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Total synthesis of antimalarial diterpenoid (+)-kalihinol A,

isolated from marine sponge Acanthella sp., is achieved. This

total synthesis involves regioselective alkylation of an epoxide,

construction of a tetrahydropyran ring by iodo-etherification,

construction of a cis-decalin ring by intramolecular Diels–Alder

reaction, isomerization of cis-decalin to trans-decalin, and

subsequent functionalization of the trans-decalin ring.

Various terpene isocyanides have been isolated from marine

invertebrates and many of these are of considerable interest from

the standpoint of their respective biological activities.1 Kalihinol

A (1), isolated from the marine sponge Acanthella sp. by Scheuer

and co-workers in 1984, is a richly functional diterpenoid

possessing isocyano, hydroxy, tetrahydropyranyl and chlorine

moieties. The relative configuration of kalihinol A (1) was

demonstrated by X-ray analysis.2 The absolute configuration of

1 was determined using CD exciton chirality methods by the

authors.3 Since kalihinol A was first isolated, more than forty

different kalihinane-type diterpenoids, possessing isocyano,

isothiocyano and/or formamido moieties, have been isolated and

identified frommarine sponges.4a–4iKalihinane-type diterpenoids

have demonstrated extensive biological activities including anti-

microbial,2,4a,4b,4i antifungal,2,4a,4b,4d cytotoxic,4d anthelmintic4c

and antifouling4e–4g activities. Kalihinol A is particularly noted

for its antimalarial activity against Plasmodium falciparum

(EC50 1.2 � 10�9 M) and possesses a remarkable selective index

(SI 317), defined as the ratio of FM3A cell cytotoxicity to

P. falciparum.4h The total syntheses of two kalihinane-type diter-

penoids were reported. The authors reported the total synthesis of

(+)-kalihinene X possessing a cis-decalin ring system.5 Wood and

co-workers reported the synthesis of (�)-kalihinol C possessing a

tetrahydrofuranyl ring.6 The authors achieved the first total

synthesis of (+)-kalihinol A by construction of a tetrahydropyran

ring via iodo-etherification and a cis-decalin ring via an intra-

molecular Diels–Alder cycloaddition reaction as key steps.

Our synthetic strategy is presented in Scheme 1. (+)-Kalihinol

A is synthesized from trans-decalin A by transduction of methyl

and isocyano groups at C-10 and transformation of the azido

group at C-5 to an isocyano group. trans-Decalin A is obtained

by diastereoselective introduction of hydroxy and azido groups

and isomerization of cis-decalin B to trans-decalin. cis-Decalin B

may likely be formed by intramolecular Diels–Alder reaction of

triene C, which would be obtained from tetrahydropyran D by

the construction of diene and dienophile. Tetrahydropyran D is

obtained from compound E by introduction of a chlorine atom

with the inversion of stereochemistry at C-14 and formation of

the tetrahydropyran ring using iodo-etherification. Compound E

is obtained by regioselective alkylation of epoxyalcohol G using

Grignard reagent F.

cis-Decalin 10 was synthesized from (E,R)-3,7-dimethylocta-

2,7-diene-1,6-diol (2)7 (97% ee) (Scheme 2). The primary

hydroxy group in diol 2 was protected as a TBS ether and

the secondary hydroxy group was protected as a TBDPS ether.

Selective deprotection of the TBS group by treatment with PPTS

in MeOH afforded the allylic alcohol in 83% yield (3 steps).

Scheme 1 Synthetic strategy for kalihinol A.
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Sharpless asymmetric epoxidation of the aforementioned allylic

alcohol afforded epoxyalcohol 3 in 95% yield (87% de).

Regioselective nucleophilic alkylation of epoxyalcohol 3 with

Grignard reagent 48 in the presence of CuI afforded diol 5 in

94% yield as a sole product. The two hydroxy groups in 5 were

acetylated with Ac2O and DMAP in pyridine to give the

diacetate in 82% yield. The TBDPS group was deprotected by

treatment with TBAF in the presence of AcOH to afford the

allylic alcohol in 95% yield. The allylic alcohol was treated with

CCl3COCCl3 and Ph3P to give allylic chloride 6 in 90% yield

with concomitant inversion of the stereochemical configuration

at C-14.9 Although the allylic alcohol was converted into allylic

chloride 6 by treatment with Ph3P in CCl4 under reflux, the

reproducibility of the reaction was invariably poor. The two

acetyl groups in 6 were removed with DIBAH to give the diol,

the primary hydroxy group of which was protected to give the

mono pivalate in 78% yield (2 steps). Intramolecular iodo-

etherification of the mono pivalate was achieved by treatment

with iodonium di-sym-collidine perchlorate (IDCP)10 to give

iodotetrahydropyran, which was dehalogenated by Bu3SnH and

Et3B to afford tetrahydropyran 7 in 72% yield (2 steps).

Although tetrahydropyran 7was also obtained by intramolecular

alkoxymercuration (1. Hg(OAc)2, THF–H2O, 2. NaBH4,

MeOH–KOH aq.), the chemical yield was low (41% yield).

The Bn group in tetrahydropyran 5 was removed by hydro-

genolysis to give the primary alcohol in 99% yield, oxidized

using Dess–Martin periodinane11 to give the aldehyde in 98%

yield, vinylated using vinyl magnesium bromide to the secondary

alcohol as a diastereomeric mixture (1 : 1) in 99% yield,

and subsequent protection of the hydroxy group using TBSCl

to give TBS ether 8 in 99% yield. The pivaloyl group in 8 was

removed using DIBAH to give the primary alcohol in 97% yield,

oxidized using Dess–Martin periodinane to give the aldehyde,

and subsequently treated with CH2QC(CH3)CH2P(O)Ph2 with

BuLi in the presence of HMPA to afford triene 9 in 78% yield

(2 steps).12 Deprotection of the TBS group in triene 9 gave the

allylic alcohol in 96% yield, which was then oxidized with

Dess–Martin periodinane to facilitate, via endo-selective intra-

molecular Diels–Alder reaction, in the spontaneous formation

of cis-decalin 10 as a sole product in 99% yield.13

Epoxidation of ketone 10 using mCPBA in the presence of

Na2HPO4 generated a mixture of desired a-epoxide 11a and its

diastereomer b-epoxide 11b (11a : 11b = 1 : 3) in 95% yield

(Fig. 1). Furthermore, when other epoxidation reagents

(magnesium monoperoxyphthalate, DMDO) were used, the

desired a-epoxide 11a was obtained as a minor product. The

relative configuration of a-epoxide in 11a was confirmed by

X-ray crystallographic analysis. In an effort to obtain a-epoxide
as a major product, the oxygenated functional group at C-10 in

10 was used.

Ketone 10 was reduced with NaBH4 to afford the b-alcohol
as a major product in 95% yield (b-OH : a-OH = 5 : 1)

(Scheme 3). The hydroxy group in the b-alcohol was protected
as a TBS ether in quantitative yield. Epoxidation of the TBS

ether was achieved using mCPBA in the presence of Na2HPO4

to give the desired a-epoxide 12 as a sole product in 99% yield.

Deprotection of the TBS group in a-epoxide 12 was achieved

by treatment with TBAF to afford the secondary alcohol in

93% yield, which was then oxidized using 2-iodoxybenzoic

acid (IBX) in THF–DMSO to give the ketone in 95% yield.14

The ketone was treated with NaN3 in the presence of NH4Cl

to give trans-decalin 13 and cis-decalin 14 (13 : 14 = 2 : 1) in

95% yield. Following separation of these compounds, cis-decalin

14was treated with tBuOK in EtOH to afford a mixture of trans-

decalin 13 and cis-decalin 14 (13 : 14 = 3:2) in 99% yield.

trans-Decalin 13 was treated with 2-(methylsulfonyl)benzo-

thiazole15 and LiHMDS to give exo-olefine 15 in 88% yield

(Scheme 4). When using the Wittig reagent (Ph3P
+CH3I

� and

BuLi), exo-olefine 15 (24% yield) and the epoxide (24% yield)

were obtained, and trans-decalin 13 (22%) was recovered.

Scheme 2 Reagents and conditions: (a) TBSCl; (b) TBDPSCl; (c) PPTS,

83% (3 steps); (d) D-(�)-DET, TBHP, Ti(OiPr)4, 95%; (e) 4, CuI, 94%;

(f) Ac2O, DMAP, Py, 82%; (g) TBAF, 95%; (h) CCl3COCCl3, PPh3,

90%; (i) DIBAH; (j) PivCl, Py, 78% (2 steps); (k) IDCP; (l) Bu3SnH,

Et3B, 72% (2 steps); (m) H2, Pd/C, 99%; (n) Dess–Martin periodinane,

98%; (o) CH2QCHMgBr, 99%; (p) TBSCl, 99%; (q) DIBAH, 97%;

(r) Dess–Martin periodinane; (s) CH2QC(CH3)CH2P(O)Ph2, BuLi,

78% (2 steps); (t) TBAF, 96%; (u) Dess–Martin periodinane, 99%.

Fig. 1 Epoxidation of cis-decalin 10 andORTEP drawing of epoxide 11a.
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Diastereoselective aziridination of exo-olefine 15 using PhIQNTs

and Cu(OTf)2 resulted in the formation of desired aziridine 16 as

a sole product in 46% yield.16 The relative configuration of

aziridine 16 was confirmed by X-ray crystallographic analysis.

Azide 16 was reduced with NaBH4 in the presence of NiCl2�
6H2O

17 to give the amine (84% yield), which was then treated

with LiBHEt3 to afford tosylamide 17 in 83% yield. Deprotection

of the tosyl group with lithium naphthalenide18 in 17 afforded the

diamine, which upon formylation with acetic formic anhydride

and subsequent dehydration with TsCl and pyridine19 gave

(+)-kalihinol A (1) in 74% yield (3 steps). The spectral data

and sign of the optical rotation of synthetic (+)-kalihinol A,

[a]D
25 +12.4 (c 0.64, CHCl3), were identical with those of natural

kalihinol A, [a]D +16.0 (c 1.0, CHCl3).
2 Hence, the first total

synthesis of (+)-kalihinol A was achieved.
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