Synthesis of β -nitroxyalkylnitramines

V. A. Tartakovsky, A. S. Ermakov, D. B. Vinogradov,* and N. V. Sigai

N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky prosp., 117913 Moscow, Russian Federation. Fax: 007 (095) 135 5328. E-mail: secretary@ioc.ac.ru

 β -Nitroxyalkylnitramines were obtained by nitration of β -hydroxyalkyl sulfamates, products of the condensation of derivatives of sulfamic acid with alkene oxides, by a mixture of HNO₃ and H₂SO₄.

Key words: N-alkyl sulfamates; β-hydroxyalkyl sulfamates; β-nitroxyalkylnitramines.

Earlier, 1.2 β -hydroxyalkyl sulfamates (1) were obtained by the reaction of derivatives of sulfamic acid with alkene oxides (Scheme 1). In the present work, β -nitroxyalkylnitramines (2) were synthesized by nitration of β -hydroxyalkyl sulfamates 1.

Only a few examples of the synthesis of nitramines from derivatives of sulfamic acid are known so far. $^{3-6}$ But this method has not been used to synthesize β -nitroxyalkylnitramines. The main method for the synthesis of these compounds is based on nitration of

Table 1. Characteristics of β-nitroxyalkylnitramines 2 R³NCH₂CHR⁴ NO₂ ONO₂ NO₂ ONO₂

					6.	22		
Com- pound	R³	R ⁴	Yield (%)	Found (%) Calculated			M.p./°C	¹H NMR, δ
				C	Н	N		
2a	Me	Н	91	_	-		40-417	
2 b	Me	Mc	94				22-237	-
2c	Et	H	90		-	-	22-237	
2 d	Et	Me	95				457	_
2e	CH ₂ CH ₂ ONO ₂	Me	55	23.69 23.62	<u>4.09</u> 3.96		Resin	1.41 (d, 3 H, Me); 4.28 (m, 4 H, 2 CH ₂ N); 4.82 (t, 2 H, CH ₂ O); 5.50 (m, 1 H, CHO)
2f	(CH ₂) ₃ ONO ₂	Мс	60	27.06 26.86	<u>4.39</u> 4.53		Resin	1.39 (d, 3 H, Me); 2.15 (m, 2 H, CH ₂); 4.00 (m, 4 H, 2 CH ₂ N); 4.60 (t, 2 H, CH ₂ O); 5.50 (m, 1 H, CHO)
2g	Ме	CH ₂ ONO ₂	92	19.81 20.05	3.54 3.35		35—36	3.52 (s, 3 H, Me); 4.20—4.80 (m, 2 H, NCH ₂ , 2 H, CH ₂ O); 5.66 (m, 1 H, CHO)
2h	Me	CH ₂ CI	81	22.78 22.49	3.66 3.74	-	8586	3.50 (s, 3 H, Me); 3.85 (m, 2 H, CH ₂ Cl); 4.30 (m, 2 H, NCH ₂); 5.65 (m, 1 H, CHO)
2i	Et	CH ₂ Cl	80	26.71 26.38	<u>4.91</u> 4.43	******	6062	1.30 (t, 3 H, Me); 3.80-4.20 (m, 6 H, 2 CH ₂ N, CH ₂ Cl); 5.65 (m, 1 H, CHO)
2j	Bu ⁿ	Me	75	_		18.64 18.99	Resin	0.95 (t, 3 H, CH ₃ CH ₂ CH ₂ CH ₂); 1.30-1.80 (m, 7 H, Me, CH ₃ CH ₂ CH ₂ CH ₂); 3.70-4.30 (m, 4 H, CH ₂ N);
2k	CH2CH2ONO2	Н	60				56 8	5.60 (m, 1 H, CHO)

Scheme 1

R = H, Alk, $(CH_2)_0OH$; R' = H, Alk, CH_2OH , CH_2CI ; M = K, Na, NH₄

 β -hydroxyalkylamines by HNO_3 - $(MeCO)_2O$ mixture in the presence of chloride ions.^{7,8}

β-Hydroxyalkyl sulfamates 1 obtained according to the known procedures^{1,2} were 0, N-nitrated with HNO₃—H₂SO₄ mixtures at -5 to -15 °C for 30—60 min (Scheme 2). Products 2 were isolated in 55—95% yields (Table 1).

Scheme 2

- 1: R^1 , R^2 = Me, H (a); Me, Me (b); Et, H (c); Et, Me (d); HOCH₂CH₂, Me (e); HOCH₂CH₂CH₂, Me (f); Me, CH₂OH (g); Me, CH₂CI (h); Et, CH₂CI (i); Buⁿ, Me (j); HOCH₂CH₂, H (k); M = K, Na
- 2: R³, R⁴ = Me, H (a); Me, Me (b); Et, H (c); Et, Me (d); O₂NOCH₂CH₂, Me (e); ONO₂CH₂CH₂CH₂, Me (f); Me, CH₂ONO₂ (g); Me, CH₂Cl (h); Et, CH₂Cl (i); Buⁿ, Me (j); O₂NOCH₂CH₂, H (k)

Experimental

¹H NMR spectra were recorded on a Bruker WM-250 instrument (250 MHz) in acetone-d₆ with HMDS as the internal standard.

N-Methyl-N-β-nitroxyethylnitramine (2a). Potassium N-β-hydroxyethyl-N-methylsulfamate (3.67 g) was added to a mixture of 7 mL of HNO₃ (d=1.51 g cm⁻³) and 5 mL of H₂SO₄ (d=1.83 g cm⁻³) at -10 to -15 °C. The reaction mixture was stirred for 40 min, poured out into a mixture of 30 mL of water and ice, and extracted with ethyl acetate (3×10 mL). The extract was washed successively with water (1×10 mL), a solution of sodium carbonate (2×10 mL), and water (1×10 mL) and then concentrated. N-Methyl-N-β-nitroxyethylnitramine (1.52 g, 91%) was obtained, m.p. 40-41 °C (cf. Ref. 7).

References

- V. A. Tartakovsky, A. S. Ermakov, and N. V. Sigai, Izv. Akad. Nauk, Ser. Khim., 1993, 1146 [Russ. Chem. Bull., 1993, 42, 1104 (Engl. Transl.)].
- V. A. Tartakovsky, A. S. Ermakov, N. V. Sigai, O. N. Varfolomeeva, and E. Yu. Kulikova, Izv. Akad. Nauk, Ser. Khim., 1994, 1063 [Russ. Chem. Bull., 1994, 43, 999 (Engl. Transl.)].
- 3. C. W. Carter, Ind. Eng. Chem., 1948, 40, 1627.
- 4. A. H. Dinwood and J. A. Gibson, J. Chem. Soc. C, 1967, 496.
- 5. T. Pollon, Rev. Chem. Miner., 1967, 413.
- A. S. Ermakov, S. A. Serkov, and Yu. A. Strelenko, Izv. Akad. Nauk, Ser. Khim., 1994, 2041 [Russ. Chem. Bull., 1994, 43, 1930 (Engl. Transl.)].
- 7. US Pat. 2678946, 1954; Chem. Abstrs., 1955, 49, 4704.
- 8. G. Desseigne, Mem. Poudres, 1950, 32, 117.

Received June 27, 1996; in revised form January 21, 1997