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ABSTRACT: The first total syntheses of punicafolin (1) and
macaranganin (2) were achieved in seven steps, respectively, from
commercial α-D-glucose. The characteristic features of the synthesis
are (1) sequential site-selective introduction of the adequate galloyl
groups into unprotected D-glucose by a catalyst-controlled manner
and (2) stereodivergent construction of the 3,6-HHDP bridge by
oxidative phenol coupling of a common intermediate via a ring-
flipping process of the glucose core. Because no protective groups
were used for glucose throughout the process, extremely short-step
total syntheses of natural glycosides 1 and 2 (MW 938) were
performed.

■ INTRODUCTION

Ellagitannins constitute one of the major classes of hydro-
lyzable tannins. More than 500 natural products of this
ellagitannin family have been structurally characterized,
exhibiting a variety of biological activities including antiox-
idative, anticancer, and antiviral activities.1 The structures are
basically composed of a central sugar core, typically D-glucose,
to which are esterified gallic acid (3,4,5-trihydroxybenzoic
acid) and hexahydroxydiphenoic (HHDP) acid. Punicafolin
(1) and macaranganin (2) (Scheme 1a) have been isolated
from the leaves of Punica granatum in 1985 and Macaranga
tanarius (L.) MUELL. et ARG. in 1990, respectively, by
Nishioka and co-workers.2,3 They are characterized by a 3,6-
HHDP group bridged between C(3)−OH and C(6)−OH of
the glucose core. Construction of the 3,6-HHDP group has
been a synthetic challenge because a less stable axial-rich
conformer such as 1C4 conformer of the pyranose ring is
required for the formation.4,5 Natural glycosides 1 and 2 have
the same molecular formula and are stereoisomeric to each
other concerning the chiral axis of the HHDP group. They
show different biological activities depending on the chirality
of the 3,6-HHDP groups. Glycoside 1 with an R-HHDP group
exhibits inhibitory activity of invasion of HT1080 fibrosarcoma
cells (IC50 = 4.2 μM),6 while 2 with an S-HHDP group acts as
a strong inhibitor of prolyl endopeptidase (IC50 = 43 nM).7

Thus, stereodivergent construction of the HHDP groups is an
important additional challenge. Here, we report the first total
syntheses of 1 and 2 in seven steps, respectively, from D-
glucose via sequential site-selective introduction of galloyl
groups into unprotected D-glucose without employing any
protective groups for hydroxy groups of glucose (Scheme 1a).

Yamada and co-workers reported the first example for the
construction of a 3,6-HHDP-bridged glucose skeleton via a
ring-opened glucose derivative in 2004.5c The strategy was
successfully applied to the first total synthesis of a 1C4/B-
ellagitannin, corilagin, in 2008 (Scheme 1b, route A).8

Recently, Ikeuchi, Yamada, and co-workers reported an
improved synthesis of corilagin via a conformationally fixed
intermediate (Scheme 1b, route B).9 In these precedents, use
of a ring-opened pyranose derivative or a conformationally
fixed pyranose derivative seemed essential for the construction
of the 3,6-HHDP group. For straightforward total synthesis,
direct formation of the 3,6-HHDP group from a stable chair
4C1 conformation with all equatorial substituents seems to be
more desirable. The potential was demonstrated also by
Yamada’s group.10 The regiochemical profile of oxidative
phenol coupling of penta-(4-O-benzyl)galloylglucose 6 was
investigated (Scheme 1c). They carefully isolated the 3,6-
HHDP derivative, and the structure was unambiguously
clarified to be 7. Although the formation of 7 was only in a
trace amount, this study demonstrated that the direct
formation of the 3,6-HHDP glucose derivative with the 1C4

conformation is possible via the ring-flipping process of the
glucose derivative with a stable 4C1 conformation.
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Inspired by Yamada’s pioneering studies, we planned a total
synthesis of 1 and 2. The retrosynthetic analysis is shown in
Scheme 1a. We envisaged that stereodivergent oxidative
phenol coupling between the 3- and 6-galloyl groups of 3
with an unstable 1C4 conformation generated via a ring-flip

process from its stable 4C1 conformer is the most
straightforward route to 1 and 2 (step 4: key step). Control
of the stereochemistry of the oxidative phenol coupling might
be achieved by a proper choice of chiral amines in the presence
of Cu(II) as the oxidant. The plausibility of the all-axial

Scheme 1. Structure and Synthetic Strategy for Ellagitannins with a 3,6-HHDP Groupa

a(a) This work: Retrosynthetic analysis for total syntheses of punicafolin (1) and macaranganin (2). (b) Yamada’s total synthesis of corilagin. (c)
Regiochemical profile of oxidative phenol coupling of penta-(4-O-benzyl)galloylglucose derivative 6 reported by Yamada’s group. (d)
Conformational analysis of glucose (β-Glc) and the perbenzoylated derivative (β-PBG).
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conformer of 3 seemed to be of critical importance to realize
the construction of the 3,6-HHDP group. The ring-flip process
of 3 was estimated by a DFT calculation. Conformational
analysis of β-pentabenzoylglucose (β-PBG) as a model of 3
was performed with comparison with that of β-glucose (β-Glc)
(Scheme 1d). The optimized geometries of β-PBG and β-Glc
were obtained by conformational searches with molecular
mechanics (OPLS force field, MCMM) and the subsequent
optimization by a DFT calculation at the M06-2X/6-311+
+G(2d,2p)//M06-2X/6-31G(d) level (For details, see Figures
S1 and S27). In both cases, the 4C1 conformer was found to be
the most stable and the flipped-chair 1C4 conformer was the
most stable among axial-rich conformers. The energy differ-
ence between 4C1 and

1C4 conformers of β-Glc was evaluated
to be 6.5 kcal/mol, while that of β-PBG was estimated to be
only 1.0 kcal/mol. The origin of the relative preference of the
all-axial conformer of β-PBG rather than that of β-Glc seemed
to be resulting from the stronger orbital interaction between
the nonbonding orbital of the ring oxygen with the σ* orbital
of the electron withdrawing C(1)−OBz bond (stronger
anomeric effect),11 which was suggested by natural bond
orbital (NBO) analysis (for detailed analysis, see Figure S2).
These results suggested that axial-rich conformations of 3
essential for the oxidative phenol coupling could exist to some
extent via the ring-flip process of the stable 4C1 conformer (the
conformational analysis of β-PBG based on Boltzmann
distribution analysis indicates the ratio between β-PBG (4C1)
and β-PBG (1C4) to be 30:1; for details, see Figure S4).
We then planned site-selective preparation of 3 from D-

glucose without employing any protective groups for glucose.
Galloyl groups G2 required for the oxidative phenol coupling
were planned to be introduced at C(3)−OH and C(6)−OH.
Because the rational precursor for 3 is to be 1,2,4-trigallate 4,
another key step must be site-selective introduction of galloyl
group G1 at C(2)−OH into the known intermediate, 1,4-
digallate 5 (step 2). We envisaged that use of our catalyst
library for site-selective acylation might be effective for this

challenge because chiral pyrrolidinopyridines (PPYs) with
various side chains have been shown to promote site-selective
acylation of glucose derivatives with intrinsic site-selectivity
depending on the side chains for molecular recognition.12c,d

The strategy for preparation of digallate 5 has already been
established by our group13 via a stereo- and site-selective SN2-
type Mitsunobu glycosylation14 of gallic acid derivative G1 with
unprotected α-D-glucose as a glycosyl donor followed by
catalyst-controlled site-selective introduction of the second
galloyl group G1.12a−c,13

■ RESULTS AND DISCUSSION

Actual synthesis was commenced with α-D-glucose and O-
MOM-protected gallic acid derivative 8 via a known two-step
procedure13 to give 1,4-digallate 11 in 64% yield from α-D-
glucose (Scheme 2). The first key step concerning site-
selective introduction of the same galloyl group, 8, into the
C(2)−OH of 11 with three free hydroxy groups was
investigated (Scheme 1a, step 2, Table 1). We first examined
DMAP-catalyzed acylation of 11 with gallic acid anhydride
derivative 10 to assess the inherent reactivity of 11 toward
galloylation. Treatment of 11 with 10 in the presence of
DMAP (10 mol %) and diisopropylethylamine (DIPEA) in
CHCl3 at −20 °C gave the desired 2-O-acylate 12 and 3-O-
acylate 13 in 44 and 36% yield, respectively, with the primary
C(6)−OH intact (0% formation of 14) (entry 1). The
relatively higher reactivity of the C(2)−OH and the C(3)−
OH toward acylation in the presence of the primary C(6)−OH
was also observed in total synthesis of cercidinin A.15

Furthermore, the lack of the reactivity of the free C(6)−OH
in the glucose core in DMAP-catalyzed acylation of a natural
cardiac glycoside, lanatoside C, was observed (0% acylation),
where the C(6)−OH was suggested to form a strong
intramolecular hydrogen bond (2.9 Å for O−H−O distance)
by molecular modeling.12b We suppose that the intramolecular

Scheme 2. Total Syntheses of Punicafolin (1) and Macaranganin (2)
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hydrogen bond could be, at least in some part, responsible for
the reduced reactivity of the free C(6)−OH.
We then examined a catalyst mini-library including C1−C5,

ent-C1, and ent-C2, which were expected to be able to control
the site-selectivity of acylation of polyol compounds
irrespective of the inherent reactivity of the substrate polyols
(Table 1).16 Catalyst C1 was first examined because it was
shown to be extremely effective for site-selective acylation of D-
glucose derivatives.12c Treatment of 11 with anhydride 10 in
the presence of 10 mol % of C1 gave the desired 2-O-acylate
12 and 3-O-acylate 13 in 32 and 20% yield, respectively, with
24% recovery of 11 (57% site-selectivity for C(2)−OH
acylation, entry 2). Since the site-selectivity was not improved,
its diastereomeric catalysts C2, ent-C1, and ent-C2 were
examined (entries 2−4). The highest site-selectivity (70%) was
obtained by C2 with R,S,S,R configuration, although the yield
was low (23%, entry 2). We then examined catalysts C3 and
C4 possessing β-naphthylalanine- and valine-derived side
chains, respectively, with the same R,S,S,R configuration as

that of C2 (entries 6 and 7). The yield of the desired C(2)-
acylate 12 was low (13−22%) in both cases, while the
promising site-selectivity (79%) was observed in the reaction
with C3. We further examined a newly developed catalyst, C5
with a 3-benzothiophenyl group instead of the 3-indolyl group
of C2. Site-selective introduction of the galloly group at C(2)−
OH was achieved with C5 in 42% yield with 75% selectivity
(entry 8). Finally, use of 2.2 equiv of anhydride 10 in the
presence of C5 afforded the desired 2-O-acylate 12 with
moderately acceptable yield and selectivity (entry 9, 51% yield,
78% selectivity). The rationale of the C(2)−OH selectivity in
C5-catalyzed acylation was totally unclear at this moment.
With the desired 1,2,4-trigallate 12 in hand, 1,2,3,4,6-

pentagallate 15 (Scheme 2), the precursor for the key step
(step 4 in Scheme 1a: stereodivergent oxidative phenol
coupling), was prepared. Condensation of 12 with gallic acid
derivative 8′ (protected G2 in Scheme 1a) followed by
hydrogenolysis gave 15 in 72% yield. Construction of the 3,6-
HHDP bridge by oxidative phenol coupling of 15 via the
presumed ring-flip process of the pyranose core was examined.
Treatment of 15 under the standard conditions for oxidative
phenol coupling (CuCl2 (3.0 equiv)/n-BuNH2 (20 equiv)/
CHCl3/MeOH (1/1))8,17 gave no HHDP-bridged products;
instead, decomposition of 15 by solvolysis and/or aminolysis
was observed (Table S1, entry 1). We then examined sparteine
in place of n-BuNH2 according to Quideau’s achievement.
Recently, Quideau, Deffieux, and co-workers reported
(−)-sparteine/Cu(II)-mediated oxidative phenol coupling for
the construction of a nonahydroxytriphenoyl (NHTP) group
toward total synthesis of a C-glucoside ellagitannin, (−)-vesca-
lin.18 Treatment of 15 with CuCl2 (3.0 equiv) and
(+)-sparteine (10 equiv) in CHCl3/MeOH (1/1) at rt for
30 min afforded the desired 3,6-HHDP-bridged product 16
with R configuration in 60% yield as a single diastereomer
(Scheme 2). Use of smaller amounts (5.0 equiv) of
(+)-sparteine resulted in the reduced yield (29%) with
complete stereocontrol of the HHDP group formation
(Table S1, entry 7). The 1C4 conformation of 16 was
suggested by comparison of the chemical shifts and 3JHH of
the pyranose moiety in the 1H NMR spectra of 16 with those
of 15 (see the Supporting Information). Use of (−)-sparteine
for the oxidative phenol coupling of 15 resulted in complete
reversal of stereochemistry for the construction of the 3,6-
HHDP group. On treatment of 15 with CuCl2 (3.0 equiv) and
(−)-sparteine (10 equiv) in CHCl3/MeOH (1/1) at rt for 30
min, the desired product 17 with an (S)-3,6-HHDP group was
obtained in 26% yield as a single diastereomer. The recovery of
15 was only ∼10% in this transformation. The major reason of
the poor material balance seemed to be resulting from
solvolysis and aminolysis of 17 and/or the related derivatives.
Although the yields are not satisfactory, this is the first
successful example of stereodivergent construction of the
HHDP groups from a common precursor among the reported
syntheses of ellagitannins.19 Deprotection of the MOM groups
of 16 and 17 under the hydrogenation conditions15,20 afforded
1 and 2 in 56 and 42% yield, respectively (cf. The MOM group
remained intact during the transformation of 12 to 15 via
hydrogenation conditions in THF. Use of alcoholic solvents is
indispensable for the removal of acid-labile groups under
hydrogenation conditions.15,20). Thus, the first total syntheses
of 1 and 2 were achieved in overall seven steps, respectively,
from D-glucose (nine steps from gallic acid) without using
protective groups for hydroxy groups of glucose. Two

Table 1. Catalyst Screening for the C(2)−OH-Selective
Introduction of the Third Galloyl Group into 1,4-Digallate
11

yield (%)
recovery
(%)

site-selectivity (%) for
C(2)−OH acylation

entry catalyst 12 13 14 11 12/(12 + 13 + 14)

1 DMAP 44 36 0 10 55
2 C1 32 20 4 24 57
3 C2 23 9 1 48 70
4 ent-C1 37 37 3 13 48
5 ent-C2 21 19 3 36 49
6 C3 22 5 1 49 79
7 C4 13 7 4 37 54
8 C5 42 10 4 30 75
9a C5 51 13 1 10 78

aAcid anhydride 10 (2.2 equiv) and DIPEA (3.0 equiv) were used.
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organocatalysts, C1 and C5, played a pivotal role for site-
selective introduction of galloyl groups, which could avoid the
use of the protective groups.
To get insights into the unprecedented stereodivergent

oxidative phenol coupling, we examined whether the stereo-
chemical outcome was determined by a kinetically or
thermodynamically controlled manner. The stereochemically
pure isomer 16 with an (R)-HHDP group was treated under
the conditions with (−)-sparteine/Cu(II), which were
employed for the conversion from 15 to 17, to give 17 with
an (S)-HHDP group as a single diastereomer in 66% yield
(Scheme 3). Alternatively, 16 with an (R)-HHDP was

obtained as a single diastereomer in 40% yield on treatment
of 17 under the conditions with (+)-sparteine/Cu(II) that
were employed for the conversion from 15 to 16. Thus,
generation of axial chirality in the HHDP group was found to
be totally governed by thermodynamic control depending on
the chiral ligands.17b,c,21 We then investigated the relative
stability of the (R)- and (S)-3,6-HHDP-bridged glucose core.
DFT calculation was performed to assess the most stable
structure and the relative stability of punicafolin (1) and
macaranganin (2) (Figure 1). The most stable structure of 1
with an R-HHDP group was shown to contain an all-axially
substituted glucose core with 1C4 conformation, while a
strained skew boat glucose core with 5S1 conformation was

suggested to be the most stable structure of 2. The former was
shown to be more stable than the latter by 1.8 kcal/mol. The
preference of the (R)-3,6-HHDP bridge with the glucose core
was compatible with the observation of exclusive formation of
the (R)-3,6-HHDP-bridged glucose derivatives during the total
synthesis of corilagin and mallotusinin.8,9 Thermal equilibrium
between 16 and 17 was also examined. Treatment of 16 in d6-
DMSO (2 mg/mL) at 130 °C for 30 min gave >99% recovery
without any formation of 17. Partial decomposition was
observed on the same treatment of 17 without formation of 16
(data not shown). Thus, thermal equilibrium between 16 and
17 was not observed in the absence of Cu(II).22,23 Based on all
of these results, it was evident that more stable 16 with an (R)-
HHDP group was converted exclusively to less stable 17 with
an (S)-HHDP group by treatment with a (−)-sparteine/
Cu(II) system under the thermodynamically controlled
conditions. We then examined the effects of (−)-sparteine/
Cu(II) on the equilibrium process between the (R)- and (S)-
3,6-HHDP groups by DFT calculations using the simplified
model (Figure 2). The model was constructed with (S)- and

(R)-HHDP derivatives. The most stable structures of Cu(II)-
(−)-sparteine-HHDP (A) and Cu(II)-(−)-sparteine-(R)-
HHDP (B) are shown, respectively, in Figure 2. Complex A
was found to be more stable than B by 4.1 kcal/mol due to the
lack of unfavorable steric interactions (for the detail, see
Figures S3 and S56). Based on these results, matched
complexation between 17 and Cu(II)/(−)-sparteine was
assumed to be the origin of its higher stability than the
mismatched complexation between 16 and Cu(II)/(−)-spar-
teine.24

In conclusion, the first total syntheses of punicafolin (1) and
macaranganin (2) were achieved in seven steps, respectively,
from D-glucose, an abundant cheap natural source. The
prominent features of the synthesis are sequential site-selective
introduction of the adequate galloyl groups into the requisite
hydroxy groups of D-glucose and stereodivergent construction
of the 3,6-HHDP bridge from a common intermediate via a
flipping process of the pyranose ring to the less stable axial-rich
conformer. Because no protective groups were used for glucose
throughout the process, extremely-short-step total syntheses of

Scheme 3. Influence of the Chirality of Sparteine on the
Interconversion between Atropisomers 16 and 17

Figure 1. Most stable structures of punicafolin (1) and macaranganin
(2) and the relatve stability calculated by DFT at the M06-2X/6-311+
+G(2d,2p)//M06-2X/6-31G(d) level in acetone (PCM).

Figure 2. Most stable structures of Cu(II)-(−)-sparteine-(S)-HHDP
(A) and Cu(II)-(−)-sparteine-(R)-HHDP (B) as models for Cu(II)-
17-(−)-sparteine and Cu(II)-16-(−)-sparteine, respectively, and the
relative stability calculated by DFT at the M06/SDD(Cu)/6-311+
+G(2d,2p)//M06/LanL2DZ(Cu)/6-31G(d,p) level of theory.
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natural glycosides were achieved. Since structural diversity of
ellagitannins stems from regiochemistry of galloyl groups and
the HHDP groups, the present strategy based on site-selective
introduction of galloyl groups would provide a powerful
strategy for total synthesis of a variety of natural and unnatural
ellagitannins of biological interests.
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