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A B S T R A C T   

Muscarinic acetylcholine receptors (mAChRs) comprise five distinct subtypes denoted M1 to M5. The antagonism 
of M2 subtype could increase the release of acetylcholine from vesicles into the synaptic cleft and improve 
postsynaptic functions in the hippocampus via M1 receptor activation, displaying therapeutic potentials for 
Alzheimer’s disease. However, drug development for M2 antagonists is still challenged among different receptor 
subtypes. In this study, by optimizing a scaffold from virtual screening, we synthesized two focused libraries and 
generated up to 50 derivatives. By measuring potency and binding selectivity, we discovered a novel M2 an-
tagonist, ligand 47, featuring submicromolar IC50, high M2/M4 selectivity (~30-fold) and suitable lipophilicity 
(cLogP = 4.55). Further study with these compounds also illustrates the structure–activity relationship of this 
novel scaffold. Our study could not only provide novel lead structure, which was easy to synthesize, but also 
offer valuable information for further development of selective M2 ligands.    

G protein-coupled receptors (GPCRs) constitute the largest family of 
proteins targeted by Food and Drug Administration approved drugs.1 

The muscarinic acetylcholine receptors (mAChRs) belong to α-branch 
of class A GPCRs and they are ubiquitously distributed in human or-
gans, regulating a variety of physiological functions including heart-
beats, smooth muscle contraction, glandular secretion and many fun-
damental functions for central nervous system (CNS).2 mAChRs 
comprise five distinct subtypes denoted M1 to M5. Three of these sub-
types (M1, M3 and M5) are coupled to G proteins of the Gq/11 family, 
while the other two subtypes (M2 and M4) are coupled to G proteins of 
the Gi/o family.3 Currently, drugs targeting mAChRs are generally de-
veloped for the treatment of various diseases, including chronic 

obstructive pulmonary diseases, Alzheimer’s disease, Parkinson’s dis-
ease, overactive bladder syndromes and other diseases like cancer, 
diabetes, cardiovascular diseases, pain and inflammation.3–5 

M1 to M5 subtypes feature different tissue distribution patterns in 
human. For example, M1, M2 and M4 subtypes are the major mAChRs 
subtypes expressed in the brain, where M3 and M5 subtypes are ex-
pressed at significantly lower levels.6 In neurons, the M2 subtype is the 
largely presynaptic receptor associated with axons and inhibits neu-
ronal excitability, which results in the negative feedback of neuro-
transmitter release.7 At synapses, the antagonism of the M2 subtype 
could increase the release of acetylcholine (ACh) from vesicles into the 
synaptic cleft and improve postsynaptic functions in the hippocampus 
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via M1 subtype activation, displaying therapeutical potentials for Alz-
heimer’s disease.4,8–11 

Human M1 to M5 subtypes share 64 to 82% sequence identity and 82 
to 92% sequence similarity in the transmembrane region, but they vary 
significantly at the N-terminal and extracellular regions. Although M2 

receptor is an attractive target for Alzheimer’s disease, it is still chal-
lenging to discover novel subtype-specific ligands. By using allosteric 
strategy, several subtype-selective mAChRs ligands have been success-
fully developed, such as the M1 subtype positive allosteric modulator 
(PAM) benzyl quinolone carboxylic acid (BQCA) , and the M5 receptor 
negative allosteric modulator (NAM) ML375.12,13 Despite significant 
progress through these strategies, the orthosteric site still showed va-
luable potentials for subtype-selective ligands, such as the latest 
achievements on both M2 and M3 subtypes.14–17 

Currently, several antagonists for M2 mAChRs like SCH 72,788,18 

BIBN19,20 and AFDX38415,21,22 have been developed (Fig. 1), but are 
still limited on their M2/M4 selectivity. Other two M2 specific 

antagonists, methoctramine23–25 and tripitramine26–28, with cLogP va-
lues larger than 7, are also limited in their ability to cross the blood–-
brain barrier (BBB) (Fig. 1). Therefore, there is still an urgent need to 
develop novel antagonists for M2 subtype with high selectivity, binding 
affinity, drug potential and suitable lipophilicity (3  <  cLogP  <  5). 

At present, the structures of mAChRs have been determined using X- 
ray crystallography and Cryo-EM, providing new opportunities for the 
discovery of subtype-selective ligands.29–34 Novel selective M2 antago-
nists can be developed based on these structures and the structure–-
activity relationships (SARs). In this study, by optimizing from a non-
selective antagonist with a novel scaffold obtained from virtual screen, 
we performed a two-round optimization and synthesized up to 50 dif-
ferent derivatives. By measuring the binding specificity and drug po-
tential of each compound, we discovered a novel M2 antagonist fea-
turing a high M2/M4 selectivity, suitable lipophilicity as well as the 
drug potentials. Further SARs have also been elucidated with the fo-
cused library developed in this research. 

Fig. 1. The structures of M2 subtype antagonists.  
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By using Glide module in Schrodinger, this study screened 1.5 
million compounds in commercial databases, including SPECS and 
Chemdiv. The first-round screening was ranked by G score and the top 
10,000 compounds were reranked under extra precision mode. Based 
on CHO-K1/M2/Gα15 cell line, Ca2+ mobilization assay was applied 
for the top 184 compounds in the ranking, of which 66 compounds 
were purchased from SPECS and 118 compounds were from Chemdiv. 
Five of them were identified as agonists of M2 receptors, such as AG- 
205–6. However, only AJ-292 (lead compound 1) in SPECS database 

was characterized to be an antagonist at high concentration. Because 
AJ-292 showed a novel scaffold for mAChRs antagonists and had var-
ious sites for further optimization, we took it as the lead and carried out 
the following optimization. 

IC50 is a quantitative measure that indicates how much of a parti-
cular inhibitory substance is needed to inhibit a given biological process 
by 50% and here refers to the potency to antagonize functional re-
sponse to the agonist ACh on mAChRs. In this study, by optimizing the 
lead compound 1, we synthesized up to 50 compounds and measured 
the binding affinity and specificity for each compound. The lead com-
pound features a scaffold comprising a carbazole and a piperidine ring. 
A simple modification on the piperidine ring produced the compound 2, 
which did not show a dramatic IC50 increase when compared to parent 
compound 1 (Fig. 2). In order to discover the novel ligand with higher 
IC50 and a suitable lipophilicity, an initial optimization was performed 
to investigate the role of carbazole for the drug potential, by using 
different two-ring amines as shown in Scheme 1 and Table 1. With this 
optimization, two desired compounds 11 and 17 was discovered. Both 
of these two ligands have a submicromolar IC50 and increased binding 
affinities for M1 to M4 subtypes when compared to the parent com-
pound 1. 

Interestingly, the modification from the carbazole to tetra-
hydroquinoline dramatically improve the IC50 by more than 100 fold, 
as indicated by the IC50 of 1, 11 and 17. On the other side, the opti-
mization using indoline did not yield the higher potential ligands as 
tetrahydroquinoline, as indicated by the comparison between 7, 8, 15, 
18 and 9, 10, 11, 14, 16, 17. Similarly, substitution of tetra-
hydroquinoline with tetrahydronaphthyridine will also lower the scaf-
fold binding affinity to all the four subtypes of mAChRs, as indicated by 
the comparison between 11, 17 and 13, 19 in Table 1. Interestingly, the 
simple substitution of piperidine with pyrrolidine in the scaffold did not 
affect the IC50 significantly as shown in Table 1 by the direct 

Fig. 2. Structure, activities and cLogP of lead compound 1, 2 and 47.  

Scheme 1. Synthetic approach for the ligand optimization to setup the focused 
library 1. i) different amines, DMF (3% K2CO3), 130 °C, 30 min; ii) different 
amines, DMF(3% K2CO3), 130 °C, 30 min. 
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Table 1 

Structure and activity of the focused library 1.

Entry R1 R2 pIC50 M2 pKi M1 pKi M2 pKi M3 pKi M4 cLogP  

1 4.28  ±  0.08  < 4 4.02  ±  0.08  < 4  < 4  5.45 

2 4.73  ±  0.01 4.89  ±  0.05 4.64  ±  0.05 4.66  ±  0.12 4.59  ±  0.06  5.86 

7 < 4  < 4  < 4  < 4  < 4  3.86 

8 < 4 NA  < 4  < 4  < 4  3.35 

9 5.03  ±  0.05  < 4 4.39  ±  0.06  < 4 4.06  ±  0.08  2.57 

10 5.13  ±  0.06 4.55  ±  0.07 5.44  ±  0.07 4.28  ±  0.08 5.05  ±  0.07  3.76 

11 6.36  ±  0.06 5.54  ±  0.06 6.38  ±  0.08 4.96  ±  0.07 5.91  ±  0.07  3.33 

12 5.01  ±  0.05 4.36  ±  0.09 4.31  ±  0.28 4.35  ±  0.10 4.04  ±  0.08  4.49 

13 < 4  < 4 4.39  ±  0.06 4.22  ±  0.07 4.23  ±  0.07  2.29 

14 4.61  ±  0.06 4.75  ±  0.08 4.73  ±  0.07 4.18  ±  0.09 4.67  ±  0.07  3.74 

15 < 4 4.00  ±  0.08 4.67  ±  0.05 4.10  ±  0.08 4.13  ±  0.08  2.79 

16 5.31  ±  0.07 4.35  ±  0.07 5.61  ±  0.05  < 4 5.20  ±  0.05  3.20 

17 6.21  ±  0.06 5.54  ±  0.04 6.41  ±  0.05 5.13  ±  0.07 5.86  ±  0.06  2.68 

18 4.12  ±  0.06  < 4 4.30  ±  0.07 4.02  ±  0.09  < 4  2.59 

19 < 4 4.03  ±  0.10 4.36  ±  0.09 4.07  ±  0.08  < 4  1.73 

Value denoted as Mean  ±  SEM.  
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Scheme 2. Synthetic approach for the ligand opti-
mization to setup the focused library 2. i) 1) DMF, 
1% K2CO3, MW, 140 °C, 30 min; 2) 6 M NaOH, MW, 
120 °C, 30 min; ii) HATU, DIPEA, DMF, MW, 120 °C, 
25 min. 

Table 2 

Structure and activity of the focused library 2.

Entry R1 pIC50 M2 pKi M1 pKi M2 pKi M3 pKi M4 cLogP  

22 5.50  ±  0.06 5.20  ±  0.06 5.49  ±  0.06 5.07  ±  0.07 5.28  ±  0.07  3.86 

23 5.62  ±  0.07 5.94  ±  0.07 5.95  ±  0.09 5.45  ±  0.07 5.95  ±  0.05  4.38 

24 4.66  ±  0.07 4.56  ±  0.05 5.32  ±  0.08 4.26  ±  0.06 4.75  ±  0.07  4.38 

25 4.53  ±  0.07 4.48  ±  0.04 5.21  ±  0.06 4.27  ±  0.06 4.73  ±  0.04  1.87 

26 4.82  ±  0.08 4.63  ±  0.03 4.88  ±  0.07 4.48  ±  0.06 4.77  ±  0.04  1.52 

27 4.97  ±  0.05 4.94  ±  0.04 5.44  ±  0.05 4.50  ±  0.05 5.14  ±  0.04  2.29 

28 6.12  ±  0.07 5.84  ±  0.05 6.21  ±  0.04 5.28  ±  0.05 5.76  ±  0.04  2.29 

29 < 4  < 4 4.19  ±  0.09  < 4  < 4  3.29 

30 6.11  ±  0.07 5.98  ±  0.06 6.24  ±  0.10 5.34  ±  0.05 6.05  ±  0.05  3.00 

31 4.15  ±  0.10 4.29  ±  0.05 4.78  ±  0.06  < 4 4.30  ±  0.03  1.90 

(continued on next page) 
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Table 2 (continued)         

Entry R1 pIC50 M2 pKi M1 pKi M2 pKi M3 pKi M4 cLogP  

32 4.72  ±  0.07 4.85  ±  0.04 5.29  ±  0.06 4.49  ±  0.08 4.93  ±  0.05  2.52 

33 4.76  ±  0.05 4.85  ±  0.03 5.29  ±  0.07 4.36  ±  0.09 4.89  ±  0.03  2.52 

34 4.92  ±  0.05 5.35  ±  0.05 5.77  ±  0.05 4.94  ±  0.08 5.24  ±  0.06  2.23 

35 4.69  ±  0.04 4.76  ±  0.03 5.45  ±  0.06 4.49  ±  0.07 4.80  ±  0.07  3.34 

36 5.82  ±  0.05 6.22  ±  0.07 6.39  ±  0.07 5.54  ±  0.07 6.11  ±  0.06  3.86 

37 6.25  ±  0.05 6.52  ±  0.07 7.05  ±  0.07 6.01  ±  0.07 6.54  ±  0.04  3.86 

38 5.74  ±  0.07 5.98  ±  0.05 6.54  ±  0.07 5.54  ±  0.06 5.80  ±  0.06  2.78 

39 6.27  ±  0.07 6.58  ±  0.06 6.94  ±  0.04 6.11  ±  0.09 6.67  ±  0.06  4.04 

40 6.53  ±  0.06 6.64  ±  0.05 7.26  ±  0.04 5.76  ±  0.05 6.80  ±  0.04  4.11 

41 6.50  ±  0.06 6.61  ±  0.05 7.01  ±  0.05 5.59  ±  0.06 6.59  ±  0.04  3.55 

42 6.40  ±  0.05 5.95  ±  0.06 5.46  ±  0.08  < 4 4.23  ±  0.77  3.28 

43 5.85  ±  0.06 5.25  ±  0.04 5.48  ±  0.05 4.97  ±  0.07 4.97  ±  0.06  5.01 

44 6.47  ±  0.07 5.03  ±  0.03 6.04  ±  0.05 4.58  ±  0.14 5.39  ±  0.10  5.22 

45 5.18  ±  0.05 4.85  ±  0.05 5.14  ±  0.06 4.53  ±  0.08 4.85  ±  0.06  2.56 

(continued on next page) 
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comparison between 8, 10, 11, 13 and 15, 16, 17, 19. For this initial 
optimization, we discovered two novel ligands (11 and 17) featuring a 
100-fold higher IC50 compared to the lead compound 1. The result of 
the IC50 in Table 1 also indicates the substitution of carbazole with 
tetrahydroquinoline will dramatically improve the IC50 of the scaffold. 

In order to discover the novel ligands with higher M2 drug potential, 
binding affinity and specificity, further optimization with 11 was also 
performed using the synthetic approach shown in Scheme 2. In this 
optimization, we took the linker length of ACh into accounts and 
elongated the linker between the tetrahydroquinoline and the amine 
from 2-carbon to 3-carbon. Furthermore, we also employed a variety of 
amines for the construction of a novel focused library as shown in  
Table 2. By analyzing the M2 IC50 of the compounds in this focused 
library, we discovered several novel ligands featuring the sub-
micromolar binding IC50, like 28, 30, 37, 39, 40, 41, 42, 44, 46, 47 
and 50 as shown in Table 2. Direct comparison between data in Table 1 
and Table 2 indicates the 3-carbon linker between the tetra-
hydroquinoline group and the amine groups has an equivalent drug 
potential and binding affinities for M1 to M4 when compared with the 
two-carbon linker, as indicated by ligands of 17 and 38. In sum, the 
second-round optimization of the scaffold in Table 2 offers a variety of 
novel M2 subtype ligands with an overall increased mAChRs binding 
affinity and M2 IC50 when compared to the ligands in Table 1. 

Since the ligands showed antagonism toward M2 mAChR, they 
could be antagonists or NAMs. For NAMs, they could shift ACh titration 
curve to the right in radioligand binding assay; while it would not 

happen for antagonists. By using ACh titration in absence/presence of 
100 μM 8, 15 and 47, it was identified that these ligands were an-
tagonists, rather than NAMs (data not shown). In order to elucidate the 
binding specificity for each ligand, the binding affinities to each sub-
type (M1 to M4) in Table 1 and Table 2 were also analyzed. The M5 
mAChR-expressing cell line was provided by our vender GenScript and 
it exhibited quite low expression level, which made us difficult to 
characterize. 

The inhibition constant, Ki, is reflective of the binding affinity and 
could be determined with radioligand competition binding assays. In 
the assay, both ACh and atropine were taken as positive controls for 
competitive binding and showed pKi as follows: M1: 4.3 (ACh) and 9.5 
(atropine), M2: 5.6 (ACh) and 8.5 (atropine), M3: 4.5 (ACh) and 9.0 
(atropine), M4: 4.9 (ACh) and 9.0 (atropine). As shown in Fig. 3, by 
directly comparing the pKi values for M2 with the other three mAChR 
subtypes, we can directly determine the binding specificity for each 
compound. In detail, the binding specificity for M2 over M1, M3 and M4 

was determined individually for each compound using the pKi values 
calculated. By comparing M2 and M1 binding affinity, we noticed li-
gands 9, 10, 16, 17, 44 and 47 demonstrate a significant higher (~8- 
fold) binding affinity for M2 over M1, as shown in Fig. 3A. While for M2 

over M3 selectivity, ligands 16, 42 and 47 demonstrate more than 50- 
fold higher binding specificity, as shown in Fig. 3B. For M2 over M4 

selectivity, only ligands 42 and 47 demonstrates more than 16-fold 
higher binding selectivity as shown in Fig. 3C. The binding curve in  
Fig. 4A and Fig. 4C clearly demonstrate ligand 47 binds specificity to 

Table 2 (continued)         

Entry R1 pIC50 M2 pKi M1 pKi M2 pKi M3 pKi M4 cLogP  

46 6.37  ±  0.06 5.30  ±  0.06 5.64  ±  0.09  < 4 4.92  ±  0.09  4.71 

47 6.32  ±  0.07 5.31  ±  0.05 6.21  ±  0.08  < 4 4.74  ±  0.10  4.55 

48 5.95  ±  0.07 5.58  ±  0.04 5.91  ±  0.05 4.92  ±  0.07 5.36  ±  0.05  3.18 

49 5.99  ±  0.06 6.19  ±  0.05 6.19  ±  0.04 5.14  ±  0.05 5.67  ±  0.05  3.65 

50 6.01  ±  0.07 5.12  ±  0.05 5.48  ±  0.05 4.59  ±  0.09 5.06  ±  0.06  2.56 

51 5.86  ±  0.07 5.69  ±  0.04 5.72  ±  0.07 4.89  ±  0.11 5.19  ±  0.04  4.15 

Value denoted as Mean  ±  SEM.  
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Fig. 3. The binding affinity comparison among different mAChRs. (A) The binding affinity comparison between M2 and M1 subtypes for all the ligands; (B) The 
binding affinity comparison between M2 and M3 subtypes for all the ligands; (C) The binding affinity comparison between M2 and M4 subtypes for all the ligands. 
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M2 when compared to the other subtypes of mAChRs. To the contrary, 
the lead compound 1 did not show a specific binding profile as com-
pound 47, as shown in Fig. 4A, 4B, and 4C. In summary, the novel 
ligand 47 features an 8-fold higher binding affinity than M1, more than 
250-fold higher binding affinity than M3 and ~30-fold higher than M4, 
demonstrating a significant selectivity for M2 subtype as shown in Fig. 3 
and Fig. 4. 

The cLogP measurement using ChemDraw (Perkin Elmer, USA) was 
also performed to evaluate the lipophilicity for each compound. The 
result indicates the lead compound 1 has a higher lipophilicity 
(cLogP = 5.45) when compared with most of the compounds in Table 1 
and Table 2, with a cLogP in a range of 1.5 to 5.5. The desired com-
pound 47 also has a lipophilicity with cLogP equals 4.55, which is in a 
suitable range of 3 to 5. 

The quantitative structure–activity relationships (QSAR) model was 
generated based on best conformations and common substructure 
alignment. The retrieved conformations of all the molecules from 
LigPrep module were superimposed using the common scaffold align-
ment approach of Schrödinger Suite (Fig. 5A). The training set of 30 
molecules was randomly selected to build the model. The best model 
(PLS factor = 3) offered a good predictive power. The leave-one-out 

(LOO) method of cross-validation was adopted for assessment of the 
predictive abilities of the models. The R2 for the regression was 0.7913 
and the stability was 0.7210. The p value (5.34 e −-9) also suggested a 
greater degree of confidence. Since external test was the gold standard 
for QSAR model validation, the reliability of the model was tested by 
external test set of 20 compounds. According to the recommended rules 
for robust model,35 the RMSE (0.58), Q2 (0.6121) and Pearson’s r 
(0.8048) of the model all further confirmed its robustness. Correlation 
between the experimental and predicted activities for the data set is 
displayed in Fig. 5B. 

The five conventional Gaussian fields, which contained Gaussian 
steric, electrostatic, hydrophobic, H-bond acceptor and H-bond donor 
field, illustrated that the substituents on far-end aromatic ring and near- 
end aromatic ring were crucial for the activity. To depict the field-based 
QSAR model in detail, the compound 47 was placed in the field contour 
maps as reference ligand. 

From the steric and electrostatic contour map (Fig. 6A), we could 
observe that one kidney-like region exists at the center of near-end 
aromatic ring as illustrated with green contour parts. Thus, the in-
troduction of a bulky moiety on amide carbonyl group would improve 
the inhibitory activity, as was shown on the compound 34 

Fig. 4. Comparison between lead compound 1 and novel M2 antagonist 47 on their mAChRs subtype selectivity. (A) mAChRs selectivity for compound 1; (B) mAChRs 
selectivity for compound 47; (C) Binding selectivity comparison between 1 and 47. 

Fig. 5. The evaluation of QSAR performance (A) Scaffold alignment for all the ligands; (B) Experimental vs predicted biological activities.  
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(pIC50 = 4.92) and the compound 40 (pIC50 = 6.53). Besides, the size 
of the substitution was not strictly limited. Although the dual aromatic 
ring was rigid and larger, the activity was not significantly decreased, 
which could be observed on the compound 40 (pIC50 = 6.53) and the 
compound 44 (pIC50 = 6.47). 

From the electrostatic field contour map (Fig. 6A), we noticed that 
electropositive group, with blue contour part, at the near-end aromatic 
ring might contribute to the activity. The red contour at far-end ni-
trogen indicated that introducing electronegative group or electron 
donating group substitution on this aromatic ring would potentially 
improve the activity. For example, the compound 9 (pIC50 = 5.03) 
bearing with hydroxyl group substitution could be more active than 
that of compound 18 with fluoro-substitution (pIC50 = 4.12). 

The hydrophobicity contour map, presented in Fig. 6B, is consistent 
with the hydrophobicity of the aromatic lid of M2 receptor, which 
clearly demonstrated that the amide-aromatic ring area and the far-end 
aromatic area were in the solvent-inaccessible hydrophobic pocket. The 
yellow contour (Fig. 6B) around these two positions was recognized as a 
preference for the hydrophobic group as described in the interaction 
mode from docking. The introduction of the hydrophilic moiety at ei-
ther region could result in decreased activity. This trend could be seen 
from the compound 11 (pIC50 = 6.36) VS 13 (pIC50 = 3.19) and 25 
(pIC50 = 4.53), respectively. 

The red contour maps at the amide carbonyl group showed the 
importance of oxygen atom as H-bond acceptor. The magenta contour 
maps around linker suggested that H-bond acceptors were disfavored at 
these places (Fig. 6C). The purple contour in Fig. 6D suggested that H- 
bond donor groups would be beneficial to the amide nitrogen. For ex-
ample, the H-bond was observed between amide nitrogen and hydroxyl 
group of Tyr104 side chain, which was vital for the combination of the 
ligands with M2 receptor. Besides, the cyan contour maps around the 
compound showed that H-bond donors were disfavored, which could be 
accordant with the hydrophobic maps. Therefore, field contribution of 
the defined features in the final model revealed that H-bond donor field 
was the fundamental for the activity and steric field, hydrophobic field 

contributed the most to the activity regulation. 
Compounds 47 was docked to the orthosteric binding site of the 

human M2 receptor X-ray structure in the inactive state in complex with 
quinuclidinyl benzylate (QNB) (PDB ID: 3UON). The molecular docking 
was performed with the standard precision (SP) approach of Glide in 
Schrödinger Suite with default settings using the grid based on the 
cocrystallized ligand, QNB. The selected binding pose and interaction 
diagram of compound 47 are shown in Fig. 7. The main contact of 
compound 47 with the human muscarinic M2 receptor is a hydrogen 
bond interaction between the amide nitrogen of the ligand and the 
conserved Tyr104 (3.33) (Ballesteros–Weinstein nomenclature) from 
the third transmembrane helix, as is typical for orthosteric ligands of 
aminergic GPCRs. Moreover, there is pi-pi stacking interaction between 
the far-end aromatic ring of the core amide group and the side chain of 
Tyr104. In our model, there was no strong interaction with the known 
key residues (Asp103 and Asn404) for other ligands, e.g. AFDX 384, 
which indicated that these ligands could bind to a partially different 
orthosteric site. That could be why the affinity of our ligands were 
much lower than AFDX 384 and it was confirmed that compound 47 
had a different pose from AFDX 384, when comparing the docking 
model with the crystal structure of M2-AFDX 384 complex (PDB ID: 
5ZKB).15 

Because Phe181 was the specific residue, which was only located 
around the orthosteric site of M2 subtype, we considered that Phe181 
should play important roles in the selectivity of compound 47. The 
aromatic ring at the near-end of the amide group is surrounded by the 
famous aromatic lid, including Tyr403, Phe181 and Tyr177 (Fig. 7A 
and 7B). The aromatic lid could change the binding kinetics for both 
association and dissociation, which was also accordant with the faster 
kinetics of M2 subtype in radioligand binding assay. Comparing to the 
interactions of non-selective QNB and tiotropium,29,33,36 interactions 
with aromatic lid in M2 receptor could allow the accommodation of 
bulkier ligand and the bulkier moiety could contribute to the se-
lectivity, which has been confirmed in another new M2-selective an-
tagonist with crystal structures.15 

Fig. 6. Field-based QSAR models for the ligands (A) Gaussian steric field: Green (+) and Gaussian electrostatic field: Blue (+), Red (−); (B) Gaussian hydrophobic 
field: Yellow (+), White (−); (C) Gaussian hbond acceptor field: Red (+), Magenta (−); (D) Gaussian hbond donor field: Purple (+), Cyan (−). (For interpretation 
of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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In conclusion, by using virtual screening, we discovered a novel lead 
compound featuring a specific binding and potential to mAChRs. The 
following optimization based on this scaffold yielded a class of novel 
ligands featuring submicromolar IC50 for M2 subtype. Among these, 
ligand 47 exhibits a specific M2 binding selectivity and high drug po-
tential (IC50). Furthermore, the binding affinity, potential and QSAR 
obtained from this study will also give the valuable information in 
further development of M2 subtype ligands. 
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