Contents lists available at ScienceDirect

Bioorganic & Medicinal Chemistry Letters

journal homepage: www.elsevier.com/locate/bmcl

Identification of 2-fluoro-8-methyl-11-(1-methyl-1,2,3,6-tetrahydropyridin-4-yl)-5 *H*-dibenzo[b,e][1,4]diazepine with clozapine-like mixed activities at muscarinic acetylcholine, dopamine, and serotonin receptors

Hitoshi Watanabe, Kyoji Ishida, Masanori Yamamoto, Tomokazu Nakako, Masakuni Horiguchi, Yoshiaki Isobe^{*}

Drug Research Division, Sumitomo Dainippon Pharma. Co., Ltd., 3-1-98, Kasugade-naka, Konohana-ku, Osaka 554-0022, Japan

Clozapine is the golden standard for treatment-resistant schizophrenia (TRS), and is more effective than olanzapine or quetiapine, which have a similar chemical structure.^{1,2} These antipsychotics have polypharmacological action, *i.e.* having affinity for dopamine D_1/D_2 , 5-HT_{2A}, etc., which led Melzer to propose a "serotonin-dopamine antagonist theory".³ Great efforts have been made to clarify the putative "magic receptor" responsible for the unique actions of clozapine.⁴ Clozapine is metabolized via the hepatic microsomal enzymes (CYP 3A4 and 1A2), and the main metabolite is *N*-desmethylclozapine (NDMC).⁵ In this regard, the agonistic activity of clozapine and NDMC at M₁ muscarinic acetylcholine receptors is of interest, and it is conceivable that the M₁ muscarinic acetylcholine receptor is the single molecular target responsible for the unique actions of clozapine (so-called M₁-hypothesis).⁶ Xanomeline, a M₁/M₄ agonist, demonstrated efficacy in the treatment of schizophrenia, which also supported the M₁-hypothesis.⁷ Weiner et al. reported that the M1 agonistic activity of NDMC was stronger than that of clozapine, suggesting that NDMC plays a role in its therapeutic efficacy.⁸ The effective plasma trough concentrations of clozapine and NMDC for TRS were reported to be 421 ng/ml (1.29 µM) and 262 ng/ml (0.83 μ M), respectively.⁹ We evaluated M₁ agonistic activity of clozapine and NDMC up to 10 µM. Consequently, the M1 agonistic activity of clozapine was weak (EC_{50}; >10 $\mu\text{M},$ Emax; 26 \pm 4%), whereas NDMC exhibited robust M1 agonistic activity (EC50; 0.048 μ M, Emax; 75 \pm 3%), consistent with a previous report.⁸ We hypothesized that clozapine itself does not function as a M1 agonist and behaves as an antagonist-like manner in the brain, thus we added clozapine and NDMC to M₁ receptor stably expressing CHO cells simultaneously at an appropriate concentration ratio and assessed their M₁ agonistic activity. As a result, activation of M₁ receptor by NDMC was attenuated by the concomitant presence of clozapine, and clear M1 agonistic activity was observed when mixed at a 2.5:1 ratio (Emax; 60%, Fig. 1). As it is difficult to measure the clozapine/NDMC concentration in the human brain, M_1 agonism in the brain is complicated because it is like the coadministration of an M_1 agonist and antagonist. This may be a reason for the difficulty in understanding the M_1 -hypothesis accurately. In the clinical use of clozapine for TRS, both responders and non-responders are present, but the plasma clozapine/NDMC ratio is consistent.¹⁰ Comparing the structure of clozapine and NDMC, NDMC has an additional hydrogen bond donor, which should theoretically reduce blood–brain barrier penetration. Rodent animal pharmacokinetics (PK) revealed that the brain clozapine concentration exceeded the NDMC concentration by 3–4 fold.^{11,12} Our rodent animal PK studies also confirmed this (clozapine/NDMC ratio in the brain was 3.2–6.2, data not shown). We hypothesized that brain penetration of NDMC differed from individual to individual, and highly permeable individuals may be responders, leading to M_1 agonism.

Agranulocytosis and clozapine-induced hypersalivation (CIH) are problematic side effects of clozapine. Agranulocytosis is life-threatening and it limits the wide use of clozapine. Reactive metabolite formation was proposed as a potential mechanism of agranulocytosis caused by clozapine. ¹³ CIH is a bothersome, socially stigmatizing side effect, which may affect nearly 30% of patients who take clozapine. Anti-cholinergic agents are useful to manage CIH and it is considered to be caused by systematic M_3 receptor stimulation.¹⁴

Compounds with a clozapine-like GPCR binding profile with strong M_1 agonism have not been reported so far. In order to demonstrate the clozapine M_1 -hypothesis, we considered the following profile to be required: (i) robust M_1 agonism, (ii) clozapine-like binding affinity toward various GPCRs, (iii) diminish or reduce reactive metabolite formation, (iv) no or weak M_3 agonism, and (v) high brain permeability. We reported compound **1**, which has clozapine-like D_1/D_2 antagonistic activity with reduced reactive metabolite formation currently

* Corresponding author. *E-mail address:* yoshiaki-isobe@ds-pharma.co.jp (Y. Isobe).

https://doi.org/10.1016/j.bmcl.2021.127911

Received 26 December 2020; Received in revised form 15 February 2021; Accepted 17 February 2021 Available online 7 March 2021 0960-894X/© 2021 Elsevier Ltd. All rights reserved.

H. Watanabe et al.

(Figure 2).¹⁵

As shown in Table 1, compounds 1–3 did not have clear M_1 agonistic activity up to 10 μ M, whereas its analogue, compound 4, was active (EC₅₀; 4.7 μ M, Emax; 64 \pm 4%). Comparing the structure of 2 and 4, we thought the hydrogen atom should be placed as an R^3 substituent to yield M_1 agonistic activity. Thus, we explored the structure and activity relationship (SAR) study based on compound 4 to identify compounds with ideal profiles.

The synthetic routes for compounds 4–14 are shown in scheme 1. The chloride intermediate (2, 8-disubstituted 11-chloro-5H-dibenzo[b, e][1,4]diazepine) was prepared according to the previously reported method.¹⁶ The substituted 2-fluoronitrobenzene was reacted with substituted anthranilic acids by heating in DMF in the presence of Cs₂CO₃ (A1-A7), the iron-catalyzed hydrogenation of the nitro group (B1-B7), followed by reaction with WSC to produce a tricyclic intermediate. The intermediate was treated with phosphorous oxychloride under reflux in toluene in the presence of *N*,*N*-dimethylaniline to form a chloride intermediate (C1-C7). Suzuki-Miyaura coupling of the chloride intermediate and 1-methyl-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1,2,3,6-tetrahydropyridine gave compound 4, and 7-12. The coupling of the chloride intermediate (C1) and 4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)pyridine, alkylation of nitrogen atom at pyridyl group by ethyl iodide or isopropyl iodide, then reduction by sodium borohydride gave compounds 5 and 6, respectively. In the case of compound 13, coupling of the C1 with BOC-protected boronate and then the de-BOC group by trifluoroacetic acid yielded target compound 13. Compound 14 was prepared according to a similar method to 13.

The SAR of the test compounds on M1 agonism is summarized in Table 2. Replacement of the methyl group at R⁴ in 4 with ethyl (5) and *i*propyl (6) resulted in the loss of M1 agonistic activity. The results of compound 2, 5, and 6 suggested that a sterically large substituent around a basic nitrogen atom is unacceptable. Compound 7, in which the fluorine atom at R² in **4** was replaced with hydrogen, demonstrated > 10-fold stronger M₁ agonistic activity, but unfavorable M₃ agonistic activity accompanied. Its potency was the same as that of NDMC. M₃ receptors are expressed on salivary glands and their agonist causes salivation. Such hypersalivation was noted in a phase II clinical study of NDMC.¹⁷ Thus, compound **7** can be considered to have a hypersalivation risk. Next, we replaced the chlorine atom at R¹ in **4** with a methyl group; the molecular size of a methyl group is similar to that of a chlorine atom, but the electronic behavior is opposite. The EC_{50} of compound 8 was 0.31 μ M, over > 10-fold stronger than compound **4**. The hypersalivation risk of 8 was considered to be lower than that of clozapine because 8 did not exhibit M₃ agonism. Based on 8, we replaced the R² substituent, and the EC₅₀ of methyl (9), ethyl (10), and methoxy (11) groups was over 10 µM, whereas the Emax was reduced according to the substituent size, suggesting a sterically small substituent to be preferable as R². Swapping the R¹ and R² substituents of **4** diminished the activity (**12**). Compounds 13 and 14 were desmethylated analogues of compounds 4 and 8, respectively. Of note, their M₁ agonistic activity was diminished (EC₅₀; $>10 \,\mu$ M), differing from clozapine *versus* NDMC. Thus, a hydrogen atom as R⁴ was not acceptable in the present series of compounds. These results suggested that the SAR on M1 agonism is narrow, and a methyl group as R¹ and R⁴, and a fluorine atom as R² were revealed to be a favorable combination for strong and selective M1 agonistic activity. Furthermore, compound 8 exhibited binding affinity toward D₁ and D₂ receptors, and its Ki values were similar to those of clozapine and NDMC. In CHO cells stably expressing human D1 or D2 receptors, compound 8 antagonized dopamine-stimulated Ca²⁺ accumulation to a similar degree as clozapine.

We previously reported that compounds **1–3** were superior to clozapine in terms of reactive metabolite formation.¹⁵ Dansylated glutathione (dGSH) was used as the trapping agent for the quantitative estimation of reactive metabolites. Test compounds were incubated with dGSH and human hepatocyte microsome fraction, and the amount of test compound-dGSH conjugate was measured by fluorescence detector in

Fig. 1. Antagonist-like behavior of clozapine on NDMC-induced muscarinic M_1 agonism.

1: R¹=CI, R²=Et, R³=Me 2: R¹=CI, R²=F, R³=Me 3: R¹=Me, R²=F, R³=Me 4: R¹=CI, R²=F, R³=H

Olanzapine

Fig. 2. Structures of antipsychotic drugs and compounds 1-4.

 Table 1

 M1 agonistic activity of reference drugs and compounds 1–4.

Compound	M ₁ agonism				
	EC ₅₀ (μM)	Emax			
Olanzapine	>100	<5%			
Quetiapine	>10	<5%			
Clozapine	>10	$26\pm4\%$			
NDMC	0.048	$75\pm3\%$			
1	>10	13%			
2	>10	42%			
3	>10	28%			
4	4.7	$64 \pm 4\%$			

Emax values are shown as the mean \pm SE of two or more experiments

HPLC analysis. The amounts of conjugate in compounds **4–14** were 25fold lower than that in clozapine (Table 2). The reactive metabolite formation in clozapine was initiated by the activation of a nitrenium ion (nitrogen atom at the 11th position of clozapine), but the nitrogen atom was replaced with carbon in the present series of compounds; therefore, we hypothesized that reactive metabolite formation was suppressed.¹⁸ This suggested that our compounds have a low risk in terms of agranulocytosis due to reactive metabolites. Considering all results, we selected compound **8** for further evaluation.

We evaluated the binding affinity of **8** toward various GPCRs. As shown in Table 3, the affinity of **8** was similar with those of clozapine and NDMC. As dopamine D_1/D_2 and $5HT_{2A}$ are important targets to exert antipsychotic activity, we consider compound **8** to be a "serotonin-dopamine antagonist". We performed a mouse PK study of **8** by oral administration, and the blood and brain sample were collected one hour after dosing. Compound **8** displayed good brain penetration

Scheme 1. Synthetic route for compounds 4–14. Reagents and conditions: (i) 5-fluoroanthranilic acid, Cs₂CO₃, DMF, 120 °C. (ii) Fe, NH₄Cl, EtOH, reflux. (iii) HOBt, WSC, DMF, rt. (iv) POCl₃, *N*,*N*-dimethylaniline, toluene, reflux. (v) Pd(PPh₃)₄, Na₂CO₃ aq., THF, reflux, (vi) TFA, rt, (vii) EtI or ⁱPrI, MeCN, 60 °C, then NaBH₄, MeOH, 0 °C-rt.

Compd	\mathbb{R}^1	\mathbb{R}^2	\mathbb{R}^4	EC ₅₀ ; μM (Emax)				(<i>Ki</i> ; nM)		dGSH (µmol/L)
				M1	M_2	M ₃	M4	D_1	D ₂	
Clozapine				>10 (26 \pm 4%)	>10	>10	>10	44	389	7.5
NDMC				$0.048~(75\pm3\%)$	>10	0.67 (52%)	> 10	80	489	
4	Cl	F	Me	$4.7~(64 \pm 4\%)$	>10	>10	> 10	35	410	0.3
5	Cl	F	Et	>10 (<5%)			> 10		340	0.27
6	Cl	F	i-Pr	>10 (<5%)			> 10			0.29
7	Cl	Н	Me	0.35 (64%)	>10	0.64 (52%)	>10	380	1387	0.21
8	Me	F	Me	$0.31~(75\pm3\%)$	>10	>10	> 10	95	447	0.12
9	Me	Me	Me	>10 (38%)			> 10	57	694	0.22
10	Me	Et	Me	>10 (19%)			> 10	90	274	0.08
11	Me	OMe	Me	>10 (<5%)			> 10		329	0.07
12	F	Cl	Me	>10 (<5%)			> 10		108	
13	Cl	F	Н	>10 (15%)	>10	>10	> 10			
14	Me	F	Н	>10 (1%)	>10	>10	>10		848	0

Emax values are shown as the mean \pm SE of two or more experiments

Table 3

Binding affinity	r of	compounds 4	l and 8	toward	various	GPCRs.
------------------	------	-------------	----------------	--------	---------	--------

compound	M_1	Ki (nM)					
	EC ₅₀ (nM)	Emax	D_1	D_2	$5 \mathrm{HT}_{2 \mathrm{A}}$	$5HT_6$	H_1
Clozapine	>10,000	$26\pm4\%$	44	389	5.4	6.4	1.2
NDMC	48	$75\pm3\%$	80	549	4.0	8.76	3.11
4	4,700	$64\pm4\%$	35	410	7.2	6.3	11.4
8	310	$75\pm3\%$	95	447	1.5	11.4	4.0

Emax values are shown as the mean \pm SE of three experiments

(concentration: 1843 nM for brain, 360 nM for plasma, brain/plasma ratio: 5.2), and **14**, a desmethylated metabolite of **8**, was observed in the brain (63 nM). However, the concentration ratio of **14**/**8** in brain was 0.03, being negligible. Different from clozapine and NDMC, **14** will not function as an M₁ antagonist in brain when **8** is dosed, therefore compound **8** can be used to confirm the muscarinic M₁-hypothesis. Further pharmacological evaluation of **8** is underway.

In conclusion, we investigated clozapine-like compounds for the treatment of TRS based on the muscarinic M_1 -hypothesis. We optimized the substituents of **4**, a lead compound, and identified **8** as the best

compound. It had robust M₁ agonistic activity, good selectivity over M₃ receptors, and clozapine-like binding affinity toward various GPCRs, including dopamine D₁/D₂ and 5-HT_{2A} receptors. Thus, 8 is considered to be a unique muscarinic acetylcholine-serotonin-dopamine modulator from a pharmacological point of view. The reactive metabolite-derived agranulocytosis risk of compound 8 was considered to be lower than that of clozapine. The mouse PK study indicated that brain penetration of 8 was good and the amount of desmethylated metabolite 14 was negligible. These results suggested that compound 8 is a good candidate to confirm the M₁-hypothesis of clozapine.

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi. org/10.1016/j.bmcl.2021.127911.

References

- 1 Kane J, Honigfield G, Singer J, Meltzer HY. Arch Gen Psychiatry. 1988;45:789–796.
- 2 Meltzer HY, Alphs L, Green AI, et al. Arch Gen Psychiatry. 2003;60:82-89.
- 3 Meltzer HY, Matsubara S, Lee JC. J Pharmacol Exp Ther. 1989;251:238-246. 4 Roth BL, Kroeze WK, Sheffler DJ. Nat Rev Drug Discov. 2004;3:359-364.
- 5 Dumortier G, Cohen MP, Célis C, Glikman J, Lochu A, De-grassat K. Psychiatrique.
- 1996;72:832-836. 6 Sur C, Mallorga PJ, Wittmann M, et al. Proc Natl Acad Sci USA. 2003;100: 13674-13679.
- 7 Shekhar A, Potter WZ, Lightfoot J, Lienemann J, Dube S, Mallinckrobt C, Bymaster FP, Mckinzie DL, Felder CC. Am J Psychiatry. 2008;165:1033-1039.
- 8 Weiner DM, Meltzer HY, Veinberges I, et al. Psychopharmacology. 2004;177:207-216.
- Albitar O, Harun SN, Zainal H, Ibrahim B, Ghadzi SMS. Biomed Res Int. 2019:1-11. 10 Schoretsanitis G, Kane JM, Ruan CJ, Spina E, Hiemke C, Leon JD. Expert Rev Clin Pharmacol. 2019:12:603-621.
- 11 Weigmann H, Härtter S, Fischer V, Dahmen N, Hiemke C. Eur Neuropsychopharmacol. 1999;9:253-256.
- 12 Cremers TIFH, Flik G, Hofland C, Stratford Jr RE. Drug Metab Disposition. 2012;40: 1909-1916
- 13 Doragovic S, Boerma JS, Bergen L, et al. Chem Res Toxicol. 2010;23:1467-1477.
- Sockalingam S, Shammi C, Remington G. *Can J Psychiatry*. 2007;52:377–384.
 Watanabe H, Ishida K, Yamamoto M, Horiguchi M, Isobe Y. *Bioorg Med Chem Lett.* 2020:30, 127563.
- 16 Wenthur C.I. Lindslev CW. ACS Chem Neurosci. 2013:4:1018-1025.
- 17 Acadia pharmaceuticals. News release. June 16th, 2008.
- 18 Doragovic S, Boerma JS, Bergen L, Vermeulen NPE, Commandeur JNM. Chem Res Toxicol. 2010:23:1467-1477.