ORGANOMETALLICS

Zirconium and Hafnium Hydrazinediido Half-Sandwich Complexes: Synthesis and Reactivity

Peter D. Schweizer, Hubert Wadepohl, and Lutz H. Gade*

Anorganisch-Chemisches Institut, Universität Heidelberg, Im Neuenheimer Feld 270, 69120 Heidelberg, Germany

Supporting Information

ABSTRACT: The hydrazinediido complexes $[Cp^*M(N_{xyl}N)-(NNPh_2)(dmap)]$ (M = Zr, **3a**; M = Hf, **3b**; $N_{xyl}N = 2-(N-xylylamino)pyrrolinate)$ have been synthesized, and their reactivity has been investigated. Both complexes were prepared from $[Cp^*M(N_{xyl}N)Cl_2]$ (**1a**,**b**) and $[Cp^*M(N_{xyl}N)-(NHNPh_2)Cl]$ (**2a**,**b**), respectively, as precursors. While **3a** was obtained by dehydrohalogenation of **2a** using LiHMDS in the presence of dmap, reaction of **2b** with LiHMDS initially afforded a mixture of $[Cp^*Hf(N_{xyl}N)(NHNPh_2)_2]$ (**6**) and $[Cp^*Hf(N_{xyl}N)(NNPh_2)LiHMDS]$ (**4**), which was thermolyzed subsequently in the presence of dmap to yield **3b**. $[Cp^*Zr(N_{xyl}N)(NNPh_2)(dmap)]$ (**3a**) reacted with diisopropylcarbodiimide, giving the rearranged [2 + 2] cycloaddition product $[Cp^*Tr(N_{xyl}N)(NNPh_2)M(N)$ (NDH) (

product $[Cp^*Zr(N_{Xyl}N)\{\kappa^2-N'PrC(NNPh_2)N'Pr\}]$ (7) and the six-membered zirconacycle $[Cp^*Zr(N_{Xyl}N)\{\kappa^2-N(NPh_2)C-(N'Pr)N'Pr]$ (8a). With *N*-phenylbenzimine the cycloaddition product $[Cp^*Zr(N_{Xyl}N)\{\kappa^2-N(NPh_2)C+PhNPh\}]$ (9) was isolated, and upon reaction with diphenylacetylene the seven-membered zirconacycle $[Cp^*Zr(N_{Xyl}N)\{\kappa^2-N(Ph_2)C+PhNPh\}]$ (9) was obtained. Reaction of the previously synthesized compound $[Zr(N_2^{TBS}N_{py})(NNPh_2)-Py]$ (11) with PNCN'Pr and with PhCH=NPh gave the four-membered zirconacycles $[Zr(N_2^{TBS}N_{py})\{\kappa^2-N(NPh_2)C(N'Pr)-N'Pr\}]$ (12) and $[Zr(N_2^{TBS}N_{py})\{\kappa^2-N(NPh_2)C+PhNPh\}]$ (13), respectively.

■ INTRODUCTION

Since the first report of a titanium hydrazinediido complex in 1978,¹ a great variety of such compounds featuring different types of ancillary ligands have been reported,^{2–13} and their reactivity has been studied in some detail in recent years.^{6–15} Stoichiometric reactions with alkynes,^{4,5,7,8,12} allenes,¹⁴ and heteroallenes, such as isocyanates,^{3,10,11,14} isothiocyanates,^{10,11,14} carbon dioxide,^{3,9,11} carbodiimides,¹⁶ and carbon disulfide,¹¹ resulted in formal [2 + 2] cycloadditions. In some cases this initial reaction step was followed by Ti–X insertion,^{10,17} or insertion into the N–N bond of the hydrazinediido unit, depending on the ancillary ligand. Complexes of this type have been employed as catalysts in the hydrohydrazination of alkynes^{7,12,18} and carbodiimides¹⁶ and related three-component coupling reactions.¹⁹

and related three-component coupling reactions.¹⁹ However, zirconium^{20–25} and hafnium²¹ hydrazinediido complexes remain relatively scarce, despite the interesting and diverse reactive behavior found for some of them.^{26–31} For stoichiometric reactions with disubstituted alkynes, formation of seven-membered zirconacycles via N–N-bond scission was observed,²⁰ which provided the basis for a new catalytic indole synthesis.^{23,24,32} This illustrates why further investigation into the chemistry of the heavier group 4 metals is desirable. To this end and in order to investigate the dependence of stoichiometric reactivity on both the ancillary ligand and metal, we have prepared new half-sandwich zirconium and hafnium complexes containing 2-(N-xylylamino)pyrrolinate ($N_{xyl}N$) as a spectator ligand.³³ A first account of their synthesis and reactivity is given in this work.

RESULTS AND DISCUSSION

Preparation and Structural Characterization of $[Cp*M(N_{xyl}N)(NNPh_2)(dmap)]$ (M = Zr, 3a; M = Hf, 3b). The dichlorido complexes $[Cp*M(NxylN)Cl_2]$ (M = Zr, 1a; M = Hf, 1b) were prepared from $Cp*MCl_3$ by a modified procedure based on work by Sita and co-workers.³⁴ $Cp*MCl_3$ was reacted with MeLi in order to generate a monomethyl complex in situ, which was then reacted with the protio ligand $HN_{xyl}N$, giving 1a,b in 89% and 93% yields, respectively (Scheme 1).

Addition of LiNHNPh₂ then resulted in the formation of the monohydrazido(1–) complexes [Cp*M(N_{xyl}N)(NHNPh₂)Cl] (**2a,b**). As compound **2a** was thermally unstable, it was directly reacted in situ with LiHMDS in the presence of dmap.^{21,22,35} The corresponding hydrazinediido complex [Cp*Zr(N_{xyl}N)-(NNPh₂)dmap] (**3a**) was obtained in 84% yield as a yellow-ocher powder. ¹H, ¹³C, and ¹⁵N NMR spectra indicated a mixture of two isomers in a ratio of 2:1; in particular, the ¹⁵N NMR spectrum displayed two signals in the characteristic

Received:January 24, 2014Published:March 18, 2014

Scheme 1. Synthesis of the Hydrazinediido Complexes 3a,b

region for $ZrNNR_2$ (286 and 281 ppm). The ¹H NOESY NMR spectrum revealed cross relaxation between *o*-dmap and *o*-xylyl protons for the minor isomer but not for the major isomer. The isomers could thus be assigned to the diastereomers shown in Figure 1.

Figure 1. Diastereomers of 3a (M = Zr) and 3b (M = Hf).

However, this procedure was not successful for the preparative conversion of the Hf complex 2b to the corresponding hydrazinediide. When 2b was reacted with LiHMDS without addition of dmap, a mixture of the hafnium {LiHMDS} hydrazinediido complex 4 and hafnium bis-(hydrazido) complex 6 was obtained. The mixture of 4 and 6 was then heated to 60 °C for 3 h in the presence of dmap, which yielded the hafnium hydrazinediido complex 3b as a mixture of the two diastereomers depicted in Figure 1 in a ratio of 3:1. While thermal treatment of 6 in the presence of dmap

and LiHMDS also resulted in the formation of **3b**, no reaction was observed upon heating **6** in the presence of dmap without LiHMDS. Compound **6** could also be isolated by employing a different route via the bis(dimethylamido) complex **5**, which was obtained by reacting **1b** with 2 equiv of LiNMe₂ and was then treated with 2 equiv of diphenylhydrazine.

Single crystals suitable for X-ray diffraction were obtained for hydrazinediides **3a,b**. Their crystal and molecular structures are very similar (Table 1). There are two independent molecules in the asymmetric unit which both correspond to the main diastereomer (Figure 1), with only a minor difference in the orientation of one of the phenyl groups (Figure 2).

Both M(1)–N(3) and N(3)–N(4) bond lengths (mean values for 3a, Zr(1)–N(3) 1.875 Å and N(3)–N(4) 1.379 Å, mean values for 3b, Hf(1)–N(3) 1.856 Å and N(3)–N(4) 1.389 Å, respectively) are in good agreement with those of previously reported zirconium hydrazinediido complexes, as is the slight deviation from linearity for the M(1)–N(3)–N(4) units (mean values Zr(1)–N(3)–N(4) 171.7° and Hf(1)–N(3)–N(4) 171.3°, respectively).^{21–25,32} In both cases, the 2-(*N*-xylylamino)pyrrolinato ligand is bound in a κ^2 mode similarly to the analogous titanium complex, while the Zr(1)–N(1)/N(2) distances (2.272 and 2.270 Å) are—as expected—longer than those for comparable titanium complexes (mean values 2.273 and 2.265 Å).⁷

Preparation and Structural Characterization of [Cp*Hf(N_{xvl}N)(NNPh₂){N(SiMe₃)₂}Li] (4). As mentioned

	Zr	Hf		Zr	Hf
M(1) - N(1)	2.3019(9) [2.3092(9)]	2.272(3) [2.273(3)]	M(1) - N(5)	2.3361(9) [2.3364(9)]	2.303(3) [2.306(3)]
M(1) - N(2)	2.3012(10) [2.2856(10)]	2.270(3) [2.260(3)]	N(1)-C(4)	1.327(2) [1.330(2)]	1.327(5) [1.322(5)]
M(1) - N(3)	1.8745(9) [1.8746(10)]	1.860(3) [1.852(3)]	N(2)-C(4)	1.323(2) [1.322(1)]	1.318(4) [1.320(4)]
N(3)-N(4)	1.380(1) [1.378(1)]	1.385(4) [1.393(4)]			
M(1)-N(3)-N(4)	171.67(8) [171.75(8)]	171.0(2) [171.6(2)]	N(1)-C(4)-N(2)	114.9(1) [115.7(1)]	114.3(3) [114.9(3)]
N(1)-M(1)-N(2)	58.06(4) [58.50(3)]	58.6(1) [58.9(1)]			
d					

Table 1. Selected Bond	Lengths (A) and Angles	(deg) for 3a (M = Zr) and	d 3b (M = Hf)"
------------------------	------------	--------------	----------------	-------------	----------------

^{*a*}Values in brackets refer to the second molecule.

Figure 2. Molecular structure of 3a. Only one of the two independent molecules is shown. Hydrogen atoms are omitted for clarity, and ellipsoids are drawn at the 50% probability level. For selected bond lengths (Å) and angles (deg) for 3a,b, see Table 1.

above, reaction of **2b** with 1 equiv of LiHMDS afforded a mixture of bis(hydrazido) complex **6** and $[Cp*Hf(N_{xyl}N)-(NNPh_2){N(SiMe_3)_2}Li]$ (4). Compound **4** could also be obtained selectively by reacting **2b** with 2 equiv of LiHMDS.

The ¹⁵N NMR spectrum displays a resonance at 263 ppm, which could be assigned unambiguously to the metal-bonded N_{α} atom by ¹⁵N labeling, and a second resonance assigned to the hydrazinediido unit at 147 ppm for N_{β} . The chemical shift values for ¹⁵N hydrazide resonances lie between the respective shifts for hafnium hydrazinediido complex 3b (280 and 172 ppm) and those observed for the hydrazides(1-) 2b (211 and 91 ppm) and 6 (206 and 119 ppm). This may indicate that the electronic structure is intermediate between that of a hydrazinediido(2-) and hydrazido(1-) complex. For the N_{α} signal of 4 significant line broadening was observed in comparison to that of 6 under the same conditions ($\Delta \nu_{1/2}$ = 14.7 Hz for 4 vs 1.5 Hz for 6), indicating a Li-N bonding interaction and thus unresolved coupling of ¹⁵N to ⁷Li (I = 3/2)and ⁶Li (I = 1). For ¹⁵N_{α}-labeled 4, splitting of the Li signal was observed in both the ⁷Li and ⁶Li NMR spectra (Figure 3).

The coupling constants were determined to be ${}^{1}J({}^{15}N,{}^{7}Li) = 5.1(2)$ Hz and ${}^{1}J({}^{15}N,{}^{6}Li) = 2.0(1)$ Hz. We note that the ${}^{1}J({}^{15}N,{}^{7}Li)$ value is somewhat smaller than coupling constants previously reported for lithium amido compounds (8.1–13.1 Hz).³⁶ The ${}^{1}J({}^{15}N,{}^{6}Li)$ coupling constant lies in the typical range for lithium amide compounds (1.6–6.6 Hz).³⁷ In order to determine whether 4 existed in solution as a monomeric or an oligomeric species, a ${}^{1}H$ DOSY NMR experiment was carried out for a mixture of 4 and 6. The ratio D(4)/D(6) = 1.1

Figure 3. (left) ⁷Li NMR spectrum for non-isotope-labeled (bottom) and ¹⁵N-labeled 4 at room temperature (middle) and 50 $^{\circ}$ C (top). (right) ⁶Li NMR spectrum for ¹⁵N-labeled 4 at room temperature.

Organometallics

for the diffusion constants was found, which is consistent with 4 being a monomeric species.

Single crystals of complex 4 suitable for X-ray diffraction were obtained from a concentrated hexane solution at -40 °C. In the molecular structure the Li atom is bound to the NCNxyl, $N_{\alpha\nu}$ and N_{β} atoms, while the aminopyrrolinato ligand is coordinated in a κ^1 mode to Hf via the NCNxyl atom (Figure 4). The Hf– N_{α} distance (1.878 Å) lies between those found for

Figure 4. Molecular structure of 4. Hydrogen atoms are omitted for clarity, and ellipsoids are drawn at the 50% probability level. Minor conformational disorder in the C_5N ring is not shown. Selected bond lengths (Å) and angles (deg): Hf–N(1) 2.204(1), Hf–N(3) 1.878(1), N(3)–N(4) 1.412(1), N(2)–Li 1.928(2), N(3)–Li 1.947(2), N(4)–Li 2.082(3), Hf–N(5) 2.149(1); Hf–N(3)–N(4) 172.30(8), N(1)–Hf–N(3) 96.18(4), N(1)–C(4)–N(2) 124.6(1).

the hydrazinediido compound **3b** and zirconium hydrazido(1–) complexes (2.080–2.123 Å).^{21,35} This structural feature is similar to that for the lithium zirconimidate complexes reported by Bergman and co-workers which were obtained by the reaction of imido complexes with methyllithium or of $[Cp*_2ZrClMe]$ with LiNHR.³⁸

A comparison of the Mulliken charge distributions calculated for compounds **3b** and **4** by DFT (B3PW91),^{39,40} using a pseudopotential for Hf (SDD)^{41–45} and a 6-31G(d) basis set for all other atoms,⁴⁶ shows a significantly higher negative charge at both the N_{α} atom (-0.561 and -0.649 au, respectively) and the N_{β} atom (-0.444 and -0.560 au, respectively) of the hydrazinediido unit for complex **4** (Figure 5). This indicates partial negative charge at these two atoms rather than a localized negative charge at the N_{α} atom. These

Figure 5. Comparison of the calculated Mulliken charge distributions for compounds 3b and 4.

findings are consistent with the bonding situation in a hydrazinediido complex coordinated by Li, rather than an N_{α}-lithiated hydrazide(1–). This corrobates the interpretation of the ¹⁵N NMR data as well as the structural data from the X-ray diffraction study referred to above.

Cycloadditions to the Zr=N Bond and Related in the Hydrazinediido Complex 3a. We recently showed that reaction of carbodiimides with the analogous titanium hydrazinediido complex leads to four-membered titanacycles.¹⁶ However, upon reaction of **3a** with ⁱPrNCNⁱPr we observed the formation of a mixture of two different reaction products, the six-membered zirconacycle **8** and a rearranged four-membered zirconacycle **7** (Scheme 2).

Single crystals suitable for X-ray diffraction of compound 7 were obtained from a concentrated diethyl ether/hexane solution. The structure features a symmetric N-aminoguanidinato ligand coordinated in a κ^2 mode to zirconium (Figure 6). The three bonds to C(13) (C(13)–N(3) 1.413 Å, C(13)–N(4) 1.354 Å, C(13)–N(5) 1.325 Å) within the planar (RMSD of CN₃ 0.0007 Å) aminoguanidinate lie between typical distances for single and double bonds. We note that the C(13)-N(5) distance (1.325 Å) is the shortest of the three C-N bonds, which is consistent with an exocyclic double bond. Both Zr-N bonds within the metallacycle (Zr-N(3) 2.124 Å, Zr-N(4) 2.248 Å) have lengths consistent with (amido type) single bonds and are indicative of slightly asymmetric bonding of the aminoguanidinate to Zr. The aminopyrrolinato ligand is also coordinated in a κ^2 mode; both Zr–N bond lengths (Zr– N(1) 2.313 Å, Zr–N(2) 2.290 Å) are slightly longer then those for the aminoguanidinato ligand, which can be attributed to the formally dianionic nature of the latter.

Upon addition of 2 equiv of diisopropylcarbodiimide, the sixmembered zirconacycle 8 was obtained selectively. The NMR spectra are consistent with the structure shown in Scheme 2. The ¹H NMR spectrum featured eight doublets and three septets (one consisting of two overlapping signals) corresponding to four diastereotopic isopropyl groups. In the ¹H-¹³C HMBC NMR spectrum, two signals in the ¹³C NMR spectrum with shifts characteristic^{14,16} for imino group carbon atoms (147.7 and 145.5 ppm) featured long-range coupling to the CHMe₂ protons of two isopropyl groups. The ¹⁵N NMR spectrum displays eight resonances, which were assigned using ¹H-¹⁵N HMBC NMR spectroscopy (Figure 7).

In addition, the molecular structures for both possible isomers featuring different orientations of the 2-aminopyrrolinato ligand, similar to the isomers found for **3a** (see Figure 1), were computationally modeled using DFT methods (B3PW91, SDD+f for Zr and 6-31G(d) for all other atoms; see Figure 8).³⁹⁻⁴⁵ The isomer with increased steric interaction between the xylyl group of the aminopyrrolinate and the NPh₂ group was found to be higher in energy by 41.2 kJ/mol. We then calculated the ¹³C and ¹⁵N NMR shifts for both isomers by the GIAO method,⁴⁷⁻⁴⁹ using a pseudopotential for Zr (SDD+f) and a 6311++G(2d,2p) basis set for all other atoms. The chemical shifts found for the isomer lower in energy gave good agreement with the experimental data (see Figure 9).

The groups of Odom and Mountford previously postulated a sequence of [2 + 2] cycloaddition of an alkyne and Ti–N insertion of a isonitrile or nitrile, respectively, for the formation of six-membered titanacycles^{10,17} in analogy to a similar reaction of a titanium imido complex,⁵⁰ and an analogous pathway was proposed for the reaction with carbon dioxide¹¹ and the reaction of a *tert*-butoxyimido complex with 2 equiv of

Scheme 2. Stoichiometric Reactions of 3a To Give 7, 8a,b, 9, and 10

8 (y. 58 %)

7 (y.6%)

Figure 6. Molecular structure of 7. Hydrogen atoms are omitted for clarity, and ellipsoids are drawn at the 50% probability level. Selected bond lengths (Å) and angles (deg): Zr-N(1) 2.3134(9), Zr-N(2) 2.2904(9), Zr-N(3) 2.1243(9), Zr-N(4) 2.2482(9), N(3)-C(13) 1.413(1), N(4)-C(13) 1.354(1), C(13)-N(5) 1.325(1), N(5)-N(6) 1.428(1), Zr-N(7) 2.3244(9); N(1)-Zr-N(2) 58.11(3), N(3)-Zr-N(4) 61.06(3), N(3)-C(13)-N(4) 107.00(9), C(13)-N(5)-N(6) 117.67(9).

TolNCO.⁵¹ In order to determine whether a similar mechanism leads to the formation of 7 and 8, we monitored the reaction of 3a with 0.5 equiv of diisopropylcarbodiimide by ¹H NMR spectroscopy (Scheme 3).

We observed initial formation of an intermediate product, which was then rapidly converted to 8. Although it could not be fully characterized due to its highly reactive nature, the ¹H NMR signals detected for this intermediate were found to be consistent with a four-membered zirconacycle formed by [2 + 2] cycloaddition of the carbodiimide to 3a. This suggests initial formation of a [2 + 2] cycloaddition product, which then either

reacts with another 1 equiv of carbodiimide to give 8 or rearranges to 7.

Another indication for the presence of the cycloaddition product is that the corresponding aminoguanidine was isolated in 99% yield when **3a** was employed as catalyst (5 mol %) in the hydrohydrazination of diisopropylcarbodiimide with diphenylhydrazine. The analogous titanium cycloaddition product was previously found to be an intermediate in the corresponding catalytic cycle (Scheme 4).¹⁶

While the reaction of zirconium imido complexes with imines has been studied in some detail by the groups of Bergman⁵² and Mountford,⁵³ to the best of our knowledge, this reaction has not been reported for group 4 hydrazinediido complexes to date. When **3a** was reacted with *N*-phenylbenzimine, the four-membered metallacycle **9** was formed by [2 + 2] cycloaddition (see Scheme 2). The NMR spectra are consistent with the structure shown in Scheme 2. Moreover, in the ¹H NMR spectrum a singlet signal for the *CHPh* proton is observed. In the ¹H–¹⁵N HMBC NMR spectrum, coupling to the *N*NPh₂ (335 ppm) and the *N*Ph atom (149 ppm, additional coupling to ortho–*NPh* protons) was detected.

Previously reported zirconium hydrazinediido complexes reacted with alkynes under N–N bond scission to yield seven-membered zirconacycles.^{20,23,32} Complex **3a** exhibited the same behavior and reacted with diphenylacetylene to give the metallacyclic species **10**. The NMR spectra are consistent with the structure shown in Scheme 2. The *N*H and *N*Ph ¹⁵N NMR signals at 200 and 214 ppm, respectively, could be assigned via ¹H–¹⁵N HMBC NMR and are in good agreement with shifts for similar complexes.^{23,32} Of the two possible isomers for **10**, only the isomer shown in Scheme 2 is formed. The structural assignment is based on the observed cross relaxation between the CH_2 N protons and the phenylene-5 proton in the ¹H NOESY NMR spectrum.

Structural Characterization of Cycloadducts of [Zr- $(N_2^{TBS}N_{py})(NNPh_2)py$] (11) with 'PrNCN'Pr and PhCH= NPh. Since we were not successful in obtaining single crystals of 8 and 9 that were suitable for an X-ray diffraction study, we chose to investigate the corresponding transformations with the zirconium complex 11, which had been previously studied in our group (Scheme 5).^{21–23,26–28,30–32}

Figure 8. DFT-optimized structures of the two possible isomers of 8 and calculated and experimental ¹³C shifts for both imino group carbon atoms.

Figure 9. Correlation of calculated and experimental ¹³C and ¹⁵N NMR shifts for 8.

Scheme 3. Possible Formation of 7 and 8 from 3a via a [2 + 2] Cycloaddition Product

Scheme 4. Mechanism for the Ti-Catalyzed Hydrohydrazination of Carbodiimides via [2 + 2] Cycloaddition¹⁶

Scheme 5. Stoichiometric Reactions of 11 To Give 12 and 13

Even in the presence of a large excess of 'PrNCN'Pr compound 11 only formed the four-membered zirconacyclic species 12, as inferred from the NMR spectra of the isolated product: in the ¹H NMR spectrum, two doublets and two septets at 1.78 and 1.19 ppm corresponding to two isopropyl groups (ZrNCHMe₂ and C=NCHMe₂) were detected, indicating C_s symmetry. On the basis of a ¹H ¹³C HMBC experiment, a signal at 153.7 ppm in the characteristic ¹³C NMR chemical shift region for imino group carbon atoms and comparable to a similar titanium complex¹⁶ could be assigned to C=NCHMe2. Twinned single crystals of 12 were obtained from a concentrated solution in toluene, and an X-ray diffraction study revealed two independent molecules in the asymmetric unit which only show differences in the rotational orientation of the phenyl and silyl groups (the latter being partially disordered). One of the conformers is depicted in Figure 10. While the exocyclic CN bond length is consistent with a double bond (C(72)-N(57) 1.275 Å), both endocyclic

Figure 10. Molecular structure of 12. Only one of the two independent molecules is shown. Hydrogen atoms are omitted for clarity, and ellipsoids are drawn at the 50% probability level. Selected bond lengths (Å) (values in brackets refer to the second molecule): Zr(51)-N(51) 2.042(3) [2.047(3)], Zr(51)-N(52) 2.050(3)][2.050(3)], Zr(51)-N(53) 2.327(3) [2.314(3)], Zr(51)-N(54) 2.181(3) [2.188(3)], Zr(51)-N(56) 2.092(3) [2.096(4)], N(54)-N(55) 1.405(4) [1.407(4)], N(54)-C(72) 1.421(5) [1.409(5)], N(56)-C(72) 1.399 [1.406(5)], C(72)-N(57) 1.275(5) [1.279(6)].

CN bonds feature interatomic distances typical for single bonds (1.421 and 1.399 Å). These parameters are very similar to those of the corresponding titanium *N*-aminoguanidinato complex,¹⁶ and all other parameters are in good agreement with those of other previously reported cycloaddition products of **11**.^{27,30}

Upon reaction of 11 with N-phenylbenzimine, formation of the zirconacycle 13 was observed (Scheme 5). The NMR spectra are consistent with the structure shown in Scheme 5. Again, a singlet corresponding to the CHPh proton was observed in the ¹H NMR spectrum. The signals for the NNPh₂ and NPh atoms were detected at 335 and 183 ppm, which are similar to the corresponding shifts found for the half-sandwich complex 9 (335 and 149 ppm). Single crystals of 13 were obtained from a concentrated toluene solution, and the molecular structure determined by X-ray diffraction confirms the structural assignment based on NMR spectroscopic methods (Figure 11). Both the N(Ph)-CHPh and the $N(\text{NPh}_2)$ –CHPh bond lengths (1.460 and 1.495 Å) are typical for CN single bonds, and the other bond lengths and angles are in good agreement with those found in related cycloaddition products reported previously.^{27,30}

CONCLUSIONS

In this work we reported the synthesis and reactivity of the first zirconium and hafnium half-sandwich hydrazinediido complexes. In addition, we were able to isolate a LiHMDS adduct of an anionic hafnium hydrazinediido complex, which can be regarded as an intermediate structure between deprotonated hydrazido and Li-coordinated hydrazinediido complexes. The reactivity of the hydrazinediido complexes with unsaturated substrates displayed similarities but also interesting differences in comparison to the case for analogous titanium and zirconium complexes, illustrating the importance of the choice of ancillary ligand.

Figure 11. Molecular structure of 13. All hydrogen atoms but H(22) are omitted for clarity, and ellipsoids are drawn at the 50% probability level. Selected bond lengths (Å) and angles (deg): Zr-N(1) 2.062(2), Zr-N(2) 2.051(2), Zr-N(3) 2.329(2), Zr-N(4) 2.108(2), Zr-N(5) 2.146(2), N(4)–C(22) 1.460(2), N(5)–C(22) 1.495(2), N(5)–N(6) 1.412(2); N(4)–Zr-N(5) 63.76(6), N(4)–C(22)-N(5) 99.0(1).

EXPERIMENTAL SECTION

All manipulations of air- and moisture-sensitive species were carried out under an atmosphere of argon (Argon 5.0) using standard Schlenk and glovebox techniques (glovebox: M. Braun Unilab 2000). Solvents were predried over molecular sieves and dried over Na/K alloy (pentane, diethyl ether), K (THF, hexane, toluene), or CaH₂ (dichloromethane), distilled, or dried over activated alumina columns using a solvent purification system (M. Braun SPS 800) and stored over potassium mirrors (except for dichloromethane) or sodium mirror (THF) in Teflon valve ampules. The deuterated solvent benzene- d_6 was purchased from Deutero GmbH, dried over K, vacuum-distilled, and stored under argon in Teflon valve ampules. Ph₂NNH₂ was prepared from the hydrochloride salt purchased from Acros and purified by column chromatography (over silica, dichloromethane) prior to use. LiNHNPh2 was prepared according to a modified literature procedure,⁵⁴ using toluene instead of benzene, and the precipitated product was purified by filtration. Li¹⁵NHNPh₂ was prepared the same way from Ph₂N¹⁵NH₂, which was prepared according to literature procedures for the unlabeled compound.⁵⁵ The 2-iminopyrrole HN_{xvl}N was also prepared according to the literature, as was $Zr(N_2^{TBS}N_{py})(NNPh_2)py$ (11).²¹ All other chemicals were purchased from commercial sources (Acros/Thermo Fisher, ABCR/ Strem, and Sigma-Aldrich). Diisopropylcarbodiimide was degassed and stored in a glovebox. Samples for NMR spectroscopy of moisturesensitive compounds were prepared under argon in 5 mm Wilmad tubes equipped with J. Young Teflon valves. NMR spectra were recorded with Bruker Avance II 400 and Bruker Avance III 600 (with QNP-CryoProbe) NMR spectrometers. NMR spectra are quoted in ppm and were referenced internally relative to the residual protio solvent (¹H) or solvent (¹³C) resonances or externally to ¹⁵NH₃ (¹⁵N), ⁷LiCl (aqueous ⁷Li), and ²⁹SiMe₄ (²⁹Si). Where necessary, NMR assignments were confirmed by the use of two-dimensional ¹H-¹H and ¹H-¹³C correlation experiments. ¹³C spectra were recorded with ¹H broad-band decoupling; the multiplicity of the resonances was determined using DEPT-135 experiments. ¹⁵N data were obtained by two-dimensional ¹H correlated experiments or by direct detection using a cryogenically cooled direct-detection NMR probe (QNP CryoProbe). Microanalyses were performed by the microanalytical service of the chemistry department of the Universität Heidelberg on a Vario MIKRO Cube (Elementar) or a Vario EL (Elementar) CHN analyzer. Mass spectra were recorded by the Institute of Organic Chemistry of the Universität Heidelberg on a JMS 700 magnetic sector (JEOL) spectrometer in FAB (NBA or NPOE as matrix) and EI (70

eV) modes. IR spectra were recorded on a Varian 3100 Exalibur FT-IR spectrometer as KBr plates. Infrared data are quoted in wavenumbers (cm⁻¹).

[Cp*Zr(N_{xvl}N)Cl₂] (1a). A 1.000 g portion of Cp*ZrCl₃ (3.005 mmol) was suspended in 20 mL of toluene in an oven-dried Schlenk flask, and the solution was cooled to -40 °C. A 1.88 mL portion of methyllithium (1.6 mol/L in diethyl ether, 3.005 mmol) was slowly added dropwise. The solution was warmed to -30 °C over 2 h and then cooled to -40 °C again. A 0.566 g portion of HNxvlN (3.005 mmol) was dissolved in 30 mL of toluene under sonification and the solution slowly added dropwise at -40 °C. The reaction mixture was warmed to room temperature under static vacuum and stirred for 3 h and then centrifuged and filtered. The supernatant was evaporated under reduced pressure to yield 1.302 g (2.687 mmol, 89%) of a brown solid. ¹H NMR (benzene- d_6 , 600.1 MHz, 295 K): δ 6.99 (s, 2 H, p-C₆H₃Me₂), 6.62 (s, 1 H, o-C₆H₃Me₂), 3.39 (t, 2 H, ${}^{3}J_{H-H} = 6.9$ Hz, NCH₂), 2.21 (s, 6 H, C₆H₃Me₂), 2.01 (s, 15 H, C₅Me₅), 1.89 (t, 2 H, ${}^{3}J_{H-H} = 7.9$ Hz, CH₂CNN) 1.21 (qin, 2 H, ${}^{3}J_{H-H} = 7.0$ Hz, CH₂CH₂CNN) ppm. ¹³C NMR (benzene- d_{6r} 150.9 MHz, 295 K): δ 147.2 (s, NCN), 138.2 (s, N-C₆H₃Me₂), 125.8 (s, m-C₆H₃Me₂), 125.4 (d, p-C₆H₃Me₂), 125.0 (s, C₅Me₅), 121.5 (d, o-C₆H₃Me₂), 53.3 (t, NCH₂), 29.2 (t, CH₂CNN), 22.9 (t, CH₂CH₂CNN), 21.3 (q, $C_6H_3Me_2$), 12.2 (q, C_5Me_5) ppm. ¹⁵N NMR (benzene- d_{67} 60.81 MHz, 295 K): δ 192.3 (NČNXyl), 177.0 (NCNXyl) ppm. IR (KBr, cm⁻¹): ν 2963 (w), 2909 (w), 1670 (s), 1597 (s), 1507 (m), 1466 (m), 1378 (m), 1262 (s), 1099 (s), 1023 (s), 801 (s). HR-MS (HR-EI +): calcd 482.0833 u, 484.0804 u (C₂₂H₃₀Cl₂N₂Zr), found: 482.0813 u $(\Delta = -2.0 \text{ mmu})$, 484.0807 u ($\Delta = +0.3 \text{ mmu}$). Anal. Calcd: C, 54.52; H, 6.24; N, 5.78. Found: C, 54.82; H, 6.22; N, 5.36.

[Cp*Hf(NxvIN)Cl2] (1b). A 500 mg portion (1.190 mmol) of Cp*HfCl₃ was suspended in 10 mL of toluene. A 0.74 mL portion of MeLi (1.6 mol/L in diethyl ether, 1.190 mmol) was slowly added at -45 °C. The purple reaction mixture was warmed to -30 °C over 2 h, turning colorless. A 224 mg portion (1.190 mmol) of HN_{xvl}N was then dissolved in toluene and slowly added at -40 °C. A slight static vacuum was applied, and the reaction mixture was warmed to room temperature, stirred for 2 h, centrifuged (13 min at 2000 rpm), and filtered. The solvent was removed under reduced pressure to yield 611 mg (1.068 mmol, 90%) of a light brown solid. ¹H NMR (benzene- d_{6} , 600.1 MHz, 295 K): δ 6.99 (s, 2 H, o-C₆H₃Me₂), 6.62 (s, 1 H, p- $C_6H_3Me_2$), 3.34 (t, 2 H, ${}^3J_{H-H}$ = 7.0 Hz, CH_2N), 2.21 (s, 6 H, $C_6H_3Me_2$), 2.07 (s, 15 H, C_5Me_5), 1.89 (t, 2 H, ${}^3J_{H-H}$ = 7.8 Hz, CH_2CNN), 1.19 (qin, 2 H, ${}^{3}J_{H-H} = 7.4$ Hz, CH_2CH_2CNN) ppm. ${}^{13}C$ NMR (benzene-d₆, 150.9 MHz, 295 K): δ 177.5 (s, NCN), 147.1 (s, ipso-C₆H₃Me₂), 138.4 (s, m-C₆H₃Me₂), 125.7 (d, o-C₆H₃Me₂), 123.5 (s, C_5Me_5), 121.8 (d, $p-C_6H_3Me_2$), 52.9 (t, CH_2N), 29.6 (t, $CH_2CNN)$, 23.5 (t, $CH_2CH_2CNN)$, 21.6 (q, $C_6H_3Me_2$), 12.1 (q, C_5Me_5) ppm. ¹⁵N NMR (benzene- d_6 , 60.81 MHz, 295 K): δ 190 (NCNxyl), 174 (NCNxyl) ppm. IR (KBr): v 2913 (m), 2864 (m), 1653 (s), 1595 (m), 1507 (s), 1465 (m), 1379 (m), 1294 (m), 1190 (m), 1107 (m), 1026 (m), 850 (m), 803 (m), 731 (w), 682 (w) cm⁻¹. Mass spectrometry (HR-EI+): calcd 572.1234 u, 570.1222 u, 571.1227 $(C_{22}H_{30}Cl_2N_2Hf)$; found 572.1215 u ($\Delta = 2.1$ mmu), 570.1218 u (Δ = -0.5 mmu), 571.1191 u ($\Delta = 0.3$ mmu). Anal. Calcd: C, 46.20; H, 5.29; N, 4.90. Found: C, 45.98; H, 5.17; N, 4.40.

[Cp*Zr(N_{xyl}N)(NHNPh₂)Cl] (2a). A 500 mg portion (1.032 mmol) of Cp*Zr(N_{xyl}N)Cl₂ (6) was dissolved in 10 mL of THF in an ovendried Schlenk-flask and cooled to -78 °C. A 196 mg portion of LiNHNPh₂ (1.032 mmol) was dissolved in 20 mL of THF and slowly added dropwise at this temperature. The reaction mixture was then warmed to room temperature and stirred for 24 h. The solvent was evaporated under reduced pressure, the residue was redissolved in 40 mL of toluene, and this solution was centrifuged and filtered. Toluene was evaporated under reduced pressure, and the residue was washed with pentane to yield 457 mg (0.723 mmol, 70%) of a violet-brown solid. ¹H NMR (benzene-*d*₆ 600.1 MHz, 295 K): δ 7.19 (d, 4 H, ³*J*_{H-H} = 7.9 Hz, *o*-ZrNHN(C₆*H*₅)₂), 6.98 (t, 4 H, ³*J*_{H-H} = 7.5 Hz, *m*-ZrNHN(C₆*H*₅)₂), 6.63 (s, 1 H, *p*-C₆*H*₃Me₂), 6.07 (s, 1 H, ZrNHNPh₂), 3.64–3.55 (broad m, 1 H, NCH₂-a), 3.15–3.06 (broad

m, 1 H, NCH₂-b), 2.25 (s, 6 H, $C_6H_3Me_2$), 2.01 (s, 15 H, C_5Me_5), 1.34–1.26 (broad m, 1 H, CH_2CH_2CNN -a), 1.07–0.99 (broad m, 1 H, CH_2CH_2CNN -b); CH_2CNN not observed ppm. ¹³C NMR (benzene- d_{67} 150.9 MHz, 295 K): δ 178.9 (s, NCN), 153.1 (s, ipso-ZrNHN(C_6H_5)₂), 137.6 (s, *m*- $C_6H_3Me_2$), 128.5 (d, *m*-ZrNHN· (C_6H_5)₂), 124.8 (d, *p*-ZrNHN(C_6H_5)₂), 123.0 (d, *p*- $C_6H_3Me_2$), 121.9 (d, *o*-ZrNHN(C_6H_5)₂), 120.4 (s, C_5Me_5), 51.8 (t, NCH₂), 30.3 (t, CH_2CNN), 23.2 (t, CH_2CH_2CNN), 21.7 (q, $C_6H_3Me_2$), 11.9 (q, C_5Me_5) ppm. ¹⁵N NMR (benzene- d_6 , 60.81 MHz, 295 K): δ 216 (d, ¹ J_{N-H} = 74 Hz, ZrNHNPh₂), 94 (ZrNNPh₂) ppm; NCNxyl, NCNxyl not observed. IR (KBr, cm⁻¹): ν 3297 (w, NH), 2963 (m), 2908 (m), 2858 (m), 1590 (s), 1522 (m), 1491 (s), 1291 (m), 1262 (s), 1181 (m), 1098 (s), 1026 (s), 804 (s), 750 (s), 693 (s), 612 (m). Due to the compound's instability, no elemental analysis could be performed.

[Cp*Hf(N_{xyl}N)(NHNPh₂)Cl] (2b). A 500 mg portion (0.874 mmol) of Cp*Hf(N_{xv}N)Cl₂ was dissolved in 15 mL of toluene and cooled to -78 °C. A 166 mg portion (0.874 mmol) of LiNHNPh₂ was dissolved in 10 mL of toluene and slowly added dropwise to the reaction solution at this temperature. The reaction mixture was stirred at room temperature for 40 h and then centrifuged (10 min at 2000 rpm) and filtered. The solvent was removed from the supernatant under reduced pressure to yield 510 mg (0.709 mmol, 81%) of a light brown solid. For labeling experiments, a batch of this compound which had been $^{15}\text{N-labeled}$ in the N_{α} position was synthesized the same way using Li¹⁵NHNPh₂. ¹H NMR (benzene- d_{64} 600.1 MHz, 295 K): δ 7.19 (d, 4 H, ${}^{3}J_{H-H} = 8.3$ Hz, o-HfNHN(C₆H₅)₂), 7.00 (t, 4 H, ${}^{3}J_{H-H} = 8.3$ Hz, *m*-HfNHN(C_6H_5)₂), 6.96 (s, 2 H, *o*- C_6H_3 Me₂), 6.81 (t, 2 H, ³ J_{H-H} = 7.4 Hz, *p*-HfNHN(C_6H_5)₂), 6.62 (s, 1 H, *p*- C_6H_3 Me₂), 6.38 (s, 1 H, HfNHN(C₆H₅)₂), 3.07 (broad m, 1 H, CH₂N-a), [CH₂CNN-a and b overlaid, but observed in HSQC: 2.25, 2.15 ppm], 2.24 (s, 6 H, C₆H₃Me₂), 2.05 (s, 15 H, C₅Me₅), 1.29 (broad s, 1 H, CH₂CH₂CNNa), 1.04 (broad s, 1 H, CH₂CH₂CNN-a) ppm. ¹³C NMR (benzene-d₆, 150.9 MHz, 295 K): δ 178.6 (s, NCN), 153.3 (s, ipso-HfNHN- $(C_6H_5)_2$, 137.6 (s, m- $C_6H_3Me_2$), 129.2 (d, m-HfNHN $(C_6H_5)_2$), 124.6 $(d, p-C_6H_3Me_2)$, 123.0 $(d, p-HfNHN(C_6H_5)_2)$, 121.9 $(d, o-C_6H_3Me_2)$, 119.8 (d, o-HfNHN(C_6H_5)₂), 118.7 (s, C_5Me_5), 51.7 (t, CH_2N), 30.5 (t, CH₂CNN), 23.5 (t, CH₂CH₂CNN), 21.7 (q, C₆H₃Me₂), 11.7 (q, $C_{s}Me_{s}$) ppm. ¹⁵N NMR (benzene- d_{6} , 60.81 MHz, 295 K): δ 211 (d, ${}^{1}J_{N-H} = 74$ Hz, HfNHNPh₂), 183 (NCNxyl), 168 (NCNxyl), 91 (HfNHNPh₂) ppm. IR (KBr): v 3328 (w, NH), 2962 (m), 2908 (m), 1589 (s), 1522 (s), 1490 (s), 1291 (m), 1184 (m), 1101 (m), 1026 (m), 749 (m), 693 (m), 612 (w) cm⁻¹. Anal. Calcd: C, 56.74; H, 5.74; N, 7.79. Found: C, 56.27; H, 5.71; N, 7.45.

[Cp*Zr(NxvlN)(NNPh2)DMAP] (3a). A 300 mg portion (0.619 mmol) of Cp*Zr(N_{Xvl}N)Cl₂ (6) was dissolved in 20 mL of THF and cooled to $-78~^\circ\text{C}.$ A 118 mg portion (0.619 mmol) of LiNHNPh_2 was dissolved in 10 mL of THF and slowly added dropwise at this temperature. The reaction mixture was warmed to room temperature and stirred for 27 h. Then 84 mg (0.619 mmol) of DMAP was added, and 104 mg (0.619 mmol) LiHMDS was dissolved in THF and slowly added dropwise at -78 °C. The reaction mixture was slowly warmed to room temperature and stirred for 23 h, the solvent was subsequently evaporated under reduced pressure, the residue was taken up in toluene, and this solution was filtered. Toluene was evaporated under reduced pressure, and the resulting foam was washed with pentane, yielding 620 mg (0.863 mmol, 84%) of a bronze-colored solid (major:minor 2:1). Crystals of the major isomer suitable for X-ray diffraction could be obtained from a concentrated solution in hexane at room temperature. Data for the major component are as follows. ¹H NMR (benzene- d_6 , 600.1 MHz, 295 K): $\delta \hat{8}.57$ (d, 2 H, ${}^{3}J_{H-H} = 6.6$ Hz, o-NMe₂C₅H₄N), 7.69 (d, 4 H, ${}^{3}J_{H-H} = 8.4$ Hz, o-ZrNN(C₆H₅)₂), 7.20 (t, 6 H, ${}^{3}J_{H-H} = 7.1$ Hz, m-ZrNN($C_{6}H_{5}$)₂ and o- and p- $C_{6}H_{3}Me_{2}$), 6.81 (t, 2 H, ${}^{3}J_{H-H} = 7.2$ Hz, p-ZrNN($C_{6}H_{5})_{2}$), 6.62 (s, 1 H, p- $C_6H_3Me_2$), 5.78 (d, 2 H, ${}^3J_{H-H}$ = 6.6 Hz, m-NMe₂C₅H₄N), 3.63 (dt, 1 H, ${}^{2}J_{H-H} = 11.1$ Hz, ${}^{3}J_{H-H} = 6.9$ Hz, NCH₂-a), 3.22 (m, 1 H, NCH₂b), 2.61 (m, 1 H, CH₂CNN-a), 2.26 (s, 6 H, C₆H₃Me₂), 2.07 (s, 15 H, C_5Me_5), 2.02 (s, 6 H, $NMe_2C_5H_4N$), 1.70 (broad m, 2 H, CH₂CH₂CNN-a and -b) ppm. ¹³C NMR (benzene-d₆, 150.9 MHz, 295 K): δ 175.6 (s, NCN), 154.3 (s, ipso-C₆H₃Me₂), 152.5 (d, o-

NMe₂C₅H₄N), 149.1 (s, ipso-ZrNN(C_6H_5)₂), 137.7 (s, m- $C_6H_3Me_2$), 128.8 (d, m-ZrNN(C_6H_5)₂), 123.8 (d, p- $C_6H_3Me_2$), 122.8 (d, o- $C_6H_3Me_2$, 120.1 (d, p-ZrNN(C_6H_5)₂), 119.5 (d, o-ZrNN(C_6H_5)₂), 116.4 (s, C₅Me₅), 105.9 (d, m-NMe₂C₅H₄N), 53.0 (t, NCH₂), 38.2 (q, C₆H₃Me₂), 29.9 (t, CH₂CNN), 23.9 (t, CH₂CH₂CNN), 21.7 (q, C₆H₃Me₂), 11.8 (q, C₅Me₅) ppm. ¹⁵N NMR (benzene-d₆, 60.81 MHz, 295 K): δ 286 (ZrNNPh₂), 238 (NMe₂C₅H₄N), 177 (ZrNNPh₂), 175 (NCNxyl) 173 (NCNxyl), 62 (Me₂NC₅H₄N) ppm. Data for the minor component are as follows. ¹H NMR (benzene- d_6 , 600.1 MHz, 295 K): δ 8.29 (d, 2 H, ${}^{3}J_{H-H} = 6.7$ Hz, o-NMe₂C₅H₄N), 7.70 (d, 4 H, ${}^{3}J_{H-H} =$ 8.6 Hz, o-ZrNN(C_6H_5)₂), 7.27 (t, 4 H, ${}^{3}J_{H-H} = 7.7$ Hz, m- $ZrNN(C_6H_5)_2)$, 6.88 (t, 2 H, ${}^{3}J_{H-H} = 7.2$ Hz, p- $ZrNN(C_6H_5)_2)$, 6.57 (s, 1 H, p-C₆H₃Me₂), 6.43 (s, 2 H, o-C₆H₃Me₂), 5.58 (d, 2 H, ${}^{3}J_{H-H} = 6.5$ Hz, m-NMe₂C₅H₄N), 3.92 (m, 1 H, NCH₂-a), 3.71 (dt, 1 H, ${}^{2}J_{H-H} = 11.3$ Hz, ${}^{3}J_{H-H} = 7.4$ Hz, NCH₂-b), 2.10 (s, 6 H, C₆H₃Me₂), 2.09 (s, 15 H, C₅Me₅), 1.95 (s, 6 H, NMe₂C₅H₄N); CH₂CNN and CH₂CH₂N not observed directly ppm. ¹³C NMR (benzene-d₆, 150.9 MHz, 295 K): δ 175.8 (s, NCN), 154.1 (s, ipso- $C_6H_3Me_2$), 152.6 (d, o-NMe₂ C_5H_4N), 149.1 (s, ipso-ZrNN(C_6H_5)₂), 137.4 (s, $m-C_6H_3Me_2$), 124.1 (d, $o-C_6H_3Me_2$), 123.8 (d, $p-C_6H_3Me_2$), 120.0 (d, p-ZrNN(C_6H_5)₂), 119.7 (d, o-ZrNN(C_6H_5)₂), 116.1 (s, $C_{\varsigma}Me_{\varsigma}$), 105.5 (d, m-NMe₂ $C_{\varsigma}H_{4}N$), 55.3 (t, NCH₂), 38.0 (q, $NMe_2C_5H_4N$), 29.9 (t, CH_2CNN), 23.8 (t, CH_2CH_2CNN), 21.5 (q, $C_6H_3Me_2$), 11.8 (q, C_5Me_5) ppm; *m*-ZrNN(\tilde{C}_6H_5)₂ could not be assigned. ¹⁵N NMR (benzene- d_6 , 60.81 MHz, 295 K): δ 281 (ZrNNPh₂), 236 (Me₂NC₅H₄N), 171 (ZrNNPh₂), 59 (Me₂NC₅H₄N) ppm; NCNxyl, NCNxyl not observed. IR (KBr, cm⁻¹): v 3054 (w), 3023 (w), 2962 (m), 2906 (m), 20855 (m), 1605 (s), 1523 (s), 1487 (s), 1378 (m), 1289 (m), 1226 (m), 1095 (m), 1010 (m), 805 (m), 748 (m), 693 (m), 624 (w), 534 (w), 500 (w). Anal. Calcd: C, 68.58; H, 7.02; N, 11.70. Found: C, 67.99; H, 7.33; N, 10.78.

[Cp*Hf(NxvIN)(NNPh2)DMAP] (3b). A 500 mg portion (0.695 mmol) of Cp*Hf(N_{Xvl}N)Cl(NHNPh₂) was dissolved in 40 mL of toluene. A 120 mg portion (0.695 mmol) of LiHMDS was dissolved in 10 mL of toluene and slowly added dropwise at -78 °C. The reaction mixture was slowly warmed to room temperature over 7 h and stirred at room temperature overnight. An 85 mg portion (0.695 mmol) of dmap was added, and the reaction mixture was then heated to 60 °C for 3 h and subsequently filtered. The solvent was removed from the filtrate under reduced pressure to yield 560 mg (0.695 mmol, 98%) of a brown solid, composed of of two isomers (3:1). Single crystals suitable for X-ray diffraction were obtained from a concentrated hexane solution. Data for the major component are as follows. ¹H NMR (benzene- d_{6} , 600.1 MHz, 295 K): δ 8.60 (d, 2 H, ${}^{3}J_{H-H} = 6.5$ Hz, o-NMe₂C₅H₄N), 7.77 (dd, 4 H, ${}^{3}J_{H-H} = 8.5$ Hz, ${}^{4}J_{H-H} = 1.1$ Hz, o-HfNN(C_6H_5)₂), 7.25 (s, 2 H, $o-C_6H_3$ Me₂), 7.21 (t, 4 H, $^3J_{H-H} = 8.5$ Hz, m-HfNN(C_6H_5)₂), 6.80 (t, 2 H, $^3J_{H-H} = 7.8$ Hz, p-HfNN- $(C_6H_5)_2)$, 6.63 (s, 1 H, p- $C_6H_3Me_2)$, 5.74 (d, 2 H, $^3J_{H-H}$ = 6.8 Hz, m-NMe₂C₅H₄N), 3.56 (dt, 1 H, ${}^{2}J_{H-H} = 11.2$ Hz, ${}^{3}J_{H-H} = 7.1$ Hz, CH₂Na), 3.17 (m, 1 H, CH₂N-b), 2.58 (dt, 1 H, ${}^{2}J_{H-H} = 8.5$ Hz, ${}^{3}J_{H-H} = 16.3$ Hz, CH_2CNN -a), 2.26 (s, 6 H, $C_6H_3Me_2$), 2.22–2.17 (m, 1 H, CH₂CNN-b), 2.09 (s, 15 H, C₅Me₅), 1.98 (s, 6 H, NMe₂C₅H₄N), 1.97 (broad m, 1 H, CH₂CH₂CNN-a), 1.14 (broad m, 1 H, CH₂CH₂CNNb) ppm. ¹³C NMR (benzene- d_6 , 150.9 MHz, 295 K): δ 175.2 (s, NCN), 152.6 (d, o-NMe₂C₅H₄N), 151.1 (s, ipso-C₆H₃Me₂), 149.7 (s, ipso-HfNN $(C_6H_5)_2$, 137.8 (s, m- $C_6H_3Me_2$), 128.7 (d, m-HfNN-(C₆H₅)₂), 124.0 (d, p-C₆H₃Me₂), 122.9 (d, o-C₆H₃Me₂), 119.8 (d, p-HfNN(C_6H_5)₂), 119.5 (d, *o*-HfNN(C_6H_5)₂), 115.7 (s, C_5Me_5), 105.8 (d, m-NMe₂C₅H₄N), 52.7 (t, CH₂N), 38.1 (q, NMe₂C₅H₄N), 29.9 (t, CH₂CNN), 24.1 (t, CH₂CH₂CNN), 21.7 (q, C₆H₃Me₂), 11.8 (q, C_5Me_5) ppm. ¹⁵N NMR (benzene- d_{67} 60.81 MHz, 295 K): δ 280 (HfNNPh₂), 237 (NMe₂C₅H₄N), 172 (HfNNPh₂), 62 (NMe₂C₅H₄N) ppm. Data for the minor component are as follows. ¹H NMR (benzene-d₆, 600.1 MHz, 295 K): δ 8.35 (d, 2 H, ³J_{H-H} = 7.1 Hz, o- $NMe_2C_5H_4N$), 7.72 (d, 4 H, ${}^3J_{H-H}$ = 8.2 Hz, o-HfNN(C_6H_5)₂), 7.30 (t, 4 H, ${}^{3}J_{H-H} = 7.8$ Hz, m-HfNN($C_{6}H_{5})_{2}$), 6.88 (t, 2 H, ${}^{3}J_{H-H} = 7.2$ Hz, *m*-HfNN(C_6H_5)₂), 6.68 (s, 1 H, *p*- $C_6H_3Me_2$), 5.56 (d, 2 H, ${}^{3}J_{H-H}$ = 7.2 Hz, m-NMe₂C₅H₄N), 3.86 (m, 1 H, CH₂N-a), 3.70 (dt, 1 H, ${}^{2}J_{H-H} = 11.1$ Hz, ${}^{3}J_{H-H} = 7.2$ Hz, CH₂N-b), 2.10 (s, 6 H, C₆H₃Me₂), 1.93 (s, 15 H, C₅Me₅) ppm; CH₂CNN, CH₂CH₂CNN not observed.

¹³C NMR (benzene-*d*₆, 150.9 MHz, 295 K): δ 179.1 (s, NCN), 152.7 (d, *o*-NMe₂C₅H₄N), 151.3 (s, ipso-*C*₆H₃Me₂), 149.8 (s, ipso-HfNN(*C*₆H₃)₂), 137.5 (s, *m*-*C*₆H₃Me₂), 128.7 (d, *m*-HfNN-(*C*₆H₅)₂),124.2 (d, *p*-*C*₆H₃Me₂), 123.3 (d, *o*-*C*₆H₃Me₂), 115.4 (s, *C*₅Me₅), 105.5 (d, *m*-NMe₂C₅H₄N), 52.3 (t, CH₂N), 38.0 (q, NMe₂C₅H₄N), 30.0 (t, CH₂CNN), 24.0 (t, CH₂CH₂CNN), 21.5 (q, *C*₆H₃Me₂), 11.7 (q, *C*₅Me₅) ppm. IR (KBr): *ν* 3023 (w), 2908 (m), 2857 (m), 1601 (s), 1523 (s), 1489 (s), 1444 (m), 1377 (m), 1290 (m), 1262 (m), 1227 (m), 1185 (m), 1100 (m), 1065 (m), 1012 (m), 994 (m), 950 (w), 877 (w), 805 (m), 749 (m), 693 (m), 623 (w), 534 (w), 499 (w) cm⁻¹. Anal. Calcd: *C*, 61.14; H, 6.26; N, 10.44. Found: *C*, 60.68; H, 6.49; N, 9.82.

[Cp*Hf(N_{xvl}N)(NNPh₂){N(SiMe₃)₂}Li] (4). A 169 mg portion (0.236 mmol) of Cp*Hf(N_{Xvl}N)Cl(NHNPh₂) was dissolved in 10 mL of toluene, and 81 mg (0.472 mmol, 2 equiv) of LiHMDS was added. After it was stirred overnight, the reaction mixture was filtered, and the filtrate was evaporated to dryness under reduced pressure and washed with hexane to yield 41 mg (0.060 mmol, 25%) of a crystalline yellow solid. Crystals suitable for X-ray diffraction were grown from a concentrated solution in hexane at -40 °C. ¹H NMR (benzene- d_{6r} 600.1 MHz, 295 K): δ 7.32 (d, 4 H, $^{3}J_{H-H} = 8.1$ Hz, o-Ph), 7.15 (t, 4 H, $^{3}J_{H-H} = 7.9$ Hz, m-Ph), 6.89 (t, 2 H, $^{3}J_{H-H} = 7.4$ Hz, p-Ph), 6.69 (s) 1 H, $p-C_6H_3Me_2$), 6.36 (s, 2 H, $o-C_6H_3Me_2$), 3.82–3.76 (m, 2 H, CH₂N), 2.13 (CH₂CNN, only observed in H,H-Cosy and HSQC), 2.11 (s, 6 H, $C_6H_3Me_2$), 2.10 (s, 15 H, C_5Me_5), 1.66–1.57 (m, 2 H, CH_2CH_2CNN), 0.25 (broad s, 18 H, $N(SiMe_3)_2$) ppm. ¹³C NMR (benzene-d₆, 150.9 MHz, 295 K): δ 179.5 (NCN), 153.1 (m-C₆H₃Me₂), 151.2 (ipso-Ph), 138.9 (ipso-C₆H₃Me₂), 128.6 (m-Ph), 124.9 (p-C₆H₃Me₂), 121.6 (o-C₆H₃Me₂), 121.1 (p-Ph), 120.3 (o-Ph), 118.2 (C_5Me_5) , 55.4 (CH_2N) , 30.9 (CH_2CNN) , 25.6 (CH_2CH_2CNN) , 21.4 $(C_6H_3Me_2)$, 12.8 (C_5Me_5) , 6.7 $(SiMe_3)$ ppm. $^{15}{\rm N}$ NMR (benzene- d_{6} 60.81 MHz, 295 K): δ 263 (NNPh_2), 196 (NCNxyl), 147 (NNPh₂) ppm; NCNxyl, N(SiMe₃)₂ not observed. ²⁹Si NMR (benzene- d_{6} , 79.45 MHz, 295 K): δ –22 ppm. ⁷Li NMR (benzene- d_6 , 155.4 MHz, 295 K): δ 1.89 ppm. A ¹⁵N-labeled version of 4 was generated in situ by dissolving 20 mg of ¹⁵N-2b in 0.5 mL of benzene- d_6 in a J. Young NMR tube and adding 9.6 mg of LiHMDS. After 2 h, spectra were recorded on a 600 MHz (15N) or a 400 MHz (⁶Li, ⁷Li). ⁷Li NMR (benzene- d_6 , 155.4 MHz, 323 K): δ 1.92 (d, ${}^{1}J_{7\text{Li},15\text{N}} = 5.1 \text{ Hz}$ ppm. ⁶Li NMR (benzene-*d*₆, 58.8 MHz, 295 K): δ 1.91 ppm (d, ${}^{1}J_{6Li,15N}$ = 2.0 Hz) ppm. IR (KBr): ν 3061 (w), 2954 (m), 2901 (m9, 2861 (m), 1588 (m), 1560 (s), 1489 (s), 1449 (m), 1372 (m), 1260 (s), 1189 (w), 1164 (m), 1136 (m), 1076 (w), 1025 (w), 996 (w), 916 (s), 853 (s), 784 (m), 751 (m), 669 (m), 620 (w), 576 (w), 538 (w) cm⁻¹. Mass spectrometry (HR-FAB): calcd 684.2718 u, 682.2690 u, 681.2685 u ($C_{34}H_{40}N_4Hf$); found 684.2721 u ($\Delta = 0.2$ mmu), 682.2685 u (Δ = -0.5 mmu), 681.2709 u (Δ = 2.2 mmu). Anal. Calcd: C, 56.49; H, 6.87; N, 8.23. Found: C, 56.59; H, 6.95; N, 8.14

[Cp*Hf(NxylN)(NMe2)2] (5). A 200 mg portion (0.350 mmol) of Cp*Hf(NxvlN)Cl₂ (2b) was dissolved in 10 mL of toluene, 36 mg (0.699 mmol, 2 equiv) of LiNMe2 was added, and the mixture was stirred for 41 h and then centrifuged (10 min at 2000 rpm) and filtered. The filtrate was evaporated under reduced pressure to yield 148 mg (0.251 mmol, 72%) of a brown solid. ¹H NMR (benzene- d_{6} 600.1 MHz, 295 K): δ 6.59 (s, 1 H, p-C₆H₃Me₂), 6.51 (s, 2 H, o- $C_6H_3Me_2$), 3.41 (t, 2 H, ${}^3J_{H-H}$ = 6.8 Hz, CH_2N), 3.09 (s, 12 H, NMe2), 2.30 (s, 6 H, C6H3Me2), 2.30-2.27 (m, 2 H, CH2CNN), 2.03 (C_5Me_5) , 1.47 (quin, 2 H, ${}^{3}J_{H-H}$ = 7.2 Hz, CH_2CH_2CNN) ppm. ${}^{13}C$ NMR (benzene-d₆, 150.9 MHz, 295 K): δ 176.9 (NCN), 148.0 (ipso- $C_6H_3Me_2$), 137.8 (*m*- $C_6H_3Me_2$), 122.5 (*p*- $C_6H_3Me_2$), 119.8 (*o*- $C_6H_3Me_2$), 117.4 (C_5Me_5), 51.7 (CH_2N), 43.6 (NMe_2), 31.6 (CH_2CNN) , 24.2 (CH_2CH_2CNN) , 21.9 $(C_6H_3Me_2)$, 11.3 (C_5Me_5) ppm. ¹⁵N NMR (benzene-*d*₆, 60.81 MHz, 295 K): δ 184 (NCNxyl), 167 (NCNxyl) ppm. IR (KBr): v 2964 (w), 2908 (w), 2860 (w), 2757 (w), 1638 (w), 1592 (m), 1521 (m), 1455 (m), 1375 (w), 1322 (w), 1294 (m), 1262 (m), 1187 (m), 1097 (s), 1021 (s), 957 (m), 928 (m), 867 (m), 799 (s), 686 (m), 524 (m) cm⁻¹. Mass spectrometry (HR-EI): calcd 590.2879 u, 589.2873 u, 588.2851 u, 587.2843 u $(C_{26}H_{42}N_4Hf)$; found 590.2891 u (Δ = 1.6 mmu), 589.2911 u (Δ =

4.3 mmu), 588.2891 u (Δ = 4.4 mmu), 587.2844 u (Δ = 0.2 mmu). Anal. Calcd: C, 53.01; H, 7.19; N, 9.51. Found: C, 53.50; H, 6.53; N, 9.09.

[Cp*Hf(N_{xvl}N)(NHNPh₂)₂] (6). A 170 mg portion (0.289 mmol) of $Cp*Hf(N_{vvl}N)(NMe_2)_2$ (19) and 106 mg (0.577 mmol, 2 equiv) of Ph₂NNH₂ were dissolved in 10 mL of toluene and heated to 70 °C for 14 h. Subsequently the reaction mixture was filtered, and the solvent was removed under reduced pressure to yield 218 mg (0.240 mmol, 83%) of a brown oil. ¹H NMR (benzene- d_{6} , 600.1 MHz, 295 K): δ 7.20 (d, 4 H, ${}^{3}J_{H-H} = 8.2$ Hz, o-Ph), 7.1 (t, 4 H, ${}^{3}J_{H-H} = 7.7$ Hz, m-Ph), 6.78 (t, 2 H, ${}^{3}J_{H-H}$ = 7.3 Hz, p-Ph), 6.69 (s, 2 H, o-C₆H₃Me₂), 6.55 (s, 2 H, p-C₆H₃Me₂), 5.90 (s, 2 H, NHNPh₂), 3.31 (t, 2 H, ${}^{3}J_{H-H} = 6.8$ Hz, CH₂N), 2.12 (s, 6 H, C₆H₃Me₂), 1.98 (CH₂CNN, only observed in H,H-COSY and HSQC), 1.93 (s, 15 H, C₅Me₅), 1.15 (quin, 2 H, ${}^{3}J_{H-H} = 7.2$ Hz, CH_2CH_2CNN) ppm. ${}^{13}C$ NMR (benzene- d_{6} , 150.9 MHz, 295 K): δ 179.1 (NCN), 150.7 (ipso-Ph), 148.3 (m-C₆H₃Me₂), 137.9 (ipso-C₆H₃Me₂), 128.6 (m-Ph), 124.9 (p-C₆H₃Me₂), 123.3 (o- $C_6H_3Me_2$, 122.4 (p-Ph), 121.8 (o-Ph), 118.5 (C_5Me_5), 52.3 (CH₂N), 30.5 (CH₂CNN), 23.2 (CH₂CH₂CNN), 21.4 (C₆H₃M e_2), 11.4 (C_5Me_5) ppm. ¹⁵N NMR (benzene- d_{61} , 60.81 MHz, 295 K): δ 206 $(d_1 I_{N-H} = 66 \text{ Hz}, \text{ NHNPh}_2)$, 169 (NCNxyl), 119 (NHNPh₂) ppm. IR (KBr): v 3342 (w), 3057 (w), 2963 (w), 2910 (w), 2859 (w), 2859 (w), 1587 (m), 1522 (m), 1490 (m), 1457 (m), 1376 (m), 1319 (m), 1262 (m), 1184 (m), 1154 (m), 1099 (m), 1072 (m), 1027 (m), 954 (w), 800 (m), 749 (s), 693 (s), 619 (m), 567 (w) cm⁻¹. Anal. Calcd: C, 60.73; H, 5.76; N, 9.24 (for 6-LiCl). Found: C, 61.29; H, 6.11; N, 9.36

 $[Cp*Zr(N_{Xvl}N){\kappa^2-N^iPrC(NNPh_2)N^iPr}]$ (7). A 300 mg portion (0.418 mmol) of Cp*Zr(N_{Xyl}N)(NNPh₂)dmap (3a) was dissolved in toluene (10 mL), and 52 µL (0.334 mmol, 0.8 equiv) of ⁱPrNCNⁱPr was added. After the mixture was stirred for 30 min at room temperature, the solvent was removed under reduced pressure and the residue washed with hexane. The residue was then dissolved in diethyl ether (5 mL) and this solution was layered with hexane (10 mL), which resulted in precipitation of a solid. After 30 min, the suspension was filtered, the filtrate was cooled to -30 °C for 2 days, the solution was again filtered, and the filtrate was evaporated to dryness under reduced pressure and washed with hexane to yield 20 mg (0.024 mmol, 6%) of a brown solid. Single crystals of the DMAP adduct suitable for X-ray diffraction were obtained from a concentrated solution in diethyl ether/hexane. Data for the major component are as follows. ¹H NMR (benzene- d_6 , 600.1 MHz, 295 K): δ 7.44 (d, 4 H, ${}^{3}J_{H-H} = 7.8 \text{ Hz}, \text{ o-Ph}), 7.31 \text{ (s, 2 H, o-C}_{6}H_{3}\text{Me}_{2}), 7.20 \text{ (t, 4 H, }{}^{3}J_{H-H} =$ 8.0 Hz, m-Ph), 6.87-6.82 (m, 2 H, p-Ph), 6.61 (s, 1 H, p-C₆H₃Me₂), 3.84-3.78 (m, 1 H, CHMe2-a), 3.77-3.71 (m, 1 H, CH2N-a), 3.62-3.55 (m, CH₂N-b), 3.45-3.38 (m, 1 H, CHMe₂-b), 2.86-2.80 (m, 1 H, CH₂CNN-a), 2.34 (s, 6 H, C₆H₃Me₂), 2.31-2.29 (m, 1 H, $CH_2CNN-b)$, 1.86 (s, 15 H, C_5Me_5), 1.72–1.66 (m, 2 H, CH_2CH_2CNN), 1.54 (d, 3 H, ${}^{3}J_{H-H}$ = 6.6 Hz, $CHMe_2$ -a), 1.07 (d, 3 H, ${}^{3}J_{H-H} = 6.3$ Hz, CHMe₂-a), 0.53 (d, 3 H, ${}^{3}J_{H-H} = 6.2$ Hz, CHMe₂-b), 0.50 (d, 3 H, ${}^{3}J_{H-H} = 6.0$ Hz, CHMe₂-a) ppm. ${}^{13}C$ NMR (benzened₆, 150.9 MHz, 295 K): δ 173.7 (NCN), 165.9 (C=NNPh₂), 159.3 $(m-C_6H_3Me_2)$, 150.4 129.1 (m-Ph), 123.9 (C_5Me_5) , 123.3 $(p-C_6H_3Me_2)$ $C_6H_3Me_2$, 122.1 (*p*-*Ph*), 121.3 (*o*- $C_6H_3Me_2$), 121.0 (*o*-*Ph*), 52.7 (CH₂N), 47.5 (CHMe₂-a), 45.7 (CHMe₂-b), 31.6 (CH₂CNN), 24.2 (CHMe₂-a), 24.1 (CHMe₂-b), 23.9 (CHMe₂-a), 23.7 (CHMe₂-b), 22.9 (CH_2CH_2CNN) , 21.9 $(C_6H_3Me_2)$, 12.1 (C_5Me_5) ppm. Data for the minor component are as follows. ¹H NMR (benzene-d₆, 600.1 MHz, 295 K): δ 7.61 (d, 4 H, ${}^{3}J_{H-H}$ = 8.5 Hz, o-Ph), 7.26 (t, 4 H, ${}^{3}J_{H-H}$ = 8.3 Hz, m-Ph), 6.78 (s, 2 H, o-C₆H₃Me₂), 6.77-6.74 (m, 2 H, p-Ph), 6.60 (s, 1 H, $p-C_6H_3Me_2$), 3.94 (sep, 1 H, ${}^{3}J_{H-H} = 6.6$ Hz, CHMe₂-a), 3.77-3.71 (m, 1 H, CH₂N-a), 3.68-3.63 (m, 1 H, CH₂N-b), 3.62-3.55 (m, CHMe₂-b), 2.35 (s, 6 H, $C_6H_3Me_2$), 1.89 (s, 15 H, C_5Me_5), 1.49 (d, 3 H, ${}^{3}J_{H-H}$ = 5.9 Hz, CHMe₂-a), 1.05 (d, 3 H, ${}^{3}J_{H-H}$ = 6.5 Hz, CHMe₂a), 0.73 (d, 3 H, ${}^{3}J_{H-H}$ = 6.3 Hz, CHMe₂-b), 0.65 (d, 3 H, ${}^{3}J_{H-H}$ = 6.1 Hz, CHMe₂-b) ppm. 13 C NMR (benzene-d₆, 150.9 MHz, 295 K): δ 143.8 (ipso-Ph), 129.0 (m-Ph), 123.7 (C5Me5), 129.9 (o-C6H3Me2), 121.9 (p-Ph), 119.2 (o-Ph), 53.1 (CH₂N), 47.8 (CHMe₂-a), 46.4 (CHMe₂-b), 32.0 (CH₂CNN), 23.1 (CH₂CH₂CNN), 21.7 (C₆H₃Me₂), 12.1 (C₅Me₅) ppm; NCN, C=NNPh₂, ipso-, m- and p $C_6H_3Me_2$, CHMe₂ not observed. IR (KBr): ν 2964 (m), 2912 (m), 2860 (m), 1595 (s), 1560 (m), 1541 (m), 1522 (m), 1490 (s), 1383 (m), 1319 (w), 1292 (w), 1229 (w), 1262 (m), 1099 (m), 1026 (m), 885 (s), 749 (m), 693 (m), 617 (w) cm⁻¹. Despite numerous attempts, we have not been able to obtain an elemental analysis, probably due to the instability of the compound.

 $[Cp*Zr(N_{Xyl}N)\{\kappa^2-\hat{N}(NPh_2)C(N^iPr)N^{iPr}C(N^iPr)N^{iPr}\}] (8). A 300 mg$ portion (0.418 mmol) of Cp*Zr(N_{Xvl}N)(NNPh₂)dmap (3a) was dissolved in toluene (10 mL), and 130 μ L (0.836 mmol) of ⁱPrNCNⁱPr was added. After the mixture was stirred for 30 min at room temperature, the solvent was removed under reduced pressure, and the residue was washed with hexane to yield 234 mg (0.241 mmol, 58%) of a dark brown solid. ¹H NMR (benzene- d_{6} , 600.1 MHz, 295 K): δ 7.52 (d, 4 H, ${}^{3}J_{H-H}$ = 8.0 Hz, o-Ph), 7.30 (t, 2 H, ${}^{3}J_{H-H}$ = 7.8 Hz, m-Ph-a), 7.22 (t, 2 H, ${}^{3}J_{H-H}$ = 7.9 Hz, m-Ph-b), 6.88 (t, 1 H, ${}^{3}J_{H-H}$ = 7.3 Hz, p-Ph-b), 6.84 (s, 2 H, o-C₆H₃Me₂), 6.84 (m, 1 H, p-Ph-a), 6.59 (s, 1 H, p-C₆H₃Me₂), 5.32 (sep, 1 H, ${}^{3}J_{H-H} = 5.9$ Hz, ZrN(NPh₂)C= NCHMe₂), 4.65 (sep, 1 H, ${}^{3}J_{H-H} = 6.5$ Hz, $ZrN^{iPr}C(N^{i}Pr)NCHMe_{2})$, 4.39–4.31 (sep, sep, $ZrN^{iPr}C=NCHMe_{2}$ and $ZrNCHMe_{2}$), 3.64– 3.54 (m, 2 H, CH₂N), 2.74–2.67 (m, 1 H, CH₂CNN-a), 2.32 (s, 6 H, $C_6H_3Me_2$), 2.30–2.24 (m, 1 H, CH₂CNN-b), 2.12 (d, 3 H, ${}^3J_{H-H} = 6.8$ Hz, $ZrN^{iPr}C$ =NCHMe₂-a), 1.95 (d, 3 H, ${}^{3}J_{H-H} = 6.5$ Hz, $ZrN^{iPr}C$ = NCHMe₂-b), 1.66 (s, 15 H, C₅Me₅), 1.64-1.60 (m, 1 H, CH₂CH₂CNN-a), 1.58-1.54 (m, 1 H, CH₂CH₂CNN-b), 1.31 (d, 3 H, ${}^{3}J_{H-H} = 6.7$ Hz, $ZrN^{iPr}C(N^{i}Pr)NCHMe_{2}-a)$, 1.29 (d, 3 H, ${}^{3}J_{H-H} =$ 6.1 Hz, $ZrN(NPh_2)C=NCHMe_2-a)$, 1.17 (d, 3 H, ${}^{3}J_{H-H} = 6.0$ Hz, ZrNCHMe₂-a), 1.08 (d, d, 6 H, ${}^{3}J_{H-H} = 6.1$ and 5.5 Hz, ZrN^{iPr}C(NⁱPr)NCHMe₂-b and ZrN(NPh₂)C=NCHMe₂-b), 0.57 (d, 3 H, ${}^{3}J_{H-H}$ = 6.0 Hz, ZrNCHMe₂-b) ppm. ${}^{13}C$ NMR (benzene- d_{6} , 150.9 MHz, 295 K): δ 176.3 (NCN_{xyl}), 147.7 (ZrN^{iPr}C=NⁱPr), 146.6 (ipso-C₆H₃Me₂), 146.1 (ipso-Ph), 145.5 (ZrN(NPh₂)C=NⁱPr), 137.9 (m-C₆H₃Me₂), 129.2 (m-Ph-a), 128.5 (m-Ph-b), 123.3 (p-C₆H₃Me₂), 123.2 (C₅Me₅), 120.7 (*p*-*Ph*-b), 120.5 (*o*-C₆H₃Me₂), 120.4 (*p*-*Ph*-a), 120.2 (o-Ph-a), 116.2 (o-Ph-b), 53.7 (CH₂N), 52.8 ($ZrN^{iPr}C =$ NCHMe₂), 50.6 (ZrN^{iPr}C(N^{iPr})NCHMe₂), 45.3 (ZrNCHMe₂), 45.2 $(ZrN(NPh_2)C=NCHMe_2)$, 33.1 (CH_2CNN) , 26.4 $(ZrN(NPh_2)C=$ NCHMe₂-a), 26.1 (ZrNCHMe₂-a), 25.2 (ZrNCHMe₂-b), 24.3 $(ZrN^{iPr}\tilde{C}=NCHMe_2-a)$, 24.0 $(ZrN^{iPr}C=NCHMe_2-b)$, 23.4 (CH_2CH_2CNN) , 21.6 $(C_6H_3Me_2)$, 21.3 $(ZrN(NPh_2)C=NCHMe_2$ b), 20.8 ($ZrN^{iPr}C(N^{iPr})NCHMe_2$ -a), 20.5 ($ZrN^{iPr}C(N^{iPr})NCHMe_2$ -b), 11.7 (C_5Me_5) ppm. ¹⁵N NMR (benzene- d_6 , 60.81 MHz, 295 K): δ 114 ($ZrN^{iPr}C(N^{iPr})N^iPr$), 123 (NNPh₂), 168 (NCNxyl), 184 (NCNxyl), 211 (NNPh₂), 216 (ZrN^{iPr}C=NⁱPr), 224 (ZrNⁱPr), 244 (Zr(NNPh₂)- $C = N^{i}Pr$) ppm. IR (KBr): ν 2962 (m), 2911 (m), 2859 (m), 1662 (s), 1602 (s), 1521 (s), 1490 (s), 1446 (m), 1375 (m), 1319 (m), 1292 (m), 1228 (m), 1191 (m), 1098 (m), 1011 (m), 951 (w), 887 (w), 804 (m), 746 (m), 693 (m), 534 (w) cm⁻¹. Anal. Calcd: C, 67.96; H, 8.08; N, 13.21. Found: C, 67.95; H, 7.39; N, 13.64.

 $[Cp*Zr(N_{Xvl}N){\kappa^2-N(NPh_2)CHPhNPh}]$ (9). A 300 mg portion (0.418 mmol) of Cp*Zr(NxvIN)(NNPh2)dmap (3a) was dissolved in 10 mL of toluene, and 68 mg (0.376 mmol) of N-phenylbenzimine was added. After the mixture was stirred for 2 days, the solvent was removed under reduced pressure and the residue washed with hexane to yield 193 mg (0.215 mmol, 51%) of a brown solid. $^1\mathrm{H}$ NMR (benzene- d_{6} , 600.1 MHz, 295 K): δ 7.53 (d, 2 H, ${}^{3}J_{H-H}$ = 7.1 Hz, o-CHPh), 7.24 (t, 2 H, ${}^{3}J_{H-H} = 7.4$ Hz, m-NNPh), 7.22 (s, 1 H, CHPh), 7.14-7.07 (m, H, CH-Ar, o- and m-ZrNPh, p-C₆H₃Me₂), 7.06-7.02 (m, H, CH-Ar,), 6.96-6.91 (m, H, CH-Ar, p-NNPh), 6.77 (d, 2 H, ${}^{3}J_{H-H} = 7.3 \text{ Hz}, o-\text{NPh}), 6.69 (s, 2 \text{ H}, o-C_{6}H_{3}\text{Me}_{2}), 6.61 (d, 2 \text{ H}, {}^{3}J_{H-H})$ = 7.8 Hz, o-Ph), 3.63-3.55 (m, 1 H, CH₂N-a), 3.47-3.41 (m, 1 H, CH₂N-b), 2.37 (m, 1 H, CH₂CNN-a), 2.05 (m, 1 H, CH₂CNN-b), 2.04 (s, 6 H, C₆H₃Me₂), 1.94 (s, 15 H, C₅Me₅), 1.47 (m, 1 H, CH₂CH₂CNN-a), 1.36 (m, 1 H, CH₂CH₂CNN-b) ppm. ¹³C NMR (benzene-d₆, 150.9 MHz, 295 K): δ 175.2 (NCN), 148.1 (ipso- $C_6H_3Me_2$, 145.1 (ipso-Ph), 144.2 (ipso-Ph), 138.5 (m- $C_6H_3Me_2$), 136.8 (ipso-Ph), 135.7, 130.1 (CH Ar), 128.8 (CH Ar), 126.7 (o-CHPh), 126.1 (o-Ph-b), 124.7 (p-C₆H₃Me₂), 123.0 (o-C₆H₃Me₂), 122.9 (C₅Me₅), 117.9 (o-NNPh₂), 116.9 (o-Ph-c), 66.7 (CHPh), 54.4 (CH₂N), 29.8 (CH₂CNN), 23.7 (CH₂CH₂CNN), 21.3 (C₆H₃Me₂), 11.3 (C₅Me₅) ppm. ¹⁵N NMR (benzene- d_{6} , 60.81 MHz, 295 K): δ 335

(ZrNNPh₂), 196 (ZrNNPh₂), 173 (NCNxyl), 149 (ZrNPh) ppm. IR (KBr): ν 3025 (w), 2908 (m), 2857 (m), 1602 (s), 1560 (m), 1522 (s), 1490 (s), 1376 (m), 1289 (m), 1263 (m), 1229 (m), 1176 (w), 1095 (m), 1063 (w), 1025 (w), 1009 (w), 950 (w), 874 (w), 805 (m), 751 (m), 693 (m), 657 (w) cm⁻¹. Anal. Calcd: C, 72.64; H, 6.61; N, 9.01. Found: C, 72.31; H, 6.88; N, 8.20.

 $[Cp*Zr(N_{XvI}N){\kappa^2-N(Ph)-o-phenylene-C(Ph)=C(Ph)NH}]$ (10). A 200 mg portion (0.279 mmol) of Cp*Zr(N_{Xvl}N)(NNPh₂)dmap (3a) was dissolved in 10 mL of toluene, 50 mg (0.279 mmol) of diphenylacetylene was added, and the solution was stirred for 3 days at room temperature. The solvent was subsequently removed under reduced pressure, and 5 mL of pentane was added and removed under reduced pressure to yield 135 mg (0.133 mmol, 48%) of the DMAP adduct as a brown solid. ¹H NMR (benzene- d_6 , 600.1 MHz, 295 K): δ 7.45 (d, 1 H, ${}^{3}J_{H-H} = 7.9$ Hz, ZrN(Ph)phenylene-5), 7.30 (td, 1 H, ${}^{3}J_{H-H} = 7.1$ Hz, ${}^{4}J_{H-H} = 2.2$ Hz, ZrN(Ph)phenylene-2), 7.27 (t, 2 H, ${}^{3}J_{H-H} = 7.8$ Hz, m-NPh), 7.22 (d, 2 H, ${}^{3}J_{H-H} = 7.2$ Hz, o-Ph-b), 7.08 (d, 2 H, ${}^{3}J_{H-H}$ = 7.9 Hz, o-NPh), 6.91 (t, 1 H, p-NPh), 6.90 (d, 2 H, ${}^{3}J_{H-H} = 7.5$ Hz, o-Ph-a), 6.87 (t, 2 H, ${}^{3}J_{H-H} = 7.3$ Hz, m-Ph), 6.82 (d, 2 H, ${}^{3}J_{H-H} = 7.1$ Hz, m-Ph), 6.81–6.75 (m, 4 H, CH ar), 6.69 (s, 2 H, o- $C_6H_3Me_2$), 6.68 (s, 1 H, p- $C_6H_3Me_2$), 6.12 (s, 1 H, NH), 3.48–3.39 (m, 2 H, CH₂N), 2.38 (s, 6 H, C₆H₃Me₂), 1.90 (s, 15 H, C₅Me₅) ppm. 13 C NMR (benzene- d_{6} , 150.9 MHz, 295 K): δ 174.3 (NCN), 154.4 (ipso-Ph), 154.1 (NHC(Ph)=CPh), 153.0 (ipso-NPh), 151.6 (ZrN-(Ph)phenylene-1), 149.6 (ipso- $C_6H_3Me_2$), 148.2 (ipso-ZrNHC(Ph)= C(Ph)), 147.4 (ipso-Ph), 140.8 (ipso-NHC(Ph)=CPh), 137.6 (m-C₆H₃Me₂), 135.2 (CH ar), 134.4 (C ar), 133.1 (*o*- and *p*-Ph), 129.3 (C ar), 128.5, 128.4 (m-Ph and p-Ph), 127.5 (CH ar), 126.3 (o-Ph), 124.8 (p-C₆H₃Me₂), 124.5 (CH ar), 124.0 (CH ar), 122.8 (o-Ph), 122.7 (o- $C_6H_3Me_2$), 122.3 (CH ar), 120.4 (C_5Me_5), 111.8 (NHC(Ph)=CPh), 52.3 (CH₂N), 29.4 (CH₂CNN), 24.3 (CH₂CH₂CNN), 21.8 (C₆H₃Me₂), 11.9 (C₅Me₅) ppm. ¹⁵N NMR (benzene-d₆, 60.81 MHz, 295 K): δ 214 (ZrNPh), 200 (d, ${}^{1}J_{N-H}$ = 65 Hz, ZrNH), 177 (NCN_{xyl}) ppm. IR (KBr, cm⁻¹): ν 3386 (w), 3023 (w), 2963 (m), 2908 (m), 2857 (m), 1594 (s), 1521 (s), 1492 (s), 1446 (s), 1375 (m), 1315 (m), 1289 (m), 1262 (m), 1228 (m), 1182 (w), 1097 (m), 1069 (m), 950 (w), 875 (w), 804 (m), 748 (s), 694 (s), 619 (w), 535 (w). Anal. Calcd: C, 74.47; H, 6.51; N, 7.24. Found: C, 74.34; H, 6.91; N, 6.96.

 $[Zr(N_2^{TBS}N_{py})\{\kappa^2-N(NPh_2)C(N^iPr)N^iPr\}] (12). A 300 mg portion$ (0.400 mmol) of $Zr(N_2^{TBS}N_{py})(NNPh_2)py$ (11) was dissolved in toluene, and 62 μ L (0.400 mmol) of ⁱPrNCNⁱPr was added. After the mixture was stirred at room temperature for 30 min, the solvent was removed under reduced pressure and the residue washed with pentane to yield 185 mg (0.234 mmol, 54%) of a yellow solid. The product contained two isomers in a 5:1 ratio. Crystals suitable for X-ray diffraction were grown from a concentrated toluene solution. Data for the major component are as follows. ¹H NMR (benzene-d₆, 600.1 MHz, 295 K): δ 9.02 (d, 1 H, ${}^{3}J_{H-H}$ = 5.6 Hz, Py-H6), 7.67 (d, 4 H, ${}^{3}J_{H-H}$ = 7.9 Hz, o-Ph), 7.22 (t, 4 H, ${}^{3}J_{H-H}$ = 7.6 Hz, m-Ph), 6.94 (t, 1 H, ${}^{3}J_{H-H}$ = 7.6 Hz, Py-H4), 6.80 (t, 2 H, ${}^{3}J_{H-H}$ = 7.1 Hz, p-Ph), 6.75 (d, 1 H, ${}^{3}J_{H-H}$ = 7.9 Hz, Py-H3), 6.38 (t, 1 H, ${}^{3}J_{H-H}$ = 6.5 Hz, Py-H5), 4.72 (sep, 1 H, ${}^{3}J_{H-H} = 5.8$ Hz, C=NCHMe₂), 4.40 (sep, 1 H, ${}^{3}J_{H-H} = 6.2$ Hz, ZrNCHMe₂), 3.90 (d, 2 H, ${}^{2}J_{H-H}$ = 12.4 Hz, CH₂-a), 3.26 (d, 2 H, ${}^{2}J_{H-H} = 12.4$ Hz, CH₂-b), 1.78 (d, 6 H, ${}^{3}J_{H-H} = 6.2$ Hz, ZrNCHMe₂), 1.19 (d, 6 H, ${}^{3}J_{H-H} = 5.8$ Hz, C=NCHMe₂), 0.97 (s, 3 H, CH₃), 0.78 (s, 18 H, SiMe₂CMe₃), 0.39 (s, 6 H, SiMe₂CMe₃-a), -0.02 (s, 6 H, SiMe₂CMe₃-b) ppm. ¹³C NMR (benzene- d_{6} , 150.9 MHz, 295 K): δ 160.6 (Py-C2), 153.7 (C=NⁱPr), 148.3 (ipso-Ph), 147.2 (Py-C6), 140.4 (Py-C4), 129.0 (m-Ph), 122.6 (Py-C5), 121.2 (Py-C3), 120.9 (p-Ph), 119.4 (o-Ph), 62.5 (CH₂), 48.4 (Py-C1), 48.0 (ZrNCHMe₂), 44.7 (C=NCHMe₂), 27.9 (SiCMe₃), 27.6 (C=NCHMe₂), 26.8 (CH₃), 25.2 (ZrNCHMe₂), 19.8 (SiCMe₃), -3.3 (SiMe₃), -4.4 (SiMe₃) ppm. $^{15}{\rm N}$ NMR (benzene- $d_{6\prime}$ 60.81 MHz, 295 K): δ 277 (Py-N), 214 (ZrNⁱPr), 203 (C=NⁱPr), 64 (TBS-NZr) ppm. Data for the minor component are as follows. ¹H NMR (benzene- d_6 , 600.1 MHz, 295 K): δ 8.48 (d, 1 H, ${}^{3}J_{H-H}$ = 5.6 Hz, Py-H6), 7.42 (d, 4 H, ${}^{3}J_{H-H}$ = 7.9 Hz, o-Ph), 7.18 (m, overlaid by benzene-d₆, m-Ph), 7.12 (m, 1 H, Py-H3), 6.87 (t, 2 H, ${}^{3}J_{H-H} = 7.3$ Hz, p-Ph), 6.60 (t, 1 H, ${}^{3}J_{H-H} = 6.0$ Hz, Py-H5), 4.26 (m, 1 H, C=NCHMe₂), 3.31 (d, ${}^{2}J_{H-H}$ = 12.3 Hz, CH₂-a), 3.30

(d, ${}^{2}J_{H-H} = 12.3$ Hz, CH_{2} -b), 3.11 (d, ${}^{2}J_{H-H} = 12.2$ Hz, CH_{2} -a), 3.09 (d, ${}^{2}J_{H-H} = 12.2$ Hz, CH_{2} -b), 2.81 (m, 1 H, ZrNCHMe₂), 1.34 (s, 3 H, CH_{3}), 1.10 (d, 6 H, ${}^{3}J_{H-H} = 6.4$ Hz, $C=NCHMe_{2}$), 0.92 (s, 18 H, SiCMe₃), 0.68 (d, 6 H, ${}^{3}J_{H-H} = 6.0$ Hz, $ZrNCHMe_{2}$), 0.01 (SiMe), 0.00 (SiMe) ppm; Py-H3 not observed. ${}^{13}C$ NMR (benzene- $d_{6^{1}}$ 150.9 MHz, 295 K): δ 166.3 (Py-C2), 159.2 ($C=NCHMe_{2}$), 150.3 (ipso-Ph), 149.1 (Py-C6), 135.7 (Py-C4), 129.0 (m-Ph), 122.0 (p-Ph), 121.8 (Py-C5), 121.0 (o-Ph), 51.2 (CH₂), 48.5 (Py-C1), 43.8 ($C=NCHMe_{2}$), 42.7 (ZrNCHMe₂), 26.8 (SiCMe₃), 21.1 (CH₃), 18.7 (SiCMe₃), -4.7 (SiMe), -4.8 (SiMe) ppm. IR (KBr): ν 3064 (w), 2955 (m), 2927 (m), 2882 (m), 2854 (m), 1592 (s), 1491 (s), 1472 (m), 1387 (m), 1310 (w), 1246 (m), 1175 (m), 1044 (m), 1020 (m), 908 (w), 851 (m), 830 (s), 774 (m), 748 (m), 691 (m), 669 (m), 593 (w), 511 (w) cm⁻¹. Anal. Calcd: C, 60.71; H, 8.28; N, 12.39. Found: C, 60.37; H, 7.87; N, 12.27.

 $[Zr(N_2^{TBS}N_{pv})]{\kappa^2-N(NPh_2)CHPhNPh}]$ (13). A 350 mg portion (0.470 mmol) of $Zr(N_2^{TBS}N_{pv})(NNPh_2)py$ (11) was dissolved in 10 mL of toluene, and 85 mg (0.470 mmol) of N-phenylbenzimine (Nbenzylideneaniline) was added. After the mixture was stirred for 3 h, the solvent was removed under removed pressure and the residue washed with hexane to yield 228 mg (0.269 mmol, 57%) of a yellow solid. Crystals suitable for X-ray diffraction were grown from a concentrated solution in toluene. ¹H NMR (benzene-d₆, 600.1 MHz, 295 K): δ 9.05 (d, 1 H, ${}^{3}J_{H-H}$ = 5.2 Hz, Py-H6), 7.80 (d, 2 H, ${}^{3}J_{H-H}$ = 7.5 Hz, o-CHPh), 7.24-7.17 (m, 8 H, m-CHPh, o-NPh, o-NNPh₂), 7.08 (t, 1 H, ${}^{3}J_{H-H} = 7.3$ Hz, *p*-CHPh), 6.98 (t, 1 H, ${}^{3}J_{H-H} = 7.7$ Hz, *p*-NPh), 6.94–6.76 (broad m, 2 H, NNPh₂), 6.83 (t, 1 H, ${}^{3}J_{H-H} = 7.7$ Hz, Py-H4), 6.72 (d, 1 H, ${}^{3}J_{H-H} = 8.1$ Hz, Py-H3), 6.70–6.64 (m, 3 H, *m*-NP*h* and NNP*h*₂), 6.35 (s, 1 H, CHPh), 6.31 (t, 1 H, ${}^{3}J_{H-H} = 6.5$ Hz, Py-H5), 4.15 (d, 1 H, ${}^{2}J_{H-H} = 12.5$ Hz, CH₂-a), 4.08 (d, 1 H, ${}^{2}J_{H-H} = 12.2 \text{ Hz}, \text{ CH}_{2}\text{-b}), 3.39 \text{ (d, 1 H, } {}^{2}J_{H-H} = 11.9 \text{ Hz}, \text{ CH}_{2}\text{-b}), 3.37$ (d, 1 H, ${}^{2}J_{H-H} = 12.1$ Hz, CH_{2} -a), 1.02 (s, 3 H, CH_{3}), 0.87 (s, 9 H, CMe3-a), 0.80 (s, 9 H, CMe3-b), 0.46 (s, 3 H, SiMe-b), 0.23 (s, 3 H, SiMe-b), 0.19 (s, 3 H, SiMe-a), -0.27 (s, 3 H, SiMe-a) ppm. ¹³C NMR (benzene-d₆, 150.9 MHz, 295 K): δ 160.9 (Py-C2), 151.9 (ipso-CHPh), 147.0 (Py-C6), 142.3 (ipso-NPh), 140.3 (Py-C4), 129.1 (o-CHPh), 129.0 (CH Ar), 127.3 (CH Ar), 126.1 (CH Ar), 123.5 (CH Ar), 122.6 (Py-C5), 121.3 (CH Ar), 121.0 (Py-C3), 116.8 (m-NPh), 74.6 (CHPh), 63.0 (CH2-a), 62.8 (CH2-b), 48.5 (Py-C1), 28.2 (CMe3a), 27.8 (CMe₃-b), 25.5 (CH₃), 19.6, 19.5 (CMe₃-a and b), -2.4 (SiMe-b), -3.0 (SiMe-b), -3.6 (SiMe-a), -5.1 (SiMe-a) ppm. ¹⁵N NMR (benzene-d₆, 60.81 MHz, 295 K): δ 335 (ZrNNPh₂), 301 (NSi^tBuMe₂-b), 299 (NSi^tBuMe₂-a), 278 (PyN), 183 (ZrNPh) ppm; NNPh₂ not observed. IR (KBr): ν 3061 (w), 3025 (w), 2952 (w), 2926 (w), 2853 (w), 1588 (m), 1489 (m), 1385 (w), 1316 (m), 1257 (m), 1109 (m), 1085 (m), 1039 (m), 995 (m), 909 (m), 849 (s), 830 (s), 775 (s), 750 (s), 693 (s), 669 (m), 636 (w), 611 (w), 587 (m) cm⁻¹ Anal. Calcd; C, 65.27; H, 7.38; N, 9.93. Found: C, 65.82; H, 7.45; N, 9.50

General Procedure for Catalytic *N*-Aminoguanidine Synthesis. A 0.05 mmol portion of catalyst 3a was dissolved in 1 mL of toluene. A 1.0 mmol portion of diisopropylcarbodiimide and 1.1 mmol of diphenylhydrazine were dissolved in 1 mL of toluene, and the solutions were combined and heated to 105 °C for 24 h. The reaction mixture was then diluted with 120 mL of diethyl ether and filtered through a pad of alumina, the solvent was removed under reduced pressure, and the crude product was purified by column chromatography (DCM with 5% MeOH, 0.5% NEt₃, 80 g of silica). A 309 mg amount (0.99 mmol, 99%) of a yellow solid was obtained. NMR spectra were in good agreement with those found in the literature.⁵⁶

Computational Studies. All molecular structures were optimized using the B3PW91 hybrid functional^{39,40} with a 631G(d) basis set⁴⁶ for C, H, N, Li, and Si and a pseudopotential for Zr (SDD+f) and Hf (SDD)⁴¹⁻⁴⁵ using the Gaussian09 program package.⁵⁷ Energy minima were verified by frequency analysis. The coordinates of the minimum structures are provided in the Supporting Information.

The modeling of the NMR chemical shifts has been carried out, utilizing the DFT-optimized structures, with the GIAO method⁴⁷⁻⁴⁹ employing the B3PW91 hybrid functional with a 6311++G(2d,2p) basis set for C, H, and N and a pseudopotential (SDD+f) for Zr.

X-ray Crystal Structure Determinations. Crystal data and details of the structure determinations are given in the Supporting Information. Full shells of intensity data were collected at low temperature (complex 13, 100 K; all others, 110 K) with a Bruker AXS Smart 1000 CCD diffractometer (Mo K α radiation, sealed tube, graphite monochromator) (complex 13) or a Agilent Technologies Supernova-E CCD diffractometer (Mo or Cu K α radiation, microfocus tube, multilayer mirror optics). Data were corrected for air and detector absorption, Lorentz, and polarization effects; 58,59 absorption by the crystal was treated with a semiempirical multiscan method (complexes 3a, 12, and 13)⁶⁰⁻⁶² or was treated analytically (complex $(7)^{59,63}$ or numerically (Gaussian grid) (complexes **3b** and **4**).⁵⁹ The structures were solved by the charge flip procedure⁶⁴ and refined by full-matrix least-squares methods based on F^2 against all unique reflections.⁶⁵ All non-hydrogen atoms were given anisotropic displacement parameters. Hydrogen atoms were generally input at calculated positions and refined with a riding model. When justified by the quality of the data, the positions of some hydrogen atoms were taken from difference Fourier syntheses and refined. When found necessary, disordered groups and/or solvent molecules were subjected to suitable geometry and adp restraints. Crystals of 12 were twinned; after detwinning (approximately twin fractions 0.52:0.48) refinement was carried out against all singles and composites involving both domains.

ASSOCIATED CONTENT

S Supporting Information

Tables, text, figures, and CIF, .mol, and .xyz files giving crystallographic data for 3a,b, 4, 7, 12, and 13, all computed molecule Cartesian coordinates in a format for convenient visualization, and details on the computational studies. This material is available free of charge via the Internet at http:// pubs.acs.org.

AUTHOR INFORMATION

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

We thank the Deutsche Forschungsgemeinschaft for funding (SFB 623, TP A7), Alexander Kochan for help with ligand synthesis, Tim Bleith and Jürgen Schulmeister for help with the DFT calculations, and Markus Enders and Beate Termin for support in connection with the NMR studies.

REFERENCES

(1) Wiberg, N.; Häring, H.; Huttner, G.; Friedrich, P. Chem. Ber. 1978, 111, 2708.

(2) (a) Blake, A. J.; Collier, P. E.; Dunn, S. C.; Li, W. S.; Mountford, P.; Shishkin, O. V. J. Chem. Soc., Dalton Trans. 1997, 1549–1558.
(b) Swallow, D.; McInnes, J. M.; Mountford, P. J. Chem. Soc., Dalton Trans. 1998, 2253. (c) Li, Y.; Shi, Y.; Odom, A. L. J. Am. Chem. Soc. 2004, 126, 1794. (d) Parsons, T. B.; Hazari, N.; Cowley, A. R.; Green, J. C.; Mountford, P. Inorg. Chem. 2005, 44, 8442. (e) Patel, S.; Li, Y.; Odom, A. L. Inorg. Chem. 2007, 46, 6373. (f) Selby, J. D.; Manley, C. D.; Schwarz, A. D.; Clot, E.; Mountford, P. Organometallics 2008, 27, 6479. (g) Janssen, T.; Severin, R.; Diekmann, M.; Friedemann, M.; Haase, D.; Saak, W.; Doye, S.; Beckhaus, R. Organometallics 2010, 29, 1806. (h) Selby, J. D.; Feliz, M.; Schwarz, A. D.; Clot, E.; Mountford, P. Organometallics 2011, 30, 2295.

(3) Blake, A.; McInnes, J. M.; Mountford, P.; Nikonov, G. I.; Swallow, D.; Watkin, D. J. Dalton Trans. **1999**, 379.

(4) Selby, J. D.; Manley, C. D.; Feliz, M.; Schwarz, A. D.; Clot, E.; Mountford, P. *Chem. Commun.* **2007**, 4937.

(5) Selby, J. D.; Schulten, C.; Schwarz, A. D.; Stasch, A.; Clot, E.; Jones, C.; Mountford, P. *Chem. Commun.* **2008**, 5101.

(6) Clulow, A. J.; Selby, J. D.; Cushion, M. G.; Schwarz, A. D.; Mountford, P. Inorg. Chem. 2008, 47, 12049.

- (7) Weitershaus, K.; Wadepohl, H.; Gade, L. H. Organometallics 2009, 28, 3381.
- (8) Schofield, A. D.; Nova, A.; Selby, J. D.; Manley, C. D.; Schwarz, A. D.; Clot, E.; Mountford, P. J. Am. Chem. Soc. **2010**, 132, 10484.
- (9) Tiong, P.-J.; Schofield, A. D.; Selby, J. D.; Nova, A.; Clot, E.; Mountford, P. Chem. Commun. 2010, 46, 85.
- (10) Schofield, A. D.; Nova, A.; Selby, J. D.; Schwarz, A. D.; Clot, E.; Mountford, P. Chem. Eur. J. 2011, 17, 265.

(11) Tiong, P. J.; Nova, A.; Groom, L. R.; Schwarz, A. D.; Selby, J. D.; Schofield, A. D.; Clot, E.; Mountford, P. *Organometallics* **2011**, *30*, 1182.

(12) Schwarz, A. D.; Onn, C. S.; Mountford, P. Angew. Chem., Int. Ed. 2012, 51, 12298.

(13) Tiong, P. J.; Nova, A.; Schwarz, A. D.; Selby, J. D.; Clot, E.; Mountford, P. Dalton Trans. 2012, 41, 2277.

(14) Weitershaus, K.; Lloret Fillol, J.; Wadepohl, H.; Gade, L. H. Organometallics 2009, 28, 4747.

(15) Tiong, P. J.; Nova, A.; Clot, E.; Mountford, P. Chem. Commun. 2011, 47, 3147.

(16) Schweizer, P. D.; Wadepohl, H.; Gade, L. H. Organometallics 2013, 32, 3697.

(17) Banerjee, S.; Odom, A. L. Organometallics 2006, 25, 3099.

- (18) (a) Cao, C.; Shi, Y.; Odom, A. L. Org. Lett. 2002, 2853.
- (b) Banerjee, S.; Barnea, E.; Odom, A. L. Organometallics 2008, 27, 1005.

(19) (a) Banerjee, S.; Cao, C.; Shi, Y.; Odom, A. L. J. Organomet. Chem. 2005, 690, 5066. (b) Majumder, S.; Gipson, K. R.; Odom, A. L. Org. Lett. 2009, 11, 4720. (c) Dissanayake, A. A.; Odom, A. L. Chem. Commun. 2011, 48, 440.

- (20) Walsh, P. J.; Carney, M. J.; Bergman, R. G. J. Am. Chem. Soc. 1991, 113, 6343.
- (21) Herrmann, H.; Fillol, J. L.; Gehrmann, T.; Enders, M.; Wadepohl, H.; Gade, L. H. *Chem. Eur. J.* **2008**, *14*, 8131.
- (22) Herrmann, H.; Lloret Fillol, J.; Wadepohl, H.; Gade, L. H. Angew. Chem., Int. Ed. 2007, 46, 8426.
- (23) Gehrmann, T.; Lloret Fillol, J.; Scholl, S. A.; Wadepohl, H.; Gade, L. H. Angew. Chem., Int. Ed. 2011, 50, 5757.
- (24) Scholl, S. A.; Wadepohl, H.; Gade, L. H. Organometallics 2013, 32, 937.
- (25) Scholl, S. A.; Plundrich, G. T.; Wadepohl, H.; Gade, L. H. Inorg. Chem. 2013, 52, 10158.

(26) Gehrmann, T.; Lloret Fillol, J.; Wadepohl, H.; Gade, L. H. Angew. Chem., Int. Ed. 2009, 48, 2152.

- (27) Gehrmann, T.; Lloret Fillol, J.; Wadepohl, H.; Gade, L. H. Organometallics 2010, 29, 28.
- (28) Gehrmann, T.; Lloret Fillol, J.; Wadepohl, H.; Gade, L. H. Organometallics 2012, 31, 4504.
- (29) Gehrmann, T.; Kruck, M.; Wadepohl, H.; Gade, L. H. Chem. Commun. 2012, 48, 2397.
- (30) Gehrmann, T.; Plundrich, G. T.; Wadepohl, H.; Gade, L. H. Organometallics 2012, 31, 3346.
- (31) Gehrmann, T.; Lloret-Fillol, J.; Herrmann, H.; Wadepohl, H.; Gade, L. H. Organometallics 2013, 3877.
- (32) Gehrmann, T.; Scholl, S. A.; Fillol, J. L.; Wadepohl, H.; Gade, L. H. Chem. Eur. J. 2012, 18, 3925.
- (33) Ward, B. D.; Risler, H.; Weitershaus, K.; Bellemin-Laponnaz, S.; Wadepohl, H.; Gade, L. H. *Inorg. Chem.* **2006**, *45*, 7777.

(34) (a) Sita, L. R.; Babcock, J. R. Organometallics 1998, 17, 5228.
(b) Zhang, Y.; Reeder, E. K.; Keaton, R. J.; Sita, L. R. Organometallics 2004, 23, 3512.

(35) Herrmann, H.; Wadepohl, H.; Gade, L. H. Dalton Trans. 2008, 2111.

(36) (a) Breher, F.; Grunenberg, J.; Lawrence, S. C.; Mountford, P.; Rüegger, H. Angew. Chem., Int. Ed. 2004, 43, 2521. (b) Fernández, I.; Oña-Burgos, P.; Armbruster, F.; Krummenacher, I.; Breher, F. Chem. Commun. 2009, 2586.

(37) (a) de Vries, T. S.; Bruneau, A. M.; Liou, L. R.; Subramanian, H.; Collum, D. B. *J. Am. Chem. Soc.* **2013**, *135*, 4103. (b) Ma, Y.; Stivala, C. E.; Wright, A. M.; Hayton, T.; Liang, J.; Keresztes, I.; Lobkovsky, E.; Collum, D. B.; Zakarian, A. *J. Am. Chem. Soc.* **2013**, *135*, 16853. (c) Reich, H. J.; Goldenberg, W. S.; Gudmundsson, B. Ö.; Sanders, A. W.; Kulicke, K. J.; Simon, K.; Guzei, I. A. *J. Am. Chem. Soc.* **2001**, *123*, 8067. (d) Waldmüller, D.; Kotsatos, B. J.; Nichols, M. A.; Williard, P. G. *J. Am. Chem. Soc.* **1997**, *119*, 5479. (e) Lucht, B. L.;

Collum, D. B. J. Am. Chem. Soc. **1996**, 118, 3529. (38) Chiu, M.; Hoyt, H. M.; Michael, F. E.; Bergman, R. G.; van

Halbeek, H. Angew. Chem., Int. Ed. 2008, 6073. (39) Becke, A. D. J. Chem. Phys. 1993, 98, 5648.

- (40) Perdew, J. P.; Wang, Y. Phys. Rev. B 1992, 45, 13244.
- (41) Fuentealba, P.; Preuss, H.; Stoll, H.; Szentpály, L. V. Chem. Phys. Lett. 1982, 89, 418.
- (42) Fuentealba, P.; Stoll, H.; Szentpály, L. V.; Schwerdtfeger, P.; Preuss, H. J. Phys. B 1983, 16, L323.
- (43) Szentpály, L. V.; Fuentealba, P.; Preuss, H.; Stoll, H. Chem. Phys. Lett. 1982, 93, 555.
- (44) Dolg, M.; Wedig, U.; Stoll, H.; Preuss, H. J. Chem. Phys. 1987, 86, 866.
- (45) Andrae, D.; Haeussermann, U.; Dolg, M.; Stoll, H.; Preuss, H. Theor. Chem. Acc. **1990**, 77, 123.

(46) Foster, J. P.; Weinhold, F. J. Am. Chem. Soc. 1980, 102, 7211.

- (47) McWeeny, R. Phys. Rev. B 1962, 126, 1028.
- (48) Ditchfield, R. Mol. Phys. 1974, 27, 789.
- (49) Wolinski, K.; Hinton, J. F.; Pulay, P. J. Am. Chem. Soc. 1990, 112, 8251.
- (50) (a) Vujkovic, N.; Ward, B. D.; Maisse-François, A.; Wadepohl,
- H.; Mountford, P.; Gade, L. H. Organometallics 2007, 26, 5522. (b) Vujkovic, N.; Fillol, J. L.; Ward, B. D.; Wadepohl, H.; Mountford,
- P.; Gade, L. H. Organometallics **2008**, 27, 2518.

(51) Groom, L. R.; Schwarz, A. D.; Nova, A.; Clot, E.; Mountford, P. Organometallics **2013**, 7520.

- (52) (a) Meyer, K. E.; Walsh, P. J.; Bergman, R. G. J. Am. Chem. Soc. 1994, 116, 2669. (b) Meyer, K. E.; Walsh, P. J.; Bergman, R. G. J. Am. Chem. Soc. 1995, 117, 974. (c) Krska, S. W.; Zuckerman, R. L.; Bergman, R. G. J. Am. Chem. Soc. 1998, 120, 11828. (d) Zuckerman, R.
- L.; Krska, S. W.; Bergman, R. G. J. Am. Chem. Soc. 2000, 122, 751. (53) Guiducci, A. E.; Boyd, C. L.; Mountford, P. Organometallics
- **2006**, 25, 1167. (54) Wannagat, U.; Niederpröm, H. Z. Anorg. Allg. Chem. **1961**, 310,
- 32. (55) (a) Zolgifol, M. A.; Ghaemi, E.; Madrakian, E.; Kiany-Borazjani,
- M. Synth. Commun. 2000, 30, 2057. (b) Poirier, R. H.; Benington, F. J. Am. Chem. Soc. 1952, 74, 3192.
- (56) Koller, J.; Bergman, R. G. Organometallics 2010, 29, 5946.
- (57) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, J. A., Jr.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, J. M.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, Ö.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. Gaussian09, Revision A.1; Gaussian, Inc., Wallingford, CT, 2004.
- (58) SAINT; Bruker AXS, Karlsruhe, Germany, 1997–2011.
- (59) CrysAlisPro; Agilent Technologies UK Ltd., Oxford, U.K., 2013.(60) Blessing, R. H. Acta Crystallogr. 1995, A51, 33.
- (61) (a) Sheldrick, G. M. SADABS; Bruker AXS, Karlsruhe, Germany, 2004–2012. (b) Sheldrick, G. M. TWINABS; Bruker AXS, Karlsruhe, Germany, 2004–2012.
- (62) SCALE3 ABSPACK, CrysAlisPro; Agilent Technologies UK Ltd., Oxford, U.K., 2013.
- (63) Clark, R. C.; Reid, J. S. Acta Crystallogr. 1995, A51, 887.

(64) (a) Palatinus, L. SUPERFLIP; EPF Lausanne, Lausanne, Switzerland, 2007. (b) Palatinus, L.; Chapuis, G. J. Appl. Crystallogr. 2007, 40, 786.

(65) (a) Sheldrick, G. M. SHELXL-2013; University of Göttingen, Göttingen, Germany, 2013. (b) Sheldrick, G. M. Acta Crystallogr. **2008**, A64, 112.