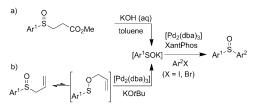
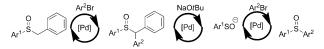
Homogeneous Catalysis

Diaryl Sulfoxides from Aryl Benzyl Sulfoxides: A Single Palladium-Catalyzed Triple Relay Process**

*Tiezheng Jia, Ana Bellomo, Sonia Montel, Mengnan Zhang, Kawtar EL Baina, Bing Zheng, and Patrick J. Walsh**


Abstract: A novel approach to produce diaryl sulfoxides from aryl benzyl sulfoxides is reported. Optimization of the reaction conditions was performed using high-throughput experimentation techniques. The [Pd(dba)₂]/NiXantPhos catalyst system successfully promotes a triple relay process involving sulfoxide α -arylation, C-S bond cleavage, and C-S bond formation. The byproduct benzophenone is formed by an additional palladium-catalyzed process. It is noteworthy that palladiumcatalyzed benzylative C-S bond cleavage of sulfoxides is unprecedented. A wide range of aryl benzyl sulfoxides, as well as alkyl benzyl sulfoxides with various (hetero)aryl bromides were employed in the triple relay process in good to excellent yields (85-99%). Moreover, aryl methyl sulfoxides, dibenzyl sulfoxides, and dimethylsulfoxide could be utilized to generate diaryl sulfoxides involving multiple catalytic cycles by a single catalyst.

Sulfoxides are widely occurring in natural products,^[1] synthetic bioactive compounds,^[2] and materials.^[3] They are also very important structural motifs in marketed therapeutics, such as Nexium for heartburn and esophagitis,^[4a] and Provigil for narcolepsy.^[4b] Furthermore, in recent years, sulfoxides have attracted attention as ligands in catalysis.^[5] Despite the importance of sulfoxides, rapid syntheses of diversified diaryl sulfoxides remains challenging.


Two classic methods to generate diaryl sulfoxides are the oxidation of sulfides^[6] and the nucleophilic substitution of electrophilic sulfoxide derivatives.^[7] Madec, Poli, and coworkers reported the preparation of aryl sulfoxides by the palladium-catalyzed arylation of sulfenate anions with aryl iodides and bromides (Scheme 1 a,b).^[8] In the presence of 20 equivalents of KOH, sulfenate anions could be generated from the retro-Michael reaction of β -sulfinyl esters (Scheme 1 a).^[8a,b] In a second report, a palladium-catalyzed C–O

Supporting information for this article is available on the WWW under http://dx.doi.org/10.1002/anie.201307172.

Previous: Palladium-catalyzed arylation of sulfenate anions

This work: Single palladium-catalyzed triple relay process

Scheme 1. Synthetic approaches to diaryl sulfoxides. dba = dibenzylideneacetone.

bond cleavage of allylic sulfenate esters by a Mislow–Braverman–Evans rearrangement of the allylic sulfoxides was described (Scheme 1 b).^[8c] Subsequently, the sulfenate anions were arylated with aryl iodides or bromides to yield diaryl sulfoxides. The substrate scope of these reactions is narrow.

Herein, we report a general, high-yielding method for the synthesis of diaryl sulfoxides. Remarkably, mechanistic studies reveal that a single palladium catalyst promotes at least three distinct reactions in this transformation (Scheme 1).^[9]

We recently reported the palladium-catalyzed functionalization of weakly acidic sp³-hybridized C-H bonds $(pK_a \text{ values } 28-35 \text{ in DMSO})$ by a deprotonative crosscoupling process (DCCP). Using this approach, we developed coupling protocols for diarylmethanes,^[10] sulfoxides,^[11] sulfones,^[12] amides,^[13] and chromium-activated benzylic amines (to produce enantioenriched diarylmethylamines).^[14] During our study on the α -arylation of sulfoxides using the ligand L1,^[15] we noticed that a diaryl sulfoxide by-product (3a) was generated in up to 20% yield from benzyl phenyl sulfoxide (1a) with 4-tert-butyl bromobenzene (2a) [10 mol% Pd-(OAc)₂, 15 mol % L1, 3 equiv LiOtBu, in cyclopentyl methyl ether (CPME) at 110°C for 12 h; Table 1, entry 1]. We initiated the optimization by performing a ligand screen using the reaction conditions described in Table 1. Of the 112 sterically and electronically diverse mono- and bidentate phosphines examined, two classic ligands [SPhos (L2) and DavePhos (L3)] along with NiXantPhos (L4)^[16] outperformed L1 (Table 1). On a laboratory scale, the yields of 3a with SPhos, DavePhos, and NiXantPhos were 25 %, 33 %, and 22%, respectively (Table 1, entry 1 versus entries 2-4). Because the role of the base is crucial to DCCP reactions,

^[**] We thank the National Science Foundation [CHE-0848460 (GOALI) and 1152488] for financial support. K.E.B thanks the Université Pierre et Marie Curie and CROUS de Paris for financial support. B.Z. thanks the China Scholarship Council [2011635137] for financial support.

Table 1: Optimization of diaryl sulfoxide formation by cross-coupling of benzyl phenyl sulfoxide (**1 a**) with 4-*tert*-butylbromobenzene (**2 a**).

	O S		Br [Pd]/ Ligand 3 equiv bas CPME, 12	e ►	O=S	
	1a (1 equiv)	2 a (2 eo			3a	I
Entry	Catalyst	Ligand	Catalyst/ligand (mol%)	<i>Т</i> [°С]	Base	Yield [%] ^[a]
1	Pd(OAc) ₂	LI	10:15	110	LiOtBu	20
2	Pd(OAc) ₂	L2	10:15	110	LiOtBu	25
3	Pd (OAc) ₂	L3	10:15	110	LiOtBu	33
4	Pd (OAc) ₂	L4	10:15	110	LiOtBu	22
5	Pd(OAc) ₂	L4	10:15	110	NaOtBu	83
6	Pd(OAc) ₂	L4	10:15	80	NaOtBu	85
7	$[Pd_2(dba)_3]$	L4	10:15	80	NaOtBu	55
8	[Pd ₂ (dba) ₃]	L4	10:15	80	NaOtBu	91
9	[Pd ₂ (dba) ₃]	L4	5:7.5	80	NaOtBu	91
10	$[Pd_2(dba)_3]$	L4	2.5:3.8	80	NaOtBu	68
11	$[Pd_2(dba)_3]$	L4	5:7.5	55	NaOtBu	28
[a] Yield of isolated product. CPME=cyclopentyl methyl ether.						

 $\begin{array}{c} \overbrace{P} \\ (1)$

we next examined 12 bases and four solvents using the ligands SPhos (L2), DavePhos (L3), and NiXantPhos (L4; see the Supporting Information). The highest yield was with 15 mol% NiXantPhos (L4), 10 mol% Pd(OAc)₂, and NaOtBu in CPME (Table 1, entry 5). Forging ahead with NiXantPhos, a similar yield was obtained when the temperature was reduced to 80°C (entry 6). Examination of four palladium sources $[Pd(OAc)_2,$ $[Pd(cod)Cl_2],$ [Pd-(NCCH₃)₂Cl₂], and [Pd₂(dba)₃]] in six solvents was undertaken using NiXantPhos (L4) and NaOtBu at 80°C for 12 hours. Among the variables examined, $[Pd_2(dba)_3]$ in CPME rendered the highest assay yield on microscale. Unfortunately, we were unable to translate these conditions to lab scale, and only 55% yield of 3a was obtained. We hypothesized that contamination of commercial [Pd₂(dba)₃] with nanoparticles was a potential problem (Table 1, entry 7).^[17] Changing to [Pd(dba)₂] overcame this issue, thus generating **3a** in 91% yield (Table 1, entry 8). We were able to decrease the Pd/ligand loading from 10:15 mol% to 5:7.5 mol% while maintaining the high yield (Table 1, entry 9). Reduction to 2.5:3.8 mol%, however, resulted in lower yield (entry 10). Therefore, 5 mol% [Pd(dba)₂] and 7.5 mol% NiXantPhos were employed. Decreasing the temperature to 55 °C led to only 28% yield of **3a** (entry 11). Further optimization of the loading of NaOtBu and the ratios of 1a and 2a revealed that 3 equivalents of NaOtBu and a 1:2 ratio of **1a/2a** was optimal (see the Supporting Information). Thus, our best reaction conditions were $5 \mod \% [Pd(dba)_2]$, 7.5 mol% NiXantPhos (L4), 1a (as the limiting reagent), 2 equivalents of 2a, and 3 equivalents NaOtBu in CPME at 80°C for 12 hours.

Table 2: Substrate scope of aryl bromides in palladium-catalyzed formation of diaryl sulfoxides with **1a**.

		+ R	5 mol % [Pd(dba) 7.5 mol % NiXantPl 3 equiv NaOtBu			
		2a-l	80 °C, 12 h, CPM	E	3a-l	
R	Product	Yield $[\%]^{[a]}$	R	Product	Yield [%] ^[a]	
4-tBu	3 a	91	2-Me	3 g	90 ^[b]	
4-NMe ₂	3 b	91 ^[b]	1-naphthyl	3 h	93	
4-F	3 c	95	3-OMe	3 i	93	
4-Cl	3 d	93	2-pyridyl	3 j	89 ^[d]	
4-CF ₃	3 e	85 ^[c]	3-pyridyl	3 k	94 ^[b,c] (86 ^[e])	
4-NO ₂	3 f	94	4-pyridyl	31	85 ^[b,c]	

[a] Yield of isolated product. [b] 110°C. [c] 24 h. [d] 6 h. [e] **1a** (5 mmol), **2k** (10 mmol), CPME (50 mL), 36 h.

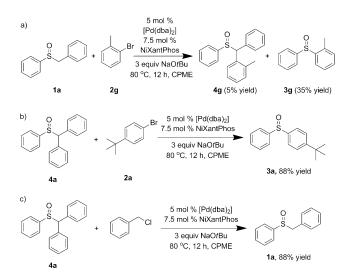
The reaction conditions identified for the formation of **3a** were evaluated for a series of aryl bromides with **1a** (Table 2). Electron-donating groups on the aryl bromides, such as 4-*tert*-butyl and 4-*N*,*N*-dimethylamino, were well tolerated, thus providing **3a** and **3b**, respectively, in 91% yield. The cross-coupling reactions proceeded smoothly with **1a** and various aryl bromides bearing electron-withdrawing groups, including 4-fluoro (**2c**), 4-chloro (**2d**), 4-trifluoromethyl (**2e**), and 4-nitro (**2f**), thus providing **3c-f** in 85–95% yield. Excellent chemoselectivity in coupling at bromide over the chloride was achieved with 4-chloro bromobenzene (**2d**). The sterically more demanding 2-bromotoluene (**2g**) and 1-bromonaphthalene (**2h**) furnished the products **3g** (90%) and **3h** (93%), respectively. 3-Bromoanisole generated the coupling product **3i** in 93% yield.

Bioactive sulfoxides often contain heterocycles.^[18] Our protocol is effective for the synthesis of heterocyclic sulfoxides, as demonstrated with couplings to yield 2-, 3-, and 4pyridyl phenyl sulfoxides (3j-l) in 89, 94, and 85% yield, respectively. To achieve these yields, higher reaction temperatures (110 °C) and longer reaction times (24 h) were needed. It is noteworthy that 3j is the key motif for an antiinflammatory agent^[18a] and 3l is derived from a hair papilla cell proliferation agent.^[18b] To show the scalability of our method, we performed the reaction using 5 mmol benzyl phenyl sulfoxide (1a) and 10 mmol 3-bromopyridine (2k). The product, 3k was isolated in 86% yield.

We next turned our attention to the substrate scope of aryl benzyl sulfoxides in coupling reactions with bromobenzene (2m) to generate diaryl sulfoxides. Electron-donating 4methyl and 4-N,N-dimethylamino groups were well tolerated, thus giving **3m** and **3b** in 99 and 92% yield, respectively. Substrates bearing the electron-withdrawing 4-F (1c), 4-Cl (1d), and 4-CF₃ (1e) groups furnished the products in 86-92% yield. The congested 2-tolyl and 1-naphthyl benzyl sulfoxides 1g and 1h afforded 3g (93%) and 3h (91%), respectively. Aryl heteroaryl sulfoxides were provided from heteroaryl benzylsulfoxides in excellent yields under slightly modified reaction conditions (see Table 3 for details). 3-Pyridyl (3k), 2-furanyl (3n), and 2-thienyl (3m) phenyl sulfoxides were thus prepared. The compound **3n** could be utilized as a key motif for an antituberculotic reagent.^[18c] Alkyl aryl sulfoxides could also be prepared, as demonstrated

Angew. Chem. Int. Ed. 2014, 53, 260–264

Table 3: Substrate scope of aryl benzyl sulfoxides in palladium-catalyzed formation of diaryl sulfoxides with bromobenzene (**2 m**).


C) 2m	Br + R	O S 1b-p	5 mol % [Pd(dba) ₂] 7.5 mol % NiXantPhos 3 equiv NaOtBu 80 °C, 12 h, CPME		D B F B-p
R	Product	Yield [%] ^[a]	R	Product	Yield [%] ^[a]
4-Me	3 m	99	1-naphthyl	3 h	91
4-NMe ₂	3 b	92	3-pyridyl	3 k	89 ^[c]
4-F	3 c	92	2-furanyl	3 n	90
4-Cl	3 d	91 ^[b]	2-thienyl	3 o	85 ^[c]
4-CF ₃	3 e	86	cyclohexyl	3р	90 ^[c]
2-Me	3 g	93 ^[c]			

[a] Yield of isolated product. [b] 24 h. [c] 110°C.

by generation of cyclohexyl phenyl sulfoxide (3p) in 90% yield.

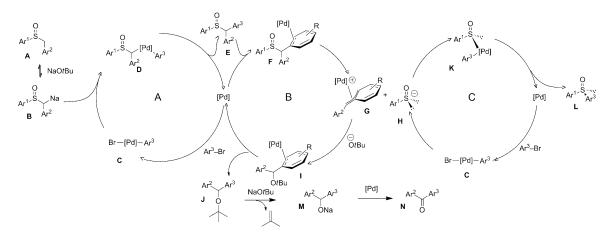
To generate diaryl sulfoxides, the Pd/NiXantPhos catalyst must promote multiple distinct reactions, including cleavage and formation of C-S bonds. Based on experiments discussed below, a tricatalytic cycle is proposed in Figure 1. The first cycle (A), is the α -arylation of aryl benzyl sulfoxides. We recently reported a similar catalytic arylation of methyl phenyl sulfoxides in up to 95% yield and one example of the arylation of a benzyl phenyl sulfoxide (80 % yield).^[11] Support for cycle A was gained when the temperature was decreased from 110°C to 80°C (Scheme 2a) in the reaction of 1a with 2tolyl bromide (2g). We isolated the diarylmethyl sulfoxide 4g(intermediate E; Figure 1) in 5% yield along with the 35% of the diaryl sulfoxide 3g (Scheme 2a). These results support the proposed α -arylation cycle A. Subsequently, diphenylmethyl phenyl sulfoxide (4a) was synthesized independently and subjected to the optimized reaction conditions with 4-tertbutyl bromobenzene (Scheme 2b). The diaryl sulfoxide product 3a was generated in 88% yield.

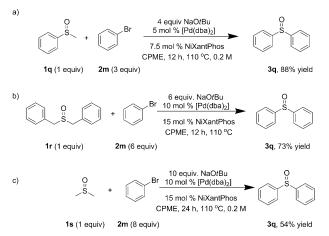
In the second catalytic cycle (B) a novel cleavage of the C–S bond occurs (Figure 1). Arene coordination of the aryl diarylmethyl sulfoxide moiety (F) to palladium is followed by formation of a π -benzyl intermediate (G) and expulsion of aryl sulfenate (H). The intermediate G is attacked by the

Scheme 2. Generation of 4g and α -arylation and benzylation of 4a.

NaOtBu base, thus generating a diarylmethyl *tert*-butyl ether (**J**), which we have isolated from the reaction mixture. The yield of this byproduct is always significantly lower than expected based on the reaction stoichiometry. Further studies demonstrated that the Ar_2CH -O-tBu undergoes a base-induced E2 elimination to generate Ar_2CH -ONa, which is oxidized by palladium in a fourth catalytic cycle. When 3 equivalents of 4-nitro bromobenzene are employed, nitrobenzene is isolated in 76% yield. If 2 equivalents of the aryl bromide is used, we propose the eliminated isobutylene is reduced to isobutane (see the Supporting Information for details).

Palladium π -benzyl intermediates were pioneered by Fiaud and Kuwano,^[19] who have developed them into useful synthetic intermediates. We are not aware, however, of previous observation of sulfenates as leaving groups in π benzylation reactions. The sulfenate generated in cycle B undergoes palladium-catalyzed cross-coupling with aryl bromides in cycle C and produces the diaryl sulfoxide. As further support of the intermediacy of aryl sulfenate (**H**), we added benzyl chloride in the standard catalysis conditions with




Figure 1. Proposed mechanism of the palladium-catalyzed triple relay process.

© 2014 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

Angew. Chem. Int. Ed. 2014, 53, 260-264

diphenylmethyl phenyl sulfoxide (**4a**, Scheme 2c). Benzyl phenyl sulfoxide (**1a**) was isolated in 88% yield.

As mentioned, we recently reported the first palladiumcatalyzed α -arylation of methyl sulfoxides with aryl halides.^[11] The products generated from this α -arylation are aryl benzyl sulfoxides, which are the starting materials in Tables 1–3. Thus, we were interested in exploring the synthesis of diaryl sulfoxides directly from aryl methyl sulfoxides.^[20] The pK_a of methyl aryl sulfoxides is significantly higher than that of benzyl aryl sulfoxides, however. Fortunately, the [Pd(dba)₂]/ NiXantPhos system proved to be suitable for this transformation (Scheme 3 a). Thus, starting with methyl phenyl

Scheme 3. Tandem palladium-catalyzed synthesis of diphenyl sulfoxide (3 q) from methyl phenyl sulfoxide (1 q), dibenzyl sulfoxide (1 r), and dimethyl sulfoxide (DMSO; 1 s).

sulfoxide (1q) diphenyl sulfoxide (3q) was generated directly in 88% yield using a 0.2 \times concentration. This tandem route broadens the substrate scope. We next sought to generate diphenyl sulfoxide starting from dibenzyl sulfoxide (1r, Scheme 3b). The desired product 3q was provided in 73% yield from 1r upon increasing the catalyst/ligand loading to 10:15 mol%. Interestingly, dimethyl sulfoxide (DMSO), a common solvent, could also be utilized. DMSO underwent dual α -arylation to generate 3q in 54% yield (Scheme 3c). Considering this reaction involves four α -arylations and two S-arylations, the yield is reasonable.

In summary, we report a novel triple relay process to generate diaryl sulfoxides directly from aryl benzyl sulfoxides and aryl bromides. $[Pd(dba)_2]/NiXantPhos efficiently catalyzed the reactions, and a variety of diaryl sulfoxides, as well as alkyl aryl sulfoxides, were produced in good to excellent yields. Mechanistic studies indicate three distinct core catalytic cycles: sulfoxide <math>\alpha$ -arylation, C–S bond cleavage, and C–S bond formation. The byproduct benzophenone is formed by an additional palladium-catalyzed process. The palladium-catalyzed benzylative C–S bond cleavage of sulfoxides is unprecedented.

Experimental Section

General procedure for catalysis: [Pd(dba)₂] (2.88 mg, 0.005 mmol) and ligand L4 (4.14 mg, 0.0075 mmol) were added to an oven-dried microwave vial equipped with a stirbar under a nitrogen atmosphere, and 1.0 mL dry CPME was then added. After the catalyst/ligand solution was stirred for 2 h at 24°C, NaOtBu (28.8 mg, 0.30 mmol, 3 equiv) was added to the reaction vial followed by benzyl phenyl sulfoxide (21.6 mg, 0.10 mmol, 1.0 equiv). The microwave vial was sealed and 4-tert-butyl bromobenzene (34.6 µL, 0.20 mmol, 2.0 equiv) was added by syringe under a nitrogen atmosphere. Note that if the benzyl sulfoxide or aryl bromide is a solid, it was added to the reaction vial before NaOtBu. The reaction mixture was heated to 80°C by oil bath and stirred for 12 h. The sealed vial was cooled to room temperature, opened to air, and the reaction mixture was passed through a short pad of silica gel. The pad was then rinsed with 10:1 dichloromethane/methanol. The solvent was removed under reduced pressure, and the residue was purified by flash chromatography on silica gel (eluted with EtOAc/hexanes 1:4) to give the product (23.5 mg, 91 % yield) as a white solid.

Received: August 15, 2013 Revised: September 25, 2013 Published online: November 24, 2013

Keywords: cross-coupling · homogeneous catalysis · palladium · S–O compounds · synthetic methods

- a) K. Suwanborirux, K. Charupant, S. Amnuoypol, S. Pummangura, A. Kubo, N. Saito, *J. Nat. Prod.* 2002, 65, 935; b) S. Kim, R. Kubec, R. A. Musah, *J. Ethnopharmacol.* 2006, 104, 188; c) I. Dini, G. C. Tenore, A. Dini, *J. Nat. Prod.* 2008, 71, 2036; d) M. El-Aasr, Y. Fujiwara, T. Takeya, S. Tsukamoto, M. Ono, D. Nakamo, M. Okawa, J. Kinjo, H. Yoshimitsu, T. Nohara, *J. Nat. Prod.* 2010, 73, 1306.
- [2] a) K. L. Rinehart, R. Sakai, US2004/59112A1, 2004; b) Amira Pharmaceuticals Inc., US/2010/4331A1, 2010; c) J. H. Hutchinson, T. J. Seiders, J. M. Arruda, J. R. Roppe, (Amira Pharmaceuticals Inc.), WO2010/42652A2, 2010; d) Combinatorx (Singapore) Pte. Ltd., US2010/9970A1, 2010; e) Achaogen Inc., WO2009/137130A2, 2009.
- [3] a) T. Oyama, K. Naka, Y. Chujo, *Macromolecules* 1999, *32*, 5240;
 b) M. Numata, Y. Aoyagi, Y. Tsuda, T. Yarita, A. Takatsu, *Anal. Chem.* 2008, *80*, 509.
- [4] a) Astra Aktiebolag, US5877192A, 1998; b) Laboratoire L. Lafon, US4927855A, 1990.
- [5] For reviews, see a) M. Mellah, A. Voituriez, E. Schulz, *Chem. Rev.* 2007, 107, 5133, and references therein; some recent examples: b) C. Jiang, D. J. Covell, A. F. Stepan, M. S. Plummer, M. C. White, *Org. Lett.* 2012, 14, 1386; c) E. M. Stang, M. C. White, *J. Am. Chem. Soc.* 2011, 133, 14892; d) P. K. Dornan, P. L. Leung, V. M. Dong, *Tetrahedron* 2011, 67, 4378; e) J. Chen, F. Lang, X. Zhang, L. Cun, J. Zhu, J. Deng, J. Liao, *J. Am. Chem. Soc.* 2010, 132, 4552; f) R. Mariz, X. Luan, M. Gatti, A. Linden, R. Dorta, *J. Am. Chem. Soc.* 2008, 130, 2172.
- [6] a) E. Wojaczyńska, J. Wojaczyński, Chem. Rev. 2010, 110, 4303;
 b) G. E. O'Mahony, P. Kelly, S. E. Lawrence, A. R. Maguire, ARKIVOC (Gainesville, FL, U.S.) 2011, 2011, 1; c) C. Bolm, Coord. Chem. Rev. 2003, 237, 245.
- [7] a) Z. Han, D. Krishnamerthy, P. Grover, K. Fang, X. Su, H. S. Wilkinson, Z.-H. Lu, D. Magiera, C. H. Senanayake, *Tetrahedron* 2005, *61*, 6386; b) K. Hiroi, F. Kato, *Tetrahedron* 2001, *57*, 1543; c) F. Xue, D. Wang, X. Li, B. Wan, *J. Org. Chem.* 2012, *77*, 3071; d) N. Furukawa, S. Ogawa, K. Matsumur, H. Fujihara, *J. Org. Chem.* 1991, *56*, 6341.

Angewandte Communications

- [8] a) G. Maitro, S. Vogel, G. Prestat, D. Madec, G. Poli, Org. Lett.
 2006, 8, 5951; b) G. Maitro, S. Vogel, M. Sadaoui, G. Prestat, D. Madec, G. Poli, Org. Lett. 2007, 9, 5493; c) E. Bernoud, G. Le Duc, X. Bantreil, G. Prestat, D. Madec, G. Poli, Org. Lett. 2010, 12, 320.
- [9] For recent examples of palladium-catalyzed tandem transformations, see a) Y. Shang, X. Jie, J. Zhou, S. Huang, W. Wei, *Angew. Chem.* 2013, 125, 1337; *Angew. Chem. Int. Ed.* 2013, 52, 1299; b) M. Zhang, P. Hu, J. Zhou, S. Huang, S. Wei, *Org. Lett.* 2013, 15, 1718.
- [10] a) J. Zhang, A. Bellomo, A. D. Creamer, S. D. Dreher, P. J. Walsh, J. Am. Chem. Soc. 2012, 134, 13765; b) A. Bellomo, J. Zhang, N. Trongsiriwat, P. J. Walsh, Chem. Sci. 2013, 4, 849.
- [11] T. Jia, A. Bellomo, K. EL Baina, S. D. Dreher, P. J. Walsh, J. Am. Chem. Soc. 2013, 135, 3740.
- [12] B. Zheng, T. Jia, P. J. Walsh, Org. Lett. 2013, 15, 1690.
- [13] B. Zheng, T. Jia, P. J. Walsh, Org. Lett. 2013, 15, 4190.
- [14] a) G. I. McGrew, J. Temaismithi, P. J. Carroll, P. J. Walsh, Angew. Chem. 2010, 122, 5673; Angew. Chem. Int. Ed. 2010, 49, 5541;
 b) J. Zhang, C. Stanciu, B. Wang, M. M. Hussain, C.-S. Da, P. J. Carroll, S. D. Dreher, P. J. Walsh, J. Am. Chem. Soc. 2011, 133, 20552; c) G. I. McGrew, C. Stanciu, J. Zhang, P. J. Carroll, S. D. Dreher, P. J. Walsh, Angew. Chem. 2012, 124, 11678; Angew. Chem. Int. Ed. 2012, 51, 11510.

- [15] C. M. So, C. P. Lau, F. Y. Kwong, Org. Lett. 2007, 9, 2795.
- [16] a) L. A. van der Veen, P. H. Keeven, G. C. Schoemaker, J. N. H. Reek, P. C. Kamer, P. W. N. M. van Leeuwen, M. Lutz, A. L. Spek, *Organometallics* 2000, 19, 872; b) P. C. J. Kamer, P. W. N. M. van Leeuwen, J. N. H. Reek, *Acc. Chem. Res.* 2001, 34, 895.
- [17] S. S. Zalesskiy, V. P. Ananikov, Organometallics 2012, 31, 2302.
- [18] a) Actelion Pharmaceuticals Ltd, K. Hilpert, F. Hubler, WO2012/114268A1, 2012; b) Taisho Pharmaceutical Co. Ltd., JP2005/41871A, 2005; c) The University of Tennessee Research Foundation, Colorado State University Research Foundation, WO2005/7625A2, 2005; d) J. Weinstock, J. Wu, P. Cao, W. D. Kingbury, J. L. McDermott, M. P. Kodrasov, D. M. McKelvey, K. G. Suresh, S. J. Goldenberg, M. R. Mattern, B. Nicholson, ACS Med. Chem. Lett. 2012, 3, 789.
- [19] a) J.-Y. Legros, J.-C. Fiaud, *Tetrahedron Lett.* **1992**, *33*, 2509;
 b) R. Kuwano, Y. Kondo, Y. Matsuyama, J. Am. Chem. Soc. **2003**, *125*, 12104;
 c) R. Kuwano, Y. Kondo, Org. Lett. **2004**, *6*, 3545.
- [20] After submission of this work, Nolan and co-workers reported a synthesis of diaryl sulfoxides from aryl methyl sulfoxides: F. Izquierdo, A. Chartoire, S. P. Nolan, ACS Catal. 2013, 3, 2190.