a downfield shift of the signal of the hydroxy group proton (10.31 ppm) is observed that also evidences the presence of a stable intramolecular hydrogen bond.

In the luminescence spectra of oxadiazole 3b two bands are present: a shortwave (λ_{max}^{fl} 354–397 nm, ϕ 0.002-0.035) with a normal (4219-6965 cm⁻¹) and a longwave (λ_{max}^{fl} 476–491 nm, ϕ 0.001–0.004) with abnormally high (11460–12081 cm⁻¹) Stocks shift. By fluorescence excitation spectra the shortwave luminescence was assigned to the initial benzoic structure 3b, and the longwave band, to the emission of short-lived phototautomer resulting from a proton transfer in the excited state from phenol hydroxyl to the nitrogen atom of oxadiazole bound to it with the intramolecular hydrogen bond by ESIPT mechanism (excited-state intramolecular proton transfer) [7, 8]. The low summary quantum yield of oxadiazole 3b luminescence (ϕ 0.006–0.038) is caused by the nonradiative deactivation of its excited state by ESIPT mechanism. Previously such effects were discovered in spectra of ortho-hydroxyphenyl-1,3,4(1,2,4)-oxadiazoles [9–11] and 1,2,4-triazoles [12] structurally similar to compound **3b**.

In 2-phenyl- and 2-(2-methoxyphenyl)derivatives **3a** and **3c** the ESIPT process is impossible due to the lack of mobile proton of ortho-phenol hydroxy group in its molecules; as a result in their luminescence spectra only one highly intensive shortwave luminescence band (λ_{max}^{fl} 349–360 nm, ϕ 0.30–0.98) is present that undergoes slight shift into the red region with increasing solvent polarity (5-6 nm), and also with electron-donor character of the aryl substituent in the position 2 of oxadiazole ring (by 2-4 nm). The highest quantum luminescence yield for compounds 3a and **3c** is observed in acetonitrile (φ 0.86, 0.98), and the lowest, in DMSO (ϕ 0.30, 0.68). Such effects are also observed in the spectra of 8-hydroxy-2styrylquinolines at substitution of mobile proton of phenol group by methyl or benzyl substituent [13, 14]. As a result, as in the case of **3a** and **3c**, a significant increase in the luminescence quantum yield occurs in the corresponding alkyl derivatives compared to initial compounds.

Hence, the replacement of the *ortho*-phenol substituent in 2-(2-hydroxyphenyl)-5-(2,4,6-trimethyl-

phenyl)-1*H*-1,3,4-oxadiazol **3b** by phenyl or *ortho*methoxyphenyl group blocks the ESIPT process in oxadiazoles **3a** and **3c**. As a result they show a strong radiation in the shortwave region of visible spectrum with spectral luminescent characteristics, allowing classing them among widely popular organic luminophores of oxadiazole series.

N'-Benzoyl-2,4,6-trimethylbenzohydrazide (2a). To solution of 1.36 g (10 mmol) of benzohydrazide 1a in 20 mL of dried acetonitrile at stirring was added in succession 5 mL of triethylamine and 2.01 g (11 mmol) of 2,4,6-trimethylbenzoyl chloride in 30 mL of dried acetonitrile. The reaction mixture was left for 24 h at room temperature and afterwards it was boiled for 3 h. The solvent was removed in a vacuum, oily residue was washed with water $(2 \times 10 \text{ mL})$, dried in air, the reaction product was isolated by column chromatography on silica gel (0.063–0.200 mm. eluent ethyl acetate-petroleum ether, 1:2), collecting fraction with $R_{\rm f}$ 0.75. After distilling off the solvent the residue was recrystallized from 2-propanol (2×15 mL). Yield 2.40 g (85%), colorless crystals, mp. 203-204°C (mp. 202-205°C [15, 16]). IR spectrum (KBr), v, cm⁻¹: 3240, 3174 (NH); 1685, 1637 (C=O); 1616, 1599 (C=C): 1551, 1516, 1489, 1461, 1448, 1379, 1259, 1243, 1170, 1103, 1070, 1027, 1002, 986, 847, 784, 782. ¹H NMR spectrum (CDCl₃), δ, ppm: 2.28 s (3H, 4-CH₃), 2.35 s (6H, 2,6-CH₃), 6.86 s (2H_{arom}), 7.48 d.d (2H_{arom}, J₁ 7.9, J₂ 7.5 Hz), 7.52 d.d (1H_{arom}, J₁ 7.5, J₂ 1.4 Hz), 7.83 d.d (2H_{arom}, J₁ 7.9, J₂ 1.5 Hz), 8.63 d (1H, NH, J 2.5 Hz), 9.45 d (1H, NH, J 2.5 Hz). ¹³C NMR spectrum (CDCl₃), δ, ppm: 19.92 (2,6-CH₃), 21.16 (4-CH₃), 123.85 (Carom.quat.), 126.89 (Carom), 128.24 (2Carom), 129.12 (Carom), 131.55 (Carom.guat.), 131.82 (Carom), 135.11 (2C_{arom.guat.}), 139.21 (C_{arom.guat.}), 168.33 (C=O), 173.34 (C=O). Found, %: C 72.25; H 6.44; N 9.97. C₁₇H₁₈N₂O₂. Calculated, %: C 72.32; H 6.43; N 9.92.

N'-(2-Hydroxybenzoyl)-2,4,6-trimethylbenzohydrazide (2b) was obtained similarly from hydrazide of salicylic acid 1b. Yield 2.33 g (78%), colorless crystals, mp. 140–142°C. IR spectrum (KBr), v, cm⁻¹: 3421 (OH); 3294, 3270 (NH); 1685, 1654 (C=O); 1640, 1613, 1598 (C=C); 1540, 1490, 1488, 1378, 1350, 1291, 1257, 1215, 1162, 1151, 1103, 1050, 1035, 979, 951, 889, 847, 828. ¹H NMR spectrum (DMSO-*d*₆), δ, ppm: 2.46 s (3H, 4-CH₃), 2.54 s (6H, 2,6-CH₃), 7.10 s (2H_{arom}), 7.14–7.23 m (2H_{arom}), 7.67 d.d (1H_{arom}, *J*₁ 7.6, *J*₂ 7.5 Hz), 8.18 d.d (1H_{arom}, *J*₁ 7.6, *J*₂ 7.5 Hz), 10.28 d (1H, NH, *J* 4.5 Hz), 10.88 d (1H, NH, *J* 4.5 Hz), 12.31 s (1H, OH). ¹³C NMR spectrum $\begin{array}{l} (DMSO-d_6), \ \delta, \ ppm: \ 19.42 \ (2,6-CH_3), \ 21.34 \ (4-CH_3), \\ 114.47 \ (C_{arom.quat}), \ 117.91 \ (C_{arom}), \ 119.46 \ (C_{arom}), \ 128.21 \\ (2C_{arom}), \ 128.69 \ (C_{arom}), \ 133.68 \ (C_{arom.quat}), \ 134.12 \\ (C_{arom}), \ 134.94 \ (2C_{arom.quat}), \ 138.11 \ (C_{arom.quat}), \ 160.05 \\ (C_{arom.quat}), \ 168.53 \ (C=O), \ 168.94 \ (C=O). \ Found, \ \%: \ C \\ 68.49; \ H \ 6.05; \ N \ 9.42. \ C_{17}H_{18}N_2O_3. \ Calculated, \ \%: \ C \\ 68.44; \ H \ 6.08; \ N \ 9.39. \end{array}$

2,4,6-Trimethyl-N'-(2-methoxybenzoyl)benzohydrazide (2c) was obtained similarly from hydrazide 1c. Yield 2.53 g (81%), colorless crystals, mp. 160-162°C. IR spectrum (KBr), v, cm⁻¹: 3321, 3233 (NH); 1689, 1636 (C=O); 1634, 1611, 1600, 1577 (C=C); 1508, 1507, 1484, 1470, 1460, 1434, 1317, 1294, 1250, 1183, 1157, 1120, 1018, 851. ¹H NMR spectrum (CDCl₃), δ , ppm: 2.24 s (3H, 4-CH₃), 2.33 s (6H, 2,6-CH₃), 4.08 s (3H, OCH₃), 6.82 s (2H_{arom}), 6.98–7.06 m (2H_{arom}), 7.48 d.d (1H_{arom}, J₁ 7.6, J₂ 7.5 Hz), 7.92 d.d (1H_{arom}, J₁ 7.6, J₂ 7.5 Hz), 9.53 d (1H, NH, J 7.5 Hz), 10.87 d (1H, NH, J 7.5 Hz). ¹³C NMR spectrum (CDCl₃), δ, ppm: 19.56(2,6-CH₃), 21.45 (4-CH₃), 46.23 (OCH₃), 111.52 (C_{arom}), 118.69 (C_{arom.quat}), 121.33 (C_{arom}), 128.36 (2C_{arom}), 132.30 (C_{arom.guat.}), 132.31 (Carom), 133.88 (Carom), 135.42 (2Carom.quat.), 139.07 (Carom.quat.), 157.76 (Carom.quat.), 161.06 (C=O), 166.25 (C=O). Found, %: C 69.23; H 6.44; N 9.02. C₁₈H₂₀N₂O₃. Calculated, %: C 69.21; H 6.45; N 8.97.

2-(2,4,6-Trimethylphenyl)-5-phenyl-1H-1,3,4oxadiazole (3a). A solution of 1.98 g (7 mmol) of hydrazide 2a in 50 mL of thionyl chloride was boiled during 5 h, then thionyl chloride was distilled off while heating on a water bath. Into the flask with oily residue 50 g of crushed ice was added, the precipitate was filtered off, washed it with cold water $(2 \times 30 \text{ mL})$, dried in open air, and purified by column chromatography (eluent ethylcetate-petroleum ether, 1 : 5), fraction was collected with $R_{\rm f}$ 0.75–0.80. After distilling off the solvent the residue was recrystallized from 2-propanol. Yield 1.02 g (55%), colorless crystals, mp. 93-94°C (mp. 92-94°C [15], 95-96°C [16]). IR spectrum (KBr), v, cm^{-1} : 1647, 1610 (C=N); 1590, 1567 (C=C); 1551, 1512, 1482, 1456, 1448, 1352, 1261, 1247, 1167, 1098, 1071, 1049, 1024, 964, 867, 850, 779, 752. UV spectrum, λ_{max} , nm $[\epsilon \cdot 10^{-4} \text{ L/(mol \cdot cm)}, \lambda_{\text{excit}} 300 \text{ nm}]$: toluene, 290 [1.56], λ_{max}^{f1} (ϕ) 352 (0.84); acetonitrile, 261 [2.70], λ_{max}^{f1} (ϕ) 349 (0.98); DMSO, 264 [1.88], λ^{fl}_{max} (φ) 358 (0.30). ¹H NMR spectrum (CDCl₃), δ, ppm: 2.31 s (6H, 2,6-CH₃), 2.33 s (3H, 4-CH₃), 6.96 s (2H_{arom}), 7.47-7.54 m (3H_{arom}), 8.06–8.15 m (2H_{arom}). ¹³C NMR spectrum (CDCl₃), δ, ppm: 20.90 (2C, 2,6-CH₃), 21.68 (4-CH₃),

121.56 ($C_{arom,quat.}$), 124.52 ($C_{arom,quat.}$), 127.28 (2C, C_{arom}), 129.31 (2C, C_{arom}), 129.51 (2 C_{arom}), 132.08 (C_{arom}), 139.17 (2 $C_{arom,quat.}$), 141.45 ($C_{arom,quat.}$), 164.35 ($C_{Ht,quat.}$), 165.26 ($C_{Ht,quat.}$). Found, %: C 77.31; H 6.12; N 10.57. $C_{17}H_{17}N_2O$. Calculated, %: C 77.25; H 6.10; N 10.60.

2-[5-(2,4,6-Trimethylphenyl)-1H-1,3,4-oxadiazol-2-yl]phenol (3b) was obtained similarly. Yield 0.94 g (48%), colorless crystals, mp. 92-94°C. IR spectrum (KBr), v, cm⁻¹: 3439 (OH); 1627, 1614 (C=N); 1595, 1591 (C=C); 1559, 1545, 1516, 1507, 1489, 1383, 1359, 1259, 1256, 1238, 1211, 1148, 1049, 1032, 975, 850, 846, 745. UV spectrum, λ_{max} , nm [$\epsilon \cdot 10^{-4}$, L/(mol·cm), λ_{excit} 300 nm]: isooctane, 202 [8.30], 264 [3.39], 311 [2.43], $\lambda_{max}^{fl}(\phi)$ 397 (0.002), 491 (0.004); acetonitrile, 258 [2.59], 308 [1.72], λ_{max}^{fl} (ϕ) 354 (0.005), 476 (0.001); DMSO, 307 [0.93], $\lambda_{\text{max}}^{\text{fl}}$ (ϕ) 365 (0.035), 488 (0.003). ¹H NMR spectrum (CDCl₃), δ, ppm: 2.39 s (6H, 2,6-CH₃), 2.42 s (3H, 4-CH₃), 7.03– 7.11 m (3Harom), 7.21 d (1Harom, J 7.6 Hz), 7.51 d.d (1H_{arom}, J₁ 7.6, J₂ 7.5 Hz), 7.82 d (1H_{arom}, J 7.5 Hz), 10.31 s (1H, OH). ¹³C NMR spectrum (CDCl₃), δ , ppm: 20.56 (2C, 2,6-CH₃), 21.32 (4-CH₃), 108.27 (C_{arom.guat}), 117.65 (Carom), 120.21 (Carom), 120.35 (Carom.guat), 126.58 (Carom), 129.06 (2Carom), 133.66 (Carom), 138.91 (2C_{arom.quat.}), 141.47 (C_{arom.quat.}), 157.66 (C_{arom.quat.}), 163.29 (C_{Ht,quat.}), 164.85 (C_{Ht,quat.}). Found, %: C 72.83; H 5.77; N 10.03. C₁₇H₁₆N₂O₂. Calculated, %: C 72.84; H 5.75; N 9.99.

2-[(2,4,6-Trimethylphenyl)-5-(2-methoxyphenyl)]-1H-1,3,4-oxadiazole (3c) was obtained similarly. Yield 1.28 g (62%), colorless crystals, mp. 60–62°C. IR spectrum (KBr), v, cm⁻¹: 1640, 1607 (C=N); 1591, 1572 (C=C); 1543, 1475, 1472, 1437, 1350, 1278, 1266, 1182, 1159, 1053, 1041, 1024, 968, 863, 771, 756. UV spectrum, λ_{max} , nm [$\epsilon \cdot 10^{-4}$, L/(mol·cm), λ_{excit} 300 nm]: toluene, 305 [0.88], λ_{max}^{fl} (ϕ) 355 (0.69); acetonitrile, 255 [1.80], 298 [0.86], λ_{max}^{fl} (ϕ) 353 (0.86); DMSO, 302 [0.87], λ_{max}^{fl} (ϕ) 360 (0.68). ¹H NMR spectrum (CDCl₃), δ, ppm: 2.32 s (9H, 2,4,6-CH₃), 3.95 s (3H, OCH₃), 6.96 s (2H_{arom}), 7.03–7.11 m (2H_{arom}), 7.49 d.d (1H_{arom}, J₁ 7.6, J₂ 7.5 Hz), 7.98 d.d (1H_{arom}, J₁ 7.5, J_2 2.5 Hz). ¹³C NMR spectrum (CDCl₃), δ , ppm: 20.94 (2,6-CH₃), 21.67 (4-CH₃), 56.35 (OCH₃), 112.20 (C_{arom}), 113.67 (C_{arom.quat.}), 121.18 (C_{arom}), 121.76 (Carom.quat.), 129.26 (2Carom), 130.81 (Carom), 133.37 (Carom), 139.26 (2Carom.guat.), 141.19 (Carom.guat.), 158.30 (Carom.guat.), 164.10 (C_{Ht,guat.}), 164.07 (C_{Ht,guat.}). Found, %: C 73.41; H 6.18; N 9.48. C₁₈H₁₈N₂O₂. Calculated, %: C 73.45; H 6.16; N 9.52.

IR spectra were registered on a spectrophotometer Varian Excalibur 3100 FT-IR, ¹H (250.13 MHz), ¹³C (62.90 MHz) NMR spectra were recorded on an instrument Bruker DPX-250. Absorption and fluorescent spectra were measured on a spectrophotometer Cary Scan 100 and a spectrofluorimeter Cary Eclipse respectively. Quantum yields of fluorescence were determined with respect to the acetonitrile solution of anthracene [11].

ACKNOWLEDGMENTS

This study was carried out in the framework of the State contract of the Russian Ministry of Education and Science no. 4.129.2014/K.

REFERENCES

- 1. Prakash, O., Kumar, M., Kumar, R., Sharma, C., and Aneja, K.R., *Eur. J. Med. Chem.*, 2010, vol. 45, p. 4252.
- Wang, G., Zhang, Y.G., Cheng, Y.X., Ma, D.G., Wang, L.X., Jing, X.B., and Wang, F.S., *Synth. Met.*, 2003, vol. 137, p. 1119.
- 3. Mikhailov, I.E., Vikrishchuk, N.I., Popov, L.D., Beldovskaya, A.D., Revinskii, Yu.V., Dushenko, G.A., and Minkin, V.I., RF Patent no. 2568640, 2015, *Byull. Izobret.*, 2015, no. 32.
- Mikhailov, I.E., Popov, L.D., Vikrishchuk, N.I., Beldovskaya, A.D., Revinskii, Yu.V., Dushenko, G.A., and Minkin, V.I., *Russ. J. Gen. Chem.*, 2015, vol. 85, p. 203. doi 10.1134/S1070363215010363
- Beldovskaya, A.D., Dushenko, G.A., Vikrishchuk, N.I., Popov, L.D., Revinskii, Yu.V., Mikhailov, I.E., and Minkin, V.I., *Russ. J. Gen. Chem.*, 2014, vol. 84, p. 171. doi 10.1134/S1070363214010290
- Mikhailov, I.E., Dushenko, G.A., Starikov, D.A., Mikhailova, O.I., and Minkin, V.I., *Vestn. YuNTs.*, 2012, vol. 6, p. 32.

- Serdyuk, O.V., Evseenko, I.V., Dushenko, G.A., Revinskii, Yu.V., and Mikhailov, I.E., *Russ. J. Org. Chem.*, 2012, vol. 48, p. 78. doi 10.1134/ S1070428012010113
- Doroshenko, A.O., Posokhov, E.A., Verezubova, A.A., and Ptyagina, L.M., *J. Phys. Org. Chem.*, 2000, vol. 13, p. 253. doi 10.1002/ 1099-1395(200005)13:5<253::AID-POC238>3.0.CO;2-D
- Beldovskaya, A.D., Dushenko, G.A., Vikrishchuk, N.I., Popov, L.D., Revinskii, Yu.V., Mikhailov, I.E., and Minkin, V.I., *Russ. J. Org. Chem.*, 2013, vol. 49, p. 1861. doi 10.1134/S1070428013120312
- Mikhailov, I.E., Artyushkina, Yu.M., Burov, O.N., Dushenko, G.A., Revinskii, Yu.V., and Minkin, V.I., *Russ. J. Gen. Chem.*, 2016, vol. 86, p. 406. doi 10.1134/ S1070363216020341
- Mikhailov, I.E., Vikrishchuk, N.I., Popov, L.D., Dushenko, G.A., Beldovskaya, A.D., Revinskii, Yu.V., and Minkin, V.I., *Russ. J. Gen. Chem.*, 2016, vol. 86, p. 1054. doi 10.1134/S1070363216050121
- Beldovskaya, A.D., Dushenko, G.A., Vikrishchuk, N.I., Popov, L.D., Revinskii, Yu.V., and Mikhailov, I.E., *Russ. J. Gen. Chem.*, 2013, vol. 83, p. 2075. doi 10.1134/S1070363213110200
- Mikhailov, I.E., Svetlichnyi, D.A., Burov, O.N., Revinskii, Yu.V., Dushenko, G.A., and Minkin, V.I., *Russ. J. Gen. Chem.*, 2015, vol. 85, p. 1074. doi 10.1134/S1070363215050126
- Mikhailov, I.E., Svetlichnyi, D.A., Burov, O.N., Dushenko, G.A., Revinskii, Yu.V., and Kurbatov, S.V., *Russ. J. Gen. Chem.*, 2016, vol. 86, p. 989. doi 10.1134/ S1070363216040393
- Hartmann, K.-P. and Heuschmann, M., *Tetrahed-ron*, 2000, vol. 56, p. 4213. doi 10.1016/ S0040-4020(00)00346-X
- Feygelman, V.M., Walker, J.K., Katritzky, A.R., and Dega-Szafran, Z., *Chem. Scripta.*, 1989, vol. 29, p. 241.