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A B S T R A C T   

A palladium-catalyzed reductive carbonylation reaction has been developed for the synthesis of quinazolines. 
With N-(2-iodophenyl)benzimidamide as starting materials, a series of quinazolines were obtained through the 
aromatic aldehyde intermediates in moderate to good yields with good functional group compatibilities. In this 
system, silane act as better nucleophile than amidine.   

During the past decades, transition-metal-catalyzed carbonylation 
reactions have proven to be one of the powerful methods for the con-
struction of carbonyl-containing compounds and have attracted lots of 
attentions for their widely application in both academic and industrial 
fields. [1] Among all the carbonylation reactions, the synthesis of aro-
matic aldehyde by reductive carbonylation is considered to be unique 
and interesting. One representative example was developed by Beller’s 
group, [2] a general and practical palladium-catalyzed reductive 
carbonylation of aryl and heteroaryl bromides in the presence of syngas. 
Furthermore, several other methods have been reported for the prepa-
ration of aromatic aldehydes by different research groups as well. [3] 
Recently, we also explored a few reductive carbonylation reactions for 
the synthesis of aromatic aldehydes. [4] Additionally, the synthesis of 
bis(indolyl)methanes, [5] and chalcone [6] have also been developed 
via the aldehyde-mediate palladium-catalyzed reductive carbonylation 
reactions. 

Quinazolines, a valuable class of nitrogen-containing compounds 
which play an important role in pharmaceutical industry due to their 
wide range biological and medicinal activities such as antibacterial, [7] 
anticancer, [8] anticonvulsant, [9] anti-inflammatory, [10] antima-
larial, [11] antitubercular, [12] and antiviral properties. [13] Therefore, 
numerous protocols for the preparation of quinazolines has been 
developed during these years. [14] Although much efforts have been put 
on this area, [15–17] the exploration of novel catalytic system remains 
an active field of research. Considering the straightforward and effective 
utilization of palladium-catalyzed reductive carbonylation, an aldehyde 

mediate quinazolines synthesis came to our mind (Scheme 1, eq a). In 
our approach, it is noteworthy that the reaction could potentially un-
dergo another competitive pathway (Scheme 1, eq b). [18] We reasoned 
that this pathway may be suppressed by the selection of hydrogen 
source. Under these backgrounds, we wish to disclose here a 
palladium-catalyzed quinazolines synthesis via a reductive carbonyla-
tion process with aromatic aldehydes as the key intermediates. 

Initially, we carried out this reductive carbonylation reaction with 
N-(2-iodophenyl)benzimidamide 1a (prepared from o-iodoaniline and 
benzonitrile) as model substrate, Pd(OAc)2 as the catalyst, PPh3 as the 
ligand, Mo(CO)6 as the CO source, Et3SiH as the hydrogen source, Et3N 
as the base in DMF at 120 ◦C for 16 h, the target product 2a was ob-
tained in 5% yield (Table 1, entry 1). Next, different silanes were 
studied (Table 1, entry 2–4), 19% yield of 2a was observed with 
Ph2SiH2 as the hydrogen source (Table 1, entry 2). Delightly, when 
using 3 equivalent of Mo(CO)6, the quinazoline product was detected in 
47% yield (Table 1, entry 5). Palladium catalysts, such as Pd(TFA)2, 
PdCl2, PdBr2, and Pd(acac)2 were then examed, resulting the desired 
quinazoline in lower yields (Table 1, entry 6–9). Subsequently, various 
mono- and bidentate phosphine ligands were examined, PCy3 and 
Xphos resulted the corresponding product in 18% and 26% yields 
(Table 1, entry 10–11), while BuPAd2 gave a comparable yield as PPh3 
(Table 1, entry 12). Gratifyingly, P(C6F5)3 appeared to be the best 
ligand in this reaction, producing the corresponding product in 56% 
(Table 1, entry 13). Compare to monodentate ligands, the use of 
bidentate ligands decreased the product yield (Table 1, entry 14–15). 
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Furthermore, solvent screening showed that DMF tend to be the best 
solvent (Table 1, entry 16–19). This catalytic system showed very good 
selectivity towards the generation of aromatic aldehyde intermediate, 
even without Ph2SiH2, only trace amount of product from pathway b 
was observed (Table 1, entry 20). 

With the optimal reaction conditions in hand, we next went on our 
studies on the substrate scope. As shown in Scheme 2, o-iodoaniline 
rings, which had substituents such as methyl, fluoro, and chloro groups 
at different positions worked well to give the corresponding products in 
moderate to good yields (2a-2f). Next, a series of groups substituted on 
the aryl group bonded at the C––NH carbon were examined. Substrates 
with electron-donating groups, including methyl and tert‑butyl pro-
vided the final products in moderate yields (2h-2j). The halogen sub-
stituents could also tolerate well to afford the desired products in 
moderate to good yields no matter their positions on the aryl rings (2l- 
2 m). The reaction also proceeded well with electron-deficient groups, 
52–70% yields of the desired products were obtained from the corre-
sponding nitrile and trifluoro substituents (2 g, 2o-2q). Furthermore, 2- 
naphthyl group was tested, and the target product was produced in 50% 
yield (2r). It is also important to note that 10% of the desired product 
was obtained when N-(2-iodophenyl)acetimidamide was tested as the 
substrate. 

For the reaction pathway, it’s important to mention that N-(2-for-
mylphenyl)benzimidamide can be detected when we decreased the re-
action temperature to 80 ◦C. With N-(2-formylphenyl)benzimidamide as 
the starting material under our standard conditions, 2-phenylquinazo-
line can be obtained in 75% yield (Scheme 3a). Additionally, no 2-phe-
nylquinazoline could be detected when 2-phenylquinazolin-4(3H)-one 
was reacted under our standard conditions (Scheme 3b). 

Based on the above results, a plausible reaction mechanism was 
proposed in Scheme 4. First, the oxidative addition of Pd(0) with 1 to 
afford arylpalladium species I, followed by a CO (generated from Mo 
(CO)6) insertion to provide acylpalladium complexes II. Subsequently, 

Scheme 1. Silane nucleophile vs amine nucleophile.  

Table 1 
Screening of reaction conditions.a.  

Entry Catalyst Ligand [H] Solvent Yield (%) 

1 Pd(OAc)2 PPh3 Et3SiH DMF 5 
2 Pd(OAc)2 PPh3 Ph2SiH2 DMF 19 
3 Pd(OAc)2 PPh3 iPr3SiH DMF 6 
4 Pd(OAc)2 PPh3 PHMS DMF trace 
5b Pd(OAc)2 PPh3 Ph2SiH2 DMF 47 
6b Pd(TFA)2 PPh3 Ph2SiH2 DMF 30 
7b PdCl2 PPh3 Ph2SiH2 DMF 25 
8b PdBr2 PPh3 Ph2SiH2 DMF 18 
9b Pd(acac)2 PPh3 Ph2SiH2 DMF 25 
10b Pd(OAc)2 PCy3 Ph2SiH2 DMF 18 
11b Pd(OAc)2 Xphos Ph2SiH2 DMF 26 
12b Pd(OAc)2 BuPAd2 Ph2SiH2 DMF 47 
13b Pd(OAc)2 P(C6F5)3 Ph2SiH2 DMF 56 
14b Pd(OAc)2 DPPF Ph2SiH2 DMF 19 
15b Pd(OAc)2 DPPP Ph2SiH2 DMF 30 
16b Pd(OAc)2 P(C6F5)3 Ph2SiH2 DMSO 5 
17b Pd(OAc)2 P(C6F5)3 Ph2SiH2 DMA 17 
18b Pd(OAc)2 P(C6F5)3 Ph2SiH2 dioxane 6 
19b Pd(OAc)2 P(C6F5)3 Ph2SiH2 CH3CN 4 
20b Pd(OAc)2 P(C6F5)3 / CH3CN 0  

a Reaction conditions: N-(2-iodophenyl)benzimidamide 1a (0.5 mmol), cata-
lyst (6 mol%), ligand (12 mol% for monodentate ligand; 6 mol% for bidentate 
ligand), [H] (3 equiv.), Mo(CO)6 (1.5 equiv.), Et3N (2 equiv.), solvent (2 mL), 
120 ◦C, 16 h. Isolated yields. 

b Mo(CO)6 (3 equiv.). 

Scheme 2. Substrate scope.a 

a Reaction conditions: N-(2-iodophenyl)benzimidamides 1 (0.5 mmol), Pd 
(OAc)2 (6 mol%), P(C6F5)3 (12 mol%), Ph2SiH2 (3 equiv.), Mo(CO)6 (3 equiv.), 
Et3N (2 equiv.), DMF (2 mL), 120 ◦C, 16 h. Isolated yields. 

Scheme 3. Control experiments.  
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the aromatic aldehyde intermediates III were produced in the presence 
of Ph2SiH2 with the release of Pd(0) for the next catalytic cycle. Finally, 
an intramolecular condensation happened to give the desired final 
quinazoline products 2. 

In conclusion, a palladium-catalyzed reductive carbonylative process 
has been explored for the synthesis of quinazolines. With Ph2SiH2 as the 
hydrogen source, aromatic aldehydes were generated as the key in-
termediates, which then underwent dehydrative cyclization to give the 
final quinazoline products. The reaction proceeded smoothly, and a 
series of quinazolines were produced in moderate to good yields with 
good functional group tolerance. 

General procedure 

Pd(OAc)2 (6 mol%), tris(pentafluorophenyl)phosphine (12 mol%), N- 
(2-iodophenyl) benzamidines 1 (0.5 mmol), and Mo(CO)6 (1.5 mmol) 
were added to an oven-dried tube (15 mL), which was then placed under 
vacuum and refilled with nitrogen for three times. Then Ph2SiH2 (1.5 
mmol), Et3N (1 mmol) and DMF (2 mL) were added into the tube via a 
syringe. The reaction mixture was stirred at 120 ◦C for 16 h. After the 
reaction was completed, the reaction mixture was concentrated under 
vacuum. The crude mixture was purified by silica gel column chroma-
tography (PE/Et2O = 50/1) to provide the desired quinazoline products 2. 
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