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Abstract A simple and practical protocol was developed

for the synthesis of benzimidazoles. The protocol uses

iminoester hydrochloride which is very useful in the

reaction with 4,5-dichloro-1,2-phenylenediamine under

microwave irradiation leading to the products with good

yields and in short reaction times. This method can be used

as a general technique for synthesizing benzimidazoles.

The synthesized compounds were evaluated for their bio-

logical properties such as anti-lipase, antiviral, and

antitumor activities. Five benzimidazol-1-acetic acid

hydrazides showed slight antiviral activity at 25 lg/cm3

concentration despite their low toxicity. Substituted

2-benzylbenzimidazoles were active against adenocarci-

noma (CT26) and melanoma (B16F10) cancer cell lines at

concentrations below 10 lg/cm3. Six of the compounds

showed anti-lipase activities at various concentrations; the

IC50 value of one compound was 0.35 lg/cm3, which is

similar activity to that of orlistat (0.32 lg/cm3).

Keywords Benzimidazole drug � Microwave �
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Introduction

Benzimidazoles are an important group of heterocyclic

compounds in the field of medicinal chemistry because they

frequently have interesting biological and pharmacological

properties. For example, in 1944, Wayne Walley, one of the

leading exponents of antimetabolite therapy, noted the

resemblance of benzimidazole to adenine and speculated

that it might act as an adenine antimetabolite (Scheme 1).

He even demonstrated that it could inhibit the growth of

bacteria and fungi and that this could be reversed by either

adenine or guanine [1]. Obesity is widely recognized as a

major public health problem which is caused by an imbal-

ance between energy intake and expenditure. Obesity can

cause different serious diseases, including hypertension,

hyperlipidemia, arteriosclerosis, and type II diabetes [2].

Pancreatic lipase plays a key role for fat digestion. More-

over, pancreatic lipase inhibitors, such as orlistat, are used

as therapeutic agents for curing obesity [3].

Benzimidazole structures are classified under several

ATC groups [4]. Benzimidazole drugs (e.g., anthelmintics,

albendazole, thiabendazole, and the proton pump inhibitor

omeprazole) represent substances used in both human and

veterinary medicine (Scheme 2) [5–13].

1-Benzyl-5,6-dichloro-1H-benzimidazole-2-amine is as

a potent inhibitor of viral RNA synthesis (Scheme 3) [14].

Human cytomegalovirus (HCMV) is an important patho-

gen in immunocompromised conditions, such as bone

marrow and organ transplant patients and individuals with

AIDS [15].
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In the literature, there are many synthetic routes that are

common to the preparation of benzimidazoles. However,

many of these procedures are associated with several

drawbacks such as expensive reagents, harsh reaction

conditions, extended reaction times, the occurrence of side

products, unsatisfactory yields, and complicated experi-

mental procedures. Electron deficiency of the starting

material in terms of the nature of the substituents on the

aromatic ring can affect the success of these reactions. In

general, when 4,5-disubstituted-1,2-phenylenediamine with

electron-withdrawing groups, such as chloro, are used the

yield and purity of the product are significantly worse,

reaction times are long, and catalysts are required [16–31].

Therefore, there is a need for a new synthetic route for

benzimidazoles which is short and economical.

In this study we developed a novel and practical method

for the synthesis of 2-substituted benzimidazole deriva-

tives. This method can provide a convenient way to

synthesize potentially bioactive benzimidazoles. The

structures of new compounds were confirmed by FT-IR, 1H

NMR, 13C NMR spectroscopy, and mass spectrometry. All

the synthesized compounds were screened for their bio-

logical activities. The synthetic path of the target

compounds is shown in Scheme 4.

Results and discussion

This is the first report on the synthesis of benzimidazoles

2a–2f from iminoester hydrochlorides 1a–1f [32, 33] both

in methanol under microwave irradiation and on a solid

support using microwave irradiation in the absence of

organic solvents, which make the procedure a clean, effi-

cient, and cheap method to afford various useful

heterocyclic compounds. The new heterocyclic compounds

2a–2f were also obtained by using conventional heating in

methanol [34].

In this new method we obtained products within short

reaction times and with high yields (Table 1). In addition,

the reaction was carried out catalyst-free under mild con-

ditions. Moreover, the use of solid supports under solvent-

less conditions is particularly important in terms of the

development of green technologies.

Acyl hydrazides 4a–4f were synthesized as key inter-

mediates for combinatorial benzimidazoles. Since the acyl

hydrazides could serve as both a hydrogen donor and

acceptor, they could be potentially more potent than the

parent benzimidazoles. Acyl hydrazides 4a–4f were easily
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prepared in excellent yields from 2a–2f by alkylation with

methyl a-bromoacetate in acetone followed by a nucleo-

philic displacement of the methoxy group with hydrazine.

Anti-lipase activity results

All compounds were evaluated with regard to pancreatic

lipase activity and 2d, 3a–3c, 3f, and 4d showed anti-lipase

activities at various concentrations (Table 2). No inhibitory

effect was detected for the other compounds. Dose-

dependent pancreatic lipase activity was observed as

shown in Fig. 1. Among the tested compounds, 3c showed

the best anti-lipase activity. The compound inhibited pan-

creatic lipase activity by 62, 92, and 96 % at concentrations

of 0.625, 1.25, and 6.25 lg/cm3, respectively. Orlistat, a

known pancreatic lipase inhibitor used as an anti-obesity

drug, inhibited activity by 87, 95, and 99 % at the same

concentrations. IC50 values of orlistat and compound 3c

were calculated as 0.32 and 0.35 lg/cm3, respectively.

Orlistat is the only approved anti-obesity medication [3]

but it has some side effects, such as fecal incontinence,

flatulence, and steatorrhea [35, 36]. Synthesized com-

pounds such as 3b and 3c can be good alternatives to

orlistat.

Antiviral activity results

All compounds tested were toxic at 100 and 25 lg/cm3 in

Vero and MDCK cells used to grow HSV-1 and influenza

A virus, respectively. Only compounds 4a, 4b, and 4d–4f

showed a slight antiviral activity at 100 and 25 lg/cm3

concentration despite their low toxicity. 3f and 2d were
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Table 1 Comparison of yields and reaction time under microwave

irradiation and conventional method for compounds 2a–2f

Product Method i Method ii Method iii

Time/

min

Yield/

%

Time/

min

Yield/

%

Time/

min

Yield/

%

2a 6 72 10 93 600 73

2b 7 69 12 92 600 71

2c 5 71 8 96 600 88

2d 6 68 10 87 600 62

2e 7 66 12 85 600 69

2f 6 69 7 90 600 70

Table 2 Residual lipase activity

Residual activity/% % SD

T? 100 ±2

2d (5 mg) 39 ±5

3a (5 mg) 30 ±0

3b (5 mg) 10 ±1

3c (3 mg) 6 ±1

3f (5 mg) 19 ±5

4b (5 mg) 43 ±2

Orlistat (0.5 mg) 5 ±2

Orlistat (0.1 mg) 13 ±3
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active against HSV-1 at 12.5 and 6.25 lg/cm3 concentra-

tion albeit with some degree of associated toxicity

(Table 3). No anti-influenza virus activity of the com-

pounds was detected.

Antitumor activity results

The tumor cell growth inhibition results in Table 4 indi-

cated that some of the compounds exhibited a dose-

dependent inhibitory effect on adenocarcinoma (CT26) and

melanoma (B16F10) cells. Six of the compounds, namely

2a–2f, were active against both cancer cell lines at con-

centrations below 10 lg/cm3. It was interesting to see that

although compounds 3a–3c at concentrations less than

100 lg/cm3 were not active against melanoma, but they

were inhibitory toward adenocarcinoma cells.

Conclusion

The present synthetic methods are rapid, inexpensive, and

efficient routes for the synthesis of 2-substituted benz-

imidazole derivatives. These new methods can be

efficiently used to synthesize many new benzimidazole

derivatives which have a broad spectrum of biological

activities. Synthesized compounds such as 3b and 3c could

be good alternatives to orlistat. The IC50 value of 3c was

0.35 lg/cm3, which is similar to that of orlistat (0.32 lg/

cm3). Compounds 2a–2f were active against adenocarci-

noma (CT26) and melanoma (B16F10) cancer cell lines at

concentrations below 10 lg/cm3.
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Fig. 1 Dose-dependent inhibitory effect of the compounds 3b, 3c,

and 3f. Orlistat was used as a positive control. All compounds were

measured at final concentrations of 0.625, 1.25, and 6.25 lg/cm3.

Residual activities of compounds are expressed as the mean ± SD in

triplicate

Table 3 Anti-HSV and anti-influenza A virus activity of the compounds

CNc HSV % plaque reductiona Anti-influenza A activity (±)b

Concentration/lg/cm3 Concentration/lg/cm3

6.25 12.5 25 50 100 50 25 12.5 6.2 3.1 1.5 0.7

2a Td T T T – – – – – – – –

2b T T T T – – – – – – – –

2c T T T T – – – – – – – –

2d 79 (T) T T T ? ? – – – – – –

2e T T T T – – – – – – – –

2f T T T T – – – – – – – –

3a 0 0 0 0 – – – – – – – –

3b 0 0 0 0 – – – – – – – –

3c 0 0 0 0 – – – – – – – –

3d 0 8 (T) 8 (T) T – – – – – – – –

3e 0 0 0 0 – – – – – – – –

3f 33 (T) 88 (T) T T ? ? ? – – – – –

4a 0 0 8 41 ? ? – – – – – –

4b 0 0 8 33 – – – – – – – –

4c 0 0 8 T ? ? – – – – – –

4d 0 0 8 16 ? – – – – – – –

4e 0 0 8 33 – – – – – – – –

4f 0 0 8 33 ? – – – – – – –

a Percentage of plaque reduction: [(mean number of plaques in control - mean

number of plaques in test)/(mean number of plaques in control)] 9 100
b ? and - indicate ‘no virus growth’ and ‘virus growth’, respectively, as

determined by hemagglutination assay using chicken erythrocytes
c Compound number
d Toxic: cell monolayer integrity is lost partially or completely

Table 4 Antitumor activity of the compounds

Compound Tumor cell growth inhibition

(GI50, log lg/cm3)

Cell line

CT26 (adenocarcinoma) B16F10 (melanoma)

2a 0.7999 0.6654

2b 0.8162 0.6667

2c 0.7253 0.6305

2d 0.744 0.7094

2e 0.6427 0.7239

2f 0.6584 0.7474

3a 1.416 2.171

3b 1.187 4.348

3c 1.688 5.645

3d 1.258 1.296

3e 1.799 1.867

3f 0.9827 1.506

4a 1.501 1.574

4b 1.466 1.697

4c 1.248 1.506

4d 1.592 1.593

4e 1.401 1.554

4f 1.404 1.549
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Experimental

Melting points were determined in open capillaries on a

Büchi digital melting point apparatus. IR spectra were

recorded in KBr pellets on a Perkin-Elmer 100 FTIR

spectrophotometer. 1H NMR and 13C NMR spectra were

measured on a Varian 200 spectrometer using DMSO-d6 as

solvent and TMS as internal standard. Chemical shifts are

given in parts per million, coupling constants J in Hz. Mass

spectra (MS) were determined in H-ESI mode on a Thermo

Quantum Mars. Elemental analyses were performed on a

Carlo Erba 1106 CHN analyzer, and the results agreed

favorably with calculated values. Starting materials were

obtained from Fluka or Aldrich. A monomode CEM-Dis-

cover Microwave was used in the standard configuration as

delivered, including proprietary software. All experiments

were carried out in microwave process vials (30 cm3) with

temperature control by an infrared detection temperature

sensor. The temperature was computer monitored and

maintained constant by a discrete modulation of delivered

microwave power. After completion of the reaction, the

vial was cooled to 60 �C by air jet cooling.

General procedure for the synthesis of 5,6-dichloro-2-

(substituted benzyl)-1H-benzimidazoles 2a–2f

under microwave irradiation (method i)

A mixture of 4,5-dichloro-1,2-phenylenediamine (0.010 mol),

iminoester hydrochlorides 1a–1f (0.013 mol), and 9 g acidic

alumina oxide was taken in a 20-cm3 round-bottom flask and

solubilized in 10 cm3 dichloromethane. The solvent was

completely evaporated under reduced pressure. The mixture

was microwave-irradiated at 80 �C for 2 9 3 min (hold time)

at 60 W. After the completion of the reaction (monitored by

TLC, ethyl acetate/hexane 3:1), the mixture was extracted with

ethanol (3 9 15 cm3) and poured into water. The precipitate

was filtered and recrystallized from ethanol/water (1:3) to give

pure 2a–2f.

General procedure for the synthesis of 5,6-dichloro-2-

(substituted benzyl)-1H-benzimidazoles 2a–2f

under microwave irradiation (method ii)

A mixture of 4,5-dichloro-1,2-phenylenediamine (0.010 mol)

and iminoester hydrochlorides 1a–1f (0.013 mol) in

15 cm3 dry methanol was irradiated in closed vessels

with pressure control at 65 �C for 10 min (hold time) at

300 W maximum power. After the completion of the

reaction (monitored by TLC, ethyl acetate/hexane 3:1),

the mixture was poured into water. The precipitate was

collected by filtration and recrystallized from ethanol/

water (1:3) to give pure 2a–2f.

General procedure for the synthesis of 5,6-dichloro-2-

(substituted benzyl)-1H-benzimidazoles 2a–2f,

conventional method (method iii)

A mixture of 4,5-dichloro-1,2-phenylenediamine

(0.010 mol) and iminoester hydrochlorides 1a–1f

(0.013 mol) in 30 cm3 dry methanol was taken in a round-

bottom flask. The solution was stirred for 10 h at room

temperature. After the completion of the reaction (moni-

tored by TLC, ethyl acetate/hexane 3:1), the mixture was

poured into water. The precipitate was collected by filtra-

tion and recrystallized from ethanol/water (1:3) to give

pure 2a–2f.

5,6-Dichloro-2-(2-chlorobenzyl)-1H-benzimidazole

(2a, C14H9Cl3N2)

M.p.: 237–238 �C; IR (KBr): �m = 3,422 (NH), 3,071,

2,914, 1,629, 1,574, 1,287, 765, 744, 536 cm-1; 1H NMR

(200 MHz, DMSO-d6): d = 4.31 (s, 2H, CH2), 7.28–7.77

(m, 6H, Ph), 12.63 (s, 1H, NH ? D2O exchangeable) ppm;
13C NMR (50 MHz, DMSO-d6): d = 32.66 (CH2), 119.60,

123.80, 124.46, 127.29, 128.75, 129.24, 131.50, 133.23,

134.48 (Ar–C), 155.18 (C=N) ppm; ESI–MS (70 eV):

m/z = 311 ([M ? H]?).

5,6-Dichloro-2-(3-chlorobenzyl)-1H-benzimidazole

(2b, C14H9Cl3N2)

M.p.: 202–203 �C; IR (KBr):�m = 3,430 (NH), 3,004,

2,932, 1,619, 1,599, 1,286, 1,097, 862, 796 cm-1; 1H

NMR (200 MHz, DMSO-d6): d = 4.25 (s, 2H, CH2), 7.31–

7.82 (m, 6H, Ph), 12.68 (s, 1H, NH ? D2O exchangeable)

ppm; 13C NMR (50 MHz, DMSO-d6): d = 34.09 (CH2),

115.97, 123.93, 126.69, 127.60, 128.66, 130.33, 132.97,

138.15, 139.21 (Ar–C), 155.81 (C=N) ppm; ESI–MS

(70 eV): m/z = 311 ([M ? H]?).

5,6-Dichloro-2-(4-chlorobenzyl)-1H-benzimidazole (2c)

M.p.: 215–216 �C (Ref. [29] 214–215 �C)

5,6-Dichloro-2-(2-methylbenzyl)-1H-benzimidazole

(2d, C15H12Cl2N2)

M.p.: 192–196 �C; IR (KBr): �m = 3,427 (NH), 3,027,

2,977, 1,628, 1,528, 1,296, 1,096, 867, 750, 698 cm-1; 1H

NMR (200 MHz, DMSO-d6): d = 1.67 (s, 3H, CH3), 4.34

(s, 2H, CH2), 7.20–7.83 (m, 6H, Ph), 12.53 (NH, s,

1H ? D2O exchangeable) ppm; 13C NMR (50 MHz,

DMSO-d6): d = 20.15 (CH3), 39.20 (CH2), 112.35,

119.50, 123.44, 123.92, 126.63, 127.20, 128.46, 133.82,

142.62, 142.98 (Ar–C), 160.17 (C=N) ppm; ESI–MS

(70 eV): m/z = 291 ([M ? H]?).

5,6-Dichloro-2-(3-methylbenzyl)-1H-benzimidazole

(2e, C15H12Cl2N2)

M.p.: 197–198 �C; IR (KBr): �m = 3,435 (NH), 3,067,

2,923, 1,609, 1,580, 1,283, 862, 803, 756 cm-1; 1H NMR

Synthesis of benzimidazoles via a microwave technique

123



(200 MHz, DMSO-d6): d = 2.10 (s, 3H, CH3), 4.11 (s, 2H,

CH2), 7.10–7.76 (m, 6H, Ph), 12.58 (s, 1H, NH ? D2O

exchangeable) ppm; 13C NMR (50 MHz, DMSO-d6):

d = 20.85 (CH3), 34.66 (CH2), 115.88, 119.42, 123.66,

125.79, 127.21, 128.34, 129.31, 133.32, 135.90, 136.78,

137.54 (Ar–C), 156.48 (C=N) ppm; ESI–MS (70 eV):

m/z = 291 ([M ? H]?).

5,6-Dichloro-2-(4-methylbenzyl)-1H-benzimidazole

(2f, C15H12Cl2N2)

M.p.: 185–186 �C; IR (KBr): �m = 3,430 (NH), 3,004,

2,920, 1,625, 1,550, 1,288, 864, 768, 522 cm-1; 1H NMR

(200 MHz, DMSO-d6): d = 2.23 (s, 3H, CH3), 4.10 (s, 2H,

CH2), 7.10–7.71 (m, 6H, Ph), 12.54 (s, 1H, NH ? D2O

exchangeable) ppm; 13C NMR (50 MHz, DMSO-d6):

d = 21.30 (CH3), 35.09 (CH2), 111.58, 119.30, 124.35,

129.39, 129.76, 134.62, 136.42, 141.90 (Ar–C), 157.45

(C=N) ppm; ESI–MS (70 eV): m/z = 291 ([M ? H]?).

General procedure for the synthesis of methyl 5,6-

dichloro-2-(substituted benzyl)-1H-benzimidazol-1-

acetates 3a–3f

A mixture of compounds 2a–2f (0.01 mol), methyl a-bro-

moacetate (0.01 mol), and K2CO3 (0.025 mol) in 10 cm3

acetone was irradiated in closed vessels with pressure

control at 85 �C for 7 min (hold time) at 300 W maximum

power. After the completion of the reaction (monitored by

TLC, ethyl acetate/hexane 3:1), the mixture was poured

into water. The precipitate was collected by filtration and

recrystallized from acetone/water (1:3) to give pure 3a–3f.

Methyl 5,6-dichloro-2-(2-chlorobenzyl)-1H-benzimidazol-

1-acetate (3a, C17H13Cl3N2O2)

M.p.: 155–156 �C; yield: 92 %; IR (KBr): �m = 3,063,

2,943, 1,738 (C=O), 1,618, 1,570, 1,250 (C–O), 1,096,

758 cm-1; 1H NMR (200 MHz, DMSO-d6): d = 3.55 (s,

3H, OCH3), 4.32 (s, 2H, CH2), 5.27 (s, 2H, NCH2), 7.29–

7.96 (m, 6H, Ph) ppm; 13C NMR (50 MHz, DMSO-d6):

d = 31.61 (CH2), 45.36 (NCH2), 53.14 (OCH3), 112.85,

120.58, 124.97, 125.32, 127.98, 129.51, 129.97, 132.41,

134.13, 134.60, 136.00, 142.30 (Ar–C), 156.37 (C=N),

168.78 (C=O) ppm; ESI–MS (70 eV): m/z = 383

([M ? H]?).

Methyl 5,6-dichloro-2-(3-chlorobenzyl)-1H-benzimidazol-

1-acetate (3b, C17H13Cl3N2O2)

M.p.: 187–188 �C; yield: 95 %; IR (KBr): �m = 3,065,

2,952, 1,731 (C=O), 1,596, 1,231 (C–O), 1,094, 702 cm-1;
1H NMR (200 MHz, DMSO-d6): d = 3.54 (s, 3H, OCH3),

4.27 (s, 2H, CH2), 5.25 (s, 2H, N-CH2), 7.23–7.91 (m, 6H,

Ph) ppm; 13C NMR (50 MHz, DMSO-d6): d = 32.00

(CH2), 44.49 (NCH2), 52.12 (OCH3), 112.09, 119.72,

124.18, 124.53, 126.53, 128.66, 130.07, 132.78, 135.11,

138.14, 141.43 (Ar–C), 155.90 (C=N), 167.74 (C=O) ppm;

ESI–MS (70 eV): m/z = 383 ([M ? H]?).

Methyl 5,6-dichloro-2-(4-chlorobenzyl)-1H-benzimidazol-

1-acetate (3c, C17H13Cl3N2O2)

M.p.: 154–155 �C; yield: 92 %; IR (KBr): �m = 3,050,

2,956, 1,737 (C=O), 1,614, 1,227 (C–O), 761 cm-1; 1H

NMR (200 MHz, DMSO-d6): d = 3.53 (s, 3H, OCH3),

4.25 (s, 2H, CH2), 5.24 (s, 2H, NCH2), 7.24–7.92 (m, 6H,

Ph) ppm; 13C NMR (50 MHz, DMSO-d6): d = 31.90

(CH2), 44.54 (NCH2), 52.18 (OCH3), 112.10, 119.71,

124.23, 124.60, 128.23, 130.78, 134.68, 135.18, 141.45

(Ar–C), 156.15 (C=N), 167.79 (C=O) ppm; ESI–MS

(70 eV): m/z = 383 ([M ? H]?).

Methyl 5,6-dichloro-2-(2-methylbenzyl)-1H-benzimidazol-

1-acetate (3d, C18H16Cl2N2O2)

M.p.: 117–118 �C; yield: 91 %; IR (KBr): �m = 3,027,

2,921, 1,741 (C=O), 1,621, 1,590, 1,223 (C–O), 1,099,

702 cm-1; 1H NMR (200 MHz, DMSO-d6): d = 2.20 (s,

3H, CH3), 3.63 (s, 3H, OCH3), 4.32 (s, 2H, CH2), 5.30 (s,

2H, NCH2), 7.29–7.97 (m, 6H, Ph) ppm; 13C NMR

(50 MHz, DMSO-d6): d = 21.48 (CH3), 36.80 (CH2),

44.24 (NCH2), 51.94 (OCH3), 112.06, 119.85, 124.03,

124.48, 126.63, 127.28, 128.45, 135.33, 141.30, 141.78

(Ar–C), 159.46 (C=N), 167.34 (C=O) ppm; ESI–MS

(70 eV): m/z = 363 ([M ? H]?).

Methyl 5,6-dichloro-2-(3-methylbenzyl)-1H-benzimidazol-

1-acetate (3e, C18H16Cl2N2O2)

M.p.: 165–166 �C; yield: 92 %; IR (KBr): �m = 3,040,

2,949, 1,738 (C=O), 1,607, 1,512, 1,227 (C–O), 1,094,

763 cm-1; 1H NMR (200 MHz, DMSO-d6): d = 2.22 (s,

3H, CH3), 3.49 (s, 3H, OCH3), 4.21 (s, 2H, CH2), 5.20 (s,

2H, NCH2), 7.00–7.91 (m, 6H, Ph) ppm; 13C NMR

(50 MHz, DMSO-d6): d = 21.62 (CH3), 38.93 (CH2),

45.42 (NCH2), 52.90 (OCH3), 112.91, 120.52, 124.96,

125.30, 126.70, 128.20, 129.10, 130.17, 136.10, 136.30,

138.25, 142.35 (Ar–C), 157.30 (C=N), 168.54 (C=O) ppm;

ESI–MS (70 eV): m/z = 363 ([M ? H]?).

Methyl 5,6-dichloro-2-(4-methylbenzyl)-1H-benzimidazol-

1-acetate (3f, C18H16Cl2N2O2)

M.p.: 126-127 �C; yield: 96 %; IR (KBr): �m = 3,043,

2,946, 1,734 (C=O), 1,615, 1,512, 1,223 (C–O), 1,094,

769 cm-1; 1H NMR (200 MHz, DMSO-d6): d = 2.23 (s,

3H, CH3), 3.49 (s, 3H, OCH3), 4.19 (s, 2H, CH2), 5.19 (s,

2H, NCH2), 7.08–7.90 (m, 6H, Ph) ppm; 13C NMR

(50 MHz, DMSO-d6): d = 20.50 (CH3), 38.08 (CH2),

44.54 (NCH2), 52.15 (OCH3), 112.06, 119.66, 123.62,

124.10, 124.42, 128.64, 128.87, 132.48, 133.76, 135.24,

135.65, 141.49 (Ar–C), 156.63 (C=N), 167.72 (C=O) ppm;

ESI–MS (70 eV): m/z = 363 ([M ? H]?).

B. Kahveci et al.

123



General procedure for the synthesis of 5,6-dichloro-2-

(substituted benzyl)-1H-benzimidazole-1-acetic acid

hydrazides 4a–4f

A mixture of compounds 3a–3f (0.01 mol) and hydrazine

hydrate (0.01 mol) in 10 cm3 absolute ethanol was irradi-

ated in closed vessels with pressure control at 120 �C for

5 min (hold time) at 300 W maximum power. After the

completion of the reaction (monitored by TLC, ethyl ace-

tate/hexane 3:1), the mixture was cooled to room

temperature. The precipitate was washed with ethanol and

dried over CaCl2 to give pure 4a–4f.

5,6-Dichloro-2-(2-chlorobenzyl)-1H-benzimidazol-1-acetic

acid hydrazide (4a, C16H13Cl3N4O)

M.p.: 246–247 �C; yield: 83 %; IR (KBr): �m = 3,325,

3,310 (NH2), 3,212 (NH), 1,651 (C=O), 1,573 (C=N)

cm-1; 1H NMR (200 MHz, DMSO-d6): d = 4.34 (s, 2H,

CH2), 4.36 (s, 2H, NH2 ? D2O exchangeable), 4.93 (s, 2H,

NCH2), 7.27–7.87 (m, 6H, Ph), 9.52 (s, 1H, NH ? D2O

exchangeable) ppm; 13C NMR (50 MHz, DMSO-d6):

d = 31.69 (CH2), 45.44 (NCH2), 112.61, 120.52, 124.73,

125.09, 127.97, 129.45, 129.93, 132.35, 134.12, 134.93,

135.95, 142.35 (Ar–C), 156.60 (C=N), 166.20 (C=O) ppm;

ESI–MS (70 eV): m/z = 383 ([M ? H]?).

5,6-Dichloro-2-(3-chlorobenzyl)-1H-benzimidazol-1-acetic

acid hydrazide (4b, C16H13Cl3N4O)

M.p.: 215–216 �C; yield: 82 %; IR (KBr): �m = 3,311

(NH2), 3,164 (NH), 1,655 (C=O), 1,598 (C=N) cm-1; 1H

NMR (200 MHz, DMSO-d6): d = 4.25 (s, 2H, CH2), 4.39

(s, 2H, NH2 ? D2O exchangeable), 4.89 (s, 2H, NCH2),

7.30–7.84 (m, 6H, Ph), 9.50 (s, 1H, NH ? D2O exchange-

able) ppm; 13C NMR (50 MHz, DMSO-d6): d = 32.11

(CH2), 44.58 (NCH2), 111.58, 119.66, 123.95, 124.24,

126.52, 127.77, 128.83, 130.06, 132.77, 135.07, 138.58,

141.53 (Ar–C), 156.26 (C=N), 165.36 (C=O) ppm;

ESI–MS (70 eV): m/z = 383 ([M ? H]?).

5,6-Dichloro-2-(4-chlorobenzyl)-1H-benzimidazol-1-acetic

acid hydrazide (4c, C16H13Cl3N4O)

M.p.: 266–267 �C; yield: 85 %; IR (KBr): �m = 3,341,

3,317 (NH2), 3,164 (NH), 1,655 (C=O), 1,560 (C=N)

cm-1; 1H NMR (200 MHz, DMSO-d6): d = 4.23 (s, 2H,

CH2), 4.33 (s, 2H, NH2 ? D2O exchangeable), 4.86 (s, 2H,

NCH2), 7.28–7.82 (m, 6H, Ph), 9.48 (s, 1H, NH ? D2O

exchangeable) ppm; 13C NMR (50 MHz, DMSO-d6):

d = 31.95 (CH2), 44.57 (NCH2), 104.14, 111.84, 119.62,

123.92, 124.23, 128.18,130.85, 131.21, 135.08, 135.12,

141.52 (Ar–C), 156.43 (C=N), 165.34 (C=O) ppm;

ESI–MS (70 eV): m/z = 383 ([M ? H]?).

5,6-Dichloro-2-(2-methylbenzyl)-1H-benzimidazol-1-acetic

acid hydrazide (4d, C17H16Cl2N4O)

M.p.: 204–205 �C; yield: 79 %; IR (KBr): �m = 3,303

(NH2), 3,188 (NH), 1,671 (C=O), 1,542 (C=N) cm-1; 1H

NMR (200 MHz, DMSO-d6): d = 1.65 (s, 3H, CH3), 4.27

(s, 2H, CH2), 4.42 (s, 2H, NH2 ? D2O exchangeable), 4.87

(s, 2H, NCH2), 7.19–7.93 (m, 6H, Ph), 9.41 (s, 1H,

NH ? D2O exchangeable) ppm; 13C NMR (50 MHz,

DMSO-d6): d = 22.14 (CH3), 37.59 (CH2), 44.90

(NCH2), 112.77, 120.63, 124.48, 124.87, 127.27, 127.85,

129.10, 135.87, 142.25, 142.04 (Ar–C), 160.49 (C=N),

165.89 (C=O) ppm; ESI–MS (70 eV): m/z = 363

([M ? H]?).

5,6-Dichloro-2-(3-methylbenzyl)-1H-benzimidazol-1-acetic

acid hydrazide (4e, C17H16Cl2N4O)

M.p.: 235–236 �C; yield: 81 %; IR (KBr): �m = 3,300

(NH2), 3,163 (NH), 1,653 (C=O), 1,535 (C=N) cm-1; 1H

NMR (200 MHz, DMSO-d6): d = 2.49 (s, 3H, CH3), 4.19

(s, 2H, CH2), 4.32 (s, 2H, NH2 ? D2O exchangeable), 4.84

(s, 2H, NCH2), 7.07–7.84 (m, 6H, Ph), 9.48 (s, 1H,

NH ? D2O exchangeable) ppm; 13C NMR (50 MHz,

DMSO-d6): d = 21.44 (CH3), 33.33 (CH2), 45.20

(NCH2), 112.50, 120.21, 124.47, 124.76, 126.51, 127.79,

128.83, 130.00, 135.84, 136.47, 138.04, 142.22 (Ar–C),

157.50 (C=N), 165.97 (C=O) ppm; ESI–MS (70 eV):

m/z = 363 ([M ? H]?).

5,6-Dichloro-2-(4-methylbenzyl)-1H-benzimidazol-1-acetic

acid hydrazide (4f, C17H16Cl2N4O)

M.p.: 256–257 �C; yield: 82 %; IR (KBr): �m = 3,324,

3,307 (NH2), 3,173 (NH), 1,660 (C=O), 1,513 (C=N)

cm-1; 1H NMR (200 MHz, DMSO-d6): d = 2.23 (s, 3H,

CH3), 4.15 (s, 2H, CH2), 4.48 (s, 2H, NH2 ? D2O

exchangeable), 4.83 (s, 2H, NCH2), 7.07–7.83 (m, 6H,

Ph), 9.48 (s, 1H, NH ? D2O exchangeable) ppm; 13C

NMR (50 MHz, DMSO-d6): d = 21.09 (CH3), 32.99

(CH2), 45.17 (NCH2), 112.46, 120.18, 124.45, 124.73,

129.31, 129.50, 133.49, 135.84, 136.19, 142.22 (Ar–C),

157.49 (C=N), 165.97 (C=O) ppm; ESI–MS (70 eV): m/

z = 363 ([M ? H]?).

Anti-lipase activity

The inhibitory effects of the compounds were evaluated

against porcine pancreatic lipase (15 lg/cm3). Lipase

activity assays were done according to Verger et al. [37].

Microtiter plates were coated with purified TAGs of tung

oil. Compounds and the lipase were incubated for 30 min

at a ratio 1:2 (v/v). The microtiter plates containing purified

tung oil, lipase solution, and assay buffer (10 mM Tris–
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HCl buffer, pH 8.0, containing 150 mM NaCl, 6 mM CaCl2,

1 mM EDTA, and 3 mg/cm3) were recorded continuously for

40 min against only the buffer alone by using a microplate

reader (SpectraMax M5, Molecular Devices) at 272 nm. The

inhibitory activity of those compounds and orlistat (as posi-

tive control) against pancreatic lipase was measured at

concentrations of 6.25, 1.25, and 0.625 lg/cm3. Residual

activities were calculated by comparing to control without

inhibitor (T?). The assays were done in triplicate. The IC50

value was determined as the concentration of compound that

give 50 % inhibition of maximal activity.

Antiviral activity testing

Antiviral activity of the compounds against HSV-1 (wal

strain) and influenza A virus (A/PR/8, H1N1) was tested by

plaque reduction and hemagglutination assays using Vero

and MDCK cells, respectively, as described [38, 39]. For

the anti-HSV-1 activity test, briefly monolayers of Vero

cells grown in 24-well plates were infected with the virus

(ca. 100 pfu/well). After incubation for 1 h to allow viral

adsorption, the inoculum was aspirated and the infected

cells were overlaid with 0.8 % methylcellulose in mainte-

nance medium (minimal essential medium with 2 % fetal

bovine serum) containing various concentrations of the

compounds in duplicate. Controls included mock-infected

wells with and without compounds. After 72 h of incuba-

tion, the cell monolayers were washed with phosphate

buffer and then stained with naphthol blue black dye. The

plaques were counted and the percentage of plaque

reduction was calculated as follows: [(mean number of

plaques in control - mean number of plaques in test)/

(mean number of plaques in control)] 9 100. For the anti-

influenza activity test, briefly monolayers of MDCK cells

were grown in 96-well plates and infected with 0.1 cm3

of 9 100 TCID50 of influenza A virus (A/PR/8, H1N1)

prepared in a maintenance medium (minimal essential

medium with no serum but containing 1 lg/cm3 trypsin).

After incubation for 1 h to allow viral adsorption at 37 �C,

the inoculum was decanted and the infected cells were

overlaid with fresh maintenance medium containing vari-

ous concentrations (200, 100, 50, 25, 12.5, 6.2, 3.1, 1.5 lg/

cm3) of the compounds in triplicate. After 72 h of incu-

bation at 37 �C and 5 % CO2, 50 mm3 of culture

supernatant from each well was transferred into U-bottom

microwell plates to detect the presence of virus by the

hemagglutination assay. The result were reported as the

presence (?) or absence (-) of the virus growth.

Antitumor activity testing

The test for inhibition of tumor cell growth in the presence

of the compounds was performed essentially as described

[40] using murine tumor cell lines CT26 (adenocarcinoma)

and B16F10 (melanoma). Briefly, 1 9 105 viable cells

from each cell line in RPMI-1640 growth medium sup-

plemented with 10 % FBS were seeded in a 96-well plate

and incubated for 24–48 h. When cells reached greater than

80 % confluence, the medium was decanted and cells were

incubated with twofold dilutions (100, 50, 25, 12.5, 6.2,

3.1, and 1.5 lg/cm3) of the test compounds prepared in

0.5 % dimethyl sulfoxide in triplicate. After 48 h of incu-

bation at 37 �C, the treated and untreated cells (controls)

were fixed by the addition of 1 % glutaraldehyde solution

for 15 min, washed with deionized water, and dried in air.

The cells were then stained with 0.4 % crystal violet for

30 min, then extensively washed with phosphate buffered

saline and allowed to dry overnight before dissolving the

retained dye with 75 % ethyl alcohol. The absorbance of

developing color was determined by measuring the optical

density (OD) at 570–630 nm using a multiwell spectropho-

tometer. The cell growth inhibiting (GI50) concentration of

the compounds given as lg/cm3 in log units was calculated by

GraphPad Prim 4 software. All determinations were per-

formed in triplicate.
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