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A B S T R A C T   

Benzo[a]phenoselenazinium dyes are excellent photodynamic therapeutic agents that have a red absorption 
(660 nm), high singlet oxygen quantum yield (>0.8), and good water-solubility and liposolubility. Bis-(3- 
diethylaminophenyl) diselenide, the most important intermediate for the synthesis of benzo[a]phenoselenazi
nium dyes, is previously prepared in one pot through 3 steps, during which special care is needed for the 
preparation of Grinard reagent and toxic selenium vapor. In this work, we employed CuO nanopowder to directly 
couple haloaniline with selenium to obtain pure bis-(3-diethylaminophenyl) diselenide (one step) under a mild 
condition with a high reaction yield without the need of column chromatography. Four benzo[a]phenoselena
zinium dyes, 5a-d, were easily prepared using the improved synthesis method; and their phototoxicity in living 
cells were investigated. The improved method could be employed in large-scale synthesis of benzo[a]phenose
lenazinium dyes, thereby may stimulate the photodynamic study of this type of photosensitizer.   

1. Introduction 

As a treatment that has low toxicity, low cost and minimal inva
siveness, but high effectiveness and dual selectivity, photodynamic 
therapy (PDT) is a promising alternative therapy for ophthalmologic, 
dermatologic, and cancerous oral lesions, head and neck cancers, 
bladder carcinoma, and a variety of intraperitoneal carcinomatosis and 
sarcomatous transformation [1–11]. In PDT, photosensitizers (PSs) are 
the key components which can be excited by absorbing photons so that 
they can subsequently react with oxygen to generate reactive oxygen 
species (ROS) such as singlet oxygen, superoxide anion radicals, hy
droxyl radicals, and so on. Singlet oxygen (1O2) is the main ROS that can 
kill cancer cells through multifactorial mechanisms, such as stimulation 
of the inflammatory and immune responses [12–21]; therefore, photo
sensitizers with high singlet oxygen quantum yield are desirable. We 
first developed a new photodynamic therapeutic agent, benzo[a]phe
noselenazinium dye EtNBSe, an effective photosensitizer that treats 
cutaneous leishmaniasis, tuberculosis and Mycobacterium bovis by 
oxidative damage [22–25]. Following the development, more studies on 
the derivative of EtNBSe have also been conducted [26–28]. All these 
studies have shown that benzo[a]phenoselenazinium photosensitizers 

are highly suitable for photodynamic therapy in vivo because they have a 
red absorption in the optical window (600–900 nm), a high single ox
ygen quantum yield, good water-solubility and liposolubility, and 
excellent photo-stability [29–32]. 

We have previously synthesized benzo[a]phenoselenazinium dyes in 
six steps [25], as illustrated in Scheme 1. First, iodoaniline is converted 
into the Grignard reagent (3-diethylamino) phenylmagnesium iodide 
that subsequently reacts with selenium powder, is oxidized with air, and 
is finally nitrosated to produce bis-(3-diethylamino-6-nitrosophenyl) 
diselenide. Bis-(3-diethylamino-6-nitrosophenyl) diselenide is then 
condensed with 1-naphthylamine derivatives to afford dye EtNBSe. 
Although it was a successful approach, the synthesis of the key inter
mediate bis-(3-diethylaminophenyl) diselenide requires harsh condi
tions during the following two steps: i) the preparation and handling of 
the Grignard reagent (3-diethylamino) phenylmagnesium iodide re
quires a very dry environment; and ii) during the air oxidation process, 
toxic selenium vapor is produced, and aqueous sodium hypochlorite is 
needed to trap and bleach the vapor. In order to prepare more EtNBSe 
analogue dyes at a larger scale for use in intensive medical studies, there 
is a high demand for the neat synthesis under mild reaction conditions. 

In this work, we improved the preparative process of bis-(3- 
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diethylaminophenyl) diselenide with an aim to increase the level of the 
synthesis of EtNBSe derivatives to a larger scale (Scheme 2). 

2. Experimental 

2.1. Instruments and materials 

1H NMR and 13C NMR spectra were on a Bruker 400 spectrometer; 
the chemical shifts were reported in ppm in relative to those of TMS 
(tetramethyl silicane), an internal standard. Mass spectra were acquired 
using a Bruker Daltonics micrOTOF-Q II mass spectrometer. Absorption 
and emission spectra were recorded on Hitachi F-7000 fluorometer and 
Shimadzu UV-2450 spectrophotometer, respectively. Unless otherwise 
stated, all reagents were used as received. Twice-distilled water was 
used in all experiments. 

2.2. Synthesis of CuO nanopowder 

Fifty milliliters of aqueous CuSO4 solution (0.5 M) was mixed by 
stirring with 50.0 mL of aqueous NaOH solution (1.0 M) in a beaker; 
immediately after mixing, blue flocculent precipitate was formed. Next, 
add 130.0 mL of sodium carbonate aqueous solution (0.5 M) to the 
mixture, and continue to stir for 30 min. Collect the precipitate by 
filtration and then wash with distilled H2O until SO4

2− was no longer 
detected by BaCl2. The obtained solid was dried in an oven at 90 ◦C for 3 
h and was then ground into powder. Finally, the powder was calcined at 
350 ◦C for 4 h from which black CuO nanopowder was obtained. 

2.3. Synthesis of bis-(3-diethylaminophenyl) diselenide (2) 

Under argon atmosphere and while being stirred, powdered Se metal 
(9.53 g, 120.0 mmol), CuO nanoparticles (0.46 g, 6.0 mmol) and KOH 
(6.74 g, 120.0 mmol) were added to a solution of 3-iodo-N, N-dieth
ylaniline (1) (16.5 g, 60.0 mmol) in dry DMSO (60.0 mL). The mixture 
was then heated to 110 ◦C overnight. After cooling down to room 
temperature, 10.0 mL of water was added. After that, the reaction 
mixture was extracted three times with ethyl acetate (3 x 40.0 mL). The 
organic phase was washed twice with brine and thereafter dried over 
anhydrous Na2SO4 overnight. After ethyl acetate was removed under a 
reduced pressure, light red oil (20.35 g, 74%) was obtained. 

2.4. Synthesis of bis-(3-diethylamino-6-nitrosophenyl) diselenide (3) 

In an ice-water bath, a solution of NaNO2 (6.20 g, 98.2 mmol) in 
80.0 mL water was added dropwise to a solution of bis-(3-dieth
ylaminophenyl) diselenide (2) (20.35 g, 44.8 mmol) in 100.0 mL of 1.0 
M HCl for 10 min. After another 10 min stirring, extract with 
dichloromethane (4 x 75.0 mL) and wash the organic phase twice with 

brine. After being dried over anhydrous Na2SO4, the solvent was 
distilled in vacuo to obtain a crude solid, which was recrystallized in 
isopropanol to afford an orange powder (16.35 g, 71%). 

2.5. Synthesis of 1-naphthylamine derivatives (4a-d) 

The synthetic method for compounds 4a-d have been described in 
the literature [33]. 

2.6. General procedure for the synthesis of benzo[a] phenoselenazinium 
dyes 5a-d 

Benzo[a]phenoselenazinium dyes 5a-d were synthesized from bis- 
(3-diethylamino-6-nitrosophenyl) diselenide and the corresponding 1- 
naphthylamine derivatives (4a-d). Compound 3 (4.62 g, 9.0 mmol) 
was mixed with the corresponding 1-naphthylamine derivatives 4a- 
d (26.0 mmol) in 60.0 mL of trifluoroethanol, and the mixture was 
refluxed for 30 min. The solvent was then removed in vacuo to obtain a 
blue residue, which was subsequently washed with 60.0 mL of ethyl 
ether. The resultant residue was dissolved in 300.0 mL of a mixture 
containing 1.0 M aqueous sodium hydroxide solution and dichloro
methane (1:1, v/v). The organic phase was washed twice with brine; 
after that, concentrated hydrochloric acid (0.1 mL) was added to the 
solution, which caused the solution color to change from magenta to 
dark blue. The solvent was removed in vacuo to obtain a blue residue, 
which was then purified by flash silica gel column using a solvent 
gradient of methanol/dichloromethane (0:100, 1:50, 1:30, 1:20, and 
1:10, v/v) to yield the product. 

5a. Blue solid, yield: 41%. HRMS (ESI) m/z: calcd for C22H24N3Se 
[M]+, 410.1130; found, 410.1123. 1H NMR (400 MHz, DMSO‑d6) δ 
10.48 (s, 1H), 8.73 (d, J = 5.2 Hz, 1H), 8.62 (s, 1H), 7.89–7.76 (m, 1H), 
7.65 (d, J = 4.5 Hz, 2H), 7.19 (d, J = 8.3 Hz, 1H), 7.13 (s, 1H), 7.01 (s, 
1H), 3.70 (s, 6H), 1.48 (d, J = 5.8 Hz, 2H), 1.42–1.30 (m, 6H). 13C NMR 
(100 MHz, CDCl3) δ 152.9, 150.3, 143.5, 138.7, 134.4, 133.7, 132.7, 
131.96, 130.8, 129.4, 125.3, 124.4, 123.8, 115.8, 107.6, 105.9, 45.7, 
39.3, 14.1, 12.7. 

5b. Blue solid, yield: 40%. HRMS (ESI) m/z: calcd for C23H26N3O3SSe 
[M]+, 504.0855; found, 504.0354. 1H NMR (400 MHz, DMSO‑d6) δ 
10.20 (s, 1H), 8.99 (dd, J = 8.2, 1.1 Hz, 1H), 8.62 (d, J = 8.1 Hz, 1H), 
8.02 (d, J = 9.4 Hz, 1H), 7.95 (s, 1H), 7.91 (t, J = 7.6 Hz, 1H), 7.85–7.79 
(m, 1H), 7.73 (d, J = 2.7 Hz, 1H), 7.31 (dd, J = 9.5, 2.7 Hz, 1H), 3.73 
(dd, J = 14.3, 7.1 Hz, 2H), 3.64 (q, J = 6.9 Hz, 4H), 1.37 (t, J = 7.2 Hz, 
4H), 1.24 (t, J = 7.0 Hz, 6H). 13C NMR (100 MHz, CDCl3) δ 153.2 150.9, 
144.0, 139.3, 134.9, 133.9, 132.6, 131.2, 129.7, 125. 8, 124.7, 123.3, 
116.5, 108.0, 106.0, 46.0, 39.6, 29.9, 14.1, 12.9. 

5c. Blue solid, yield: 38%. HRMS (ESI) m/z: calcd for C23H24N3O2Se 
[M]+, 454.1028; found, 454.1020. 1H NMR (400 MHz, DMSO‑d6) δ 8.63 
(d, J = 7.7 Hz, 1H), 8.34 (d, J = 7.3 Hz, 1H), 7.62 (dd, J = 17.0, 7.3 Hz, 

Scheme 1. Schematic diagram showing the previous synthetic route of photosensitizer EtNBSe (5a).  
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4H), 7.11 (s, 1H), 6.85 (d, J = 8.3 Hz, 1H), 3.80 (t, J = 6.6 Hz, 2H), 
3.53–3.44 (m, 4H), 2.70 (t, J = 6.5 Hz, 2H), 1.16 (t, J = 6.9 Hz, 6H). 13C 
NMR (100 MHz, DMSO‑d6) δ 175.0, 156.2, 151.0, 145.2, 139.1, 134.6, 
132.2, 132.1, 129.7, 125.9, 124.2, 124.1, 117.0, 115.8, 111.1, 109.3, 
107.9, 55.4, 45.6, 29.5, 22.6, 19.0, 13.2. 

5d. Blue solid, yield: 45%. HRMS (ESI) m/z: calcd for C22H24N3OSe 
[M]+, 426.1079; found, 426.1072. 1H NMR (400 MHz, DMSO‑d6) δ 
10.08 (s, 1H), 9.00 (d, J = 8.0 Hz, 1H), 8.60 (d, J = 8.1 Hz, 1H), 
8.08–7.98 (m, 2H), 7.91 (t, J = 7.6 Hz, 1H), 7.83 (t, J = 7.2 Hz, 1H), 7.71 
(s, 1H), 7.30 (d, J = 9.3 Hz, 1H), 5.14 (s, 1H), 3.79 (d, J = 2.4 Hz, 4H), 
3.64 (q, J = 6.9 Hz, 4H), 1.24 (t, J = 7.0 Hz, 6H). 13C NMR (100 MHz, 
CDCl3) δ 157.3, 154.6, 147.5, 142.9, 138.5, 137.7, 137.4, 136.4, 134.7, 
133.1, 129.3, 128.2, 126. 5, 120.3, 111.7, 110.2, 63.6, 50.5, 49.6, 16.3. 

2.7. Measurement of singlet oxygen quantum yield (ΦΔ) 

The 1O2 quantum yields (ΦΔ) of the photosensitizers were deter
mined with methylene blue (MB) as a reference (ΦΔ = 0.5 in methanol) 
[34]. 1,3-Diphenylisobenzofuran (DPBF) in air-saturated dichloro
methane with an optical density (OD) at 1.0 was used to scavenge 1O2. 
The concentration of the photosensitizer was adjusted to an OD between 
0.2 and 0.3. The cuvette was irradiated for 10 s with monochromatic 
light at the maximum absorption wavelength of photosensitizers, and 
the absorbance was measured several times after each irradiation. The 
slope of the plot between the absorbance of DPBF at 411 nm versus time 
for each photosensitizer was calculated. Singlet oxygen quantum yield 
(ΦΔ) was calculated according to a modified equation: ΦΔ

bod = ΦΔ
ref * 

(kbod/kref)*(Fref/Fbod), where bod and ref refer to the photosensitizers 
and MB, respectively, k is the slope of the plot between the absorbance of 
DPBF (411 nm) versus irradiation time, and F is the absorption correc
tion factor (which was calculated by F = 1-10− O.D., where O.D. is the 
optical density of the solution at the irradiation wavelength). 

2.8. In vitro toxicity assay 

MTT assay was used to assess the toxicity to cancer cells of the 
photosensitizers [32]. HepG2 cells (100.0 μL; density = 5000 cells/mL) 
in the logarithmic phase were added to 96-well plates and incubated at 
37 ◦C in 5% CO2 for 24 h. After that, 100.0 μL of each of the photo
sensitizers 5a-d in DMSO solution was added to each well, and cells were 
further incubated for 1 h. After being illuminated with 660 nm LED light 
(20 mW/cm2), cells were incubated for 24 h at 37 ◦C in 5% CO2 atmo
sphere. Subsequently, the medium in each well was replaced with 100.0 
μL of fresh medium, and 20.0 μL of MTT solution was added thereafter. 
After the culture plates were then incubated at 37 ◦C in 5% CO2 for 4 h, 
the culture medium was discarded, and 100.0 μL of DMSO was added. 
The absorbance at 570 nm of the samples was measured using a 
microplate reader. Cells incubated with photosensitizers without light 
irradiation were used as a control. 

3. Results and discussion 

3.1. Chemistry of the synthesis 

In this study, bis-(3-diethylamino-6-nitrosophenyl) diselenide was 
synthesized in one step using CuO nanopowder as a catalyst. This new 
synthetic method had several advantages as follows: (i) the special care 
needed for the Grignard reaction was avoided; (ii) the toxic selenium 
vapor was not generated because air bubbles were omitted; and (iii) the 
reaction procedure was simple (as it could be accomplished in only one 
step), and the product yield was improved from 56% to 74.5% without 
the need of column chromatography. Thus, this new synthetic method 
was able to readily prepare four pure benzo[a]phenoselenazinium dyes 
5a-d with high yields. 

3.2. Optical properties of photosensitizers 

We determined the optical spectra of the four photosensitizers 5a- 
d in methanol and H2O. All the dyes contain a delocalized positive 
charge and are soluble in methanol and H2O. The four dyes exhibited an 
intensive absorption band within the optical window (λmax ≈ 660 nm; 
Fig. 1). In H2O, the dyes exhibited an absorption band at about 627 nm, 
which might be caused by H-aggregation of the photosensitizers [25]. As 
expected, the dyes also exhibited weak fluorescence due to the effect of 
the heavy metal Se [35,36] (Fig. 1). 

3.3. Singlet oxygen quantum yield 

The singlet oxygen quantum yields of the photosensitizers 5a-d in 
methanol were measured using the 1O2 trapping reagent 1,3-diphenyli
sobenzofuran (DPBF). As shown in Fig. 2 and S2, illuminating the so
lutions of the photosensitizers 5a-d in DPBF with 660 nm LED light 
caused their absorption intensity at 411 nm to decrease due to the 
irreversible 1,4-cycloaddition reaction between DPBF and 1O2. More
over, with increasing illumination time, the decrease was intensified. 
The singlet oxygen yields of the photosensitizers 5a-d were determined 
to be over 0.8 (Table 1). 

3.4. In vitro photodynamic therapy and imaging 

HepG2 cells were cultured with photosensitizers 5a-d for 30 min; 
after that, they were irradiated under a 660 nm light (20 mW/cm2) for 0, 
1, 5, and 10 min, respectively; non-irradiated samples were also pre
pared for comparison. As shown in Fig. 3, the non-irradiated photo
sensitizers 5a-d were non-toxic, suggesting they have good 
biocompatibility in vitro. In contrast, as expected, the light-irradiated 
photosensitizers 5a-d were highly cytotoxic, and the cytotoxicity 
increased with increasing the dose of photosensitizer as well as with the 
irradiation time. Interestingly, photosensitizers 5a, 5b and 5d at a low 

Scheme 2. The improved synthetic route of the photosensitizers 5a-d presented in this work.  
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concentration of 0.04 μM displayed high cytotoxicity when the irradi
ation time was 10 min; however, this is not the case for photosensitizer 
5c. As shown in Fig. S4, these four dyes all exhibited bright red fluo
rescence in HepG2 cells. These results indicate that photosensitizers 5a- 
d had good photodynamic therapeutic effect and could also be applied 
for cell imaging. 

4. Conclusion 

In conclusion, CuO nanopowder was used as the catalyst to optimize 
the synthesis of the key intermediate of benzo[a]phenoselenazinium 
PDT agents, bis-(3-diethylaminophenyl) diselenide. This new synthetic 
method required a mild reaction condition, but resulted in the product 
with high purity without the need of purification by column chroma
tography; it also had a simple and straightforward operation procedure. 
This work presents the synthesis method for benzo[a]phenoselenazi
nium PDT agents that can be potentially up-scaled. With this method, 
the clinical studies and practical applications of the agents can poten
tially be boosted. 

Fig. 1. Absorption (top row) and fluorescence (bottom row) spectra of photosensitizers 5a-d in methanol (a, c) and in H2O (b, d).  

Fig. 2. The decay curves of the absorbance at 411 nm of DPBF in methanol as a 
function of irradiation time without and with photosensitizers 5a-d and 
methylene blue (MB). Light source 660 nm LED (20 mW/cm2). 

Table 1 
Photophysical properties of photosensitizers 5a-d in methanol.  

Compounds λabs/nm λem/nm ΦΔ (1O2) 

5a 660 707 0.80 
5b 660 707 0.83 
5c 660 708 0.86 
5d 660 708 0.86  
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