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A B S T R A C T

Two isoreticular microporous Zn(II)-MOFs, [Zn2(NH2-BDC)2(4-bpdh)]·3DMF (TMU-16-NH2) and [Zn2(BDC)2(4-
bpdh)]·3DMF (TMU-16), (NH2-BDC= amino-1,4-benzenedicarboxylate, BDC=1,4-benzenedicarboxylate and
4-bpdh= 2,5-bis(4-pyridyl)-3,4-diaza-2,4-hexadiene) were used as heterogeneous catalysts. The TMU-16-NH2

was used as an efficient heterogeneous base catalyst for the three-component cyclocondensation of 1,3-di-
methylbarbituric acid, aryl aldehydes and malononitrile, giving rise to pyrano[2,3-d]pyrimidines. The ease of
catalyst synthesis, excellent conversions and reusability of the catalyst for five consecutive cycles without a
significant degradation in its catalytic activity, suggests significant future potential of this metal-organic fra-
mework for a wide range of base catalyzed reactions.

Metal–organic frameworks are crystalline compounds consisting of
infinite lattices built up of the inorganic secondary building unit (SBU,
metal ions, or clusters) and organic linkers, connected by coordination
bonds of moderate strength. MOFs contain three well-differentiated

parts where the catalytic function can be allocated: the metallic com-
ponent, the organic linker, and the pore space [1]. These materials have
shown a variety of enormous potential applications including (but not
limited to) gas adsorption [2], separations [3], luminescent [4], drug
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delivery [5] and sensing [6]. Over the last few years, abundant ex-
amples in literature have demonstrated the potential of MOFs in cata-
lysis [7–11]. 4H-Pyrans and pyrimidinones are very important organic
compounds with a wide range of biological activities. These compounds
are reported to possess significant antibacterial, anticoagulant, antic-
ancer, spasmolytic, diuretic, antianaphylactic, antihypertensive and
anti-inflammatory activities [12–18]. On the other hand, pyrano[2,3-d]
pyrimidines have received considerable attention over the past years
due to their wide range of the diverse pharmacological action such as
antitumor, cardiotonic, hepatoprotective, antihypertensive and anti-
bronchitic activity [19–23]. These compounds are generally synthe-
sized via a one-pot three-component cyclocondensation of 1,3-di-
methylbarbituric acid, aryl aldehydes and malononitrile in the presence
of several catalysts such as 1,8-diazabicyclo[5.4.0]undec-7-ene [24],
MgO [25], PEG-stabilized Ni nanoparticles [26], ZnFe2O4 nanoparticles
[27], KF [28] and Mn/ZrO2 [29]. Synthesis of these compounds using
microwave irradiation [30] and electrocatalytic procedure in the

presence of sodium bromide as electrolyte [31] have been also re-
ported. However, most of these methodologies suffer from dis-
advantages such as unsatisfactory yields, long reaction times and the
use of relatively expensive catalysts. These finding prompted us toward
further investigation in search for a new catalyst which will carry out
the synthesis of these compounds under simpler experimental set up
and eco-friendly conditions [32]. Continuing to our previous work [33],
in this work we wish to report the utilization of isostructural two-fold
interpenetrated microporous metal-organic framework, [Zn2(NH2-
BDC)2(4-bpdh)]·3DMF (TMU-16-NH2) as an efficient heterogeneous
catalyst for the condensation of 1,3-dimethylbarbituric acid, aryl al-
dehydes and malononitrile to achieve biologically interest Pyrano[2,3-
d]pyrimidines. TMU-16-NH2 is a pillared-layer MOFs like those was
reported previously [34–37]. High catalytic activity was observed and
catalyst could be reused without significant degradation in activity.
Avoiding the utilization of harmful solvents in this environmentally
friendly process is particularly appealing.

Fig. 1. Representations of the two-fold interpenetration (a) TMU-16-NH2, highlighting the amine groups and (b) TMU-16, which contain 1D channels of 3 Å, viewed
along the rectangular diagonal of the paddle-wheel clusters. All hydrogen atoms and the disordered guest molecules are omitted for clarity.

Fig. 2. PXRD of (a) TMU-16-NH2: simulated (black), as-synthesized (blue), immersed in water for 2 h (green), and recovered after five runs, (b) TMU-16: simulated
(black), as-synthesized (red), and immersed in water for 2 h (green). (For interpretation of the references to color in this figure legend, the reader is referred to the
web version of this article.)
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[Zn2(NH2-BDC)2(4-bpdh)]·3DMF (TMU-16-NH2) is a two-fold in-
terpenetrated pillared-layer microporous Zn-MOF [38, 39]. TMU-16-
NH2 is composed of paddle-wheel dinuclear zinc carboxylate units
Zn2(COO)4, which are bridged by the NH2-BDC ligands to form a dis-
torted 2D square grid. The 2D square grids are pillared by 4-bpdh
molecules to form a 3D framework with a topology that can be de-
scribed as a primitive cubic lattice (RCSR symbol pcu) [38, 39]. Two of
the 3D frameworks interpenetrate in TMU-16-NH2, reducing the pore
size resulted in a 1D channel in the direction of the rectangular diagonal
of the paddle-wheel clusters with a cross section of approximately
3.1×3.2 Å in cross section (including van der Waals radii) (Fig. 1a)
[38]. Furthermore to investigate the influence of amine group on the
catalytic activity, the pores in the MOF became free of reactive groups
(-NH2) without changing the SBU or the underlying framework to-
pology. The non-functionalized isoreticular framework, [Zn2(BDC)2(4-
bpdh)]·3DMF (TMU-16) was used as another heterogeneous catalyst
(Fig. 1b). TMU-16 and TMU-16-NH2 are isostructural and crystallize in
the monoclinic space group C2/c [38]. The phase purity of the bulk
materials were independently confirmed by powder X-ray diffraction
(PXRD). The powder X-ray diffraction data show that the two com-
pounds are isotypic to each other (Fig. 2). The comparison of the cal-
culated free volume of the compounds by PLATON shows that it varies
in decrements from 3648.4 Å3 per unit cell (42.7% of the cell volume)
in TMU-16 to 2286.1 Å3 (27.6%) in TMU-16-NH2 [40].

TGA data indicate that TMU-16-NH2 and TMU-16 release their guest
molecules over the temperature ranges 25–230 and 25–280 °C to form
the guest-free phases, [Zn2(NH2-BDC)2(4-bpdh)] and [Zn2(BDC)2(4-
bpdh)], respectively (Fig. S1 in the SI). Weight losses of about 23%
were measured for both MOFs, which are attributed to the loss of 3DMF
(calc.: ~24%). The networks TMU-16-NH2 and TMU-16 are thermally
stable up to 320 and 360 °C, respectively, as evidenced by the fact that
no additional weight loss was observed at those temperatures, after
which the frameworks eventually decompose.

To characterize the possible catalytic behavior of TMU-16-NH2,
three component reaction of 1,3-dimethylbarbituric acid, benzaldehyde
and malononitrile, in the presence of TMU-16-NH2 in different solvents
was performed. It can be deduced from these results that higher yields
were achieved in polar protic solvents, whereas the reaction occurred
with difficulty in solvents with lower polarity (Table 1). Methanol and
ethanol are more polar than acetonitrile. As a result, the reaction effi-
ciency is higher in these solvents. However, the reactions under solvent-
free condition were slow. It should be pointed out that in the absence of
catalyst, the reaction was slow and even after prolonged reaction time,
considerable amounts of starting materials remained unreacted. Cata-
lytic activity of TMU-16-NH2 is as a result of -NH2 and azine groups in
its structure. The results of applying TMU-16 in three component re-
action of 1,3-dimethylbarbituric acid, benzaldehyde and malononitrile
approved this and indicate that the catalytic activity decreased in the
absence of -NH2 group (Table 2). TMU-16-NH2 unlike IRMOF-3, is

stable in water (Fig. 2a) and the reaction in the presence of TMU-16-
NH2 that was carried out in water, proceeded to 96% yield after 1 h. To
examine the general application of the catalyst (TMU-16-NH2), we ex-
tended the scope of the reaction to the synthesis of various Pyrano[2,3-
d]pyrimidines under the above-mentioned optimized conditions
(Table 3). These reactions proceeded smoothly and no undesirable side
reactions were observed. Both electron donating and withdrawing
groups on the phenyl ring were well tolerated affording the expected
products in good yields. Substrates with electron withdrawing sub-
stituents are more reactive in the reaction, because they are more re-
active toward nucleophilic attack. As a result, yield of the reaction in
the presence of them is higher. In addition, TMU-16-NH2 could be re-
used at least 5 runs without any loss in its activity (Fig. 3). So that
powder PXRD (Fig. 2) the FT-IR data (Fig. 4) data showed no changes in
its structure. Thus the integrity of the framework is confirmed.

In summary, two MOFs, Zn(NH2-BDC)(4-bpdh)]·2DMF (TMU-16-

Table 1
The one-pot three component reaction of benzaldehyde, malononitrile and 1,3-
dimethylbarbituric acid in different solvents.

Entry Solvent Yield (%)

1 EtOH 96
2 MeOH 85
3 H2O 98
4 n-Hexane 4
5 CH3CN 42
6 Toluene 16
7 – 10

Table 2
The reaction in the presence of TMU-16 and TMU-16-NH2.

Entry Catalyst Yield (%)

1 TMU-16 40
2 TMU-16-NH2 98
3 – 0

Table 3
The reaction in the presence of TMU-16 and TMU-16-NH2.

Entry Ar Yield (%) M.p. (°C) Reported

Found

1 C6H5 98 216–218 219–220
2 4-MeO-C6H4 84 221–223 225–226
3 4-Br-C6H4 86 231–233 235
4 4-NO2-C6H4 100 214–216 217–219
5 4-Cl-C6H4 90 198–200 200
6 2-NO2-C6H4 100 202–204 206
7 3-NO2-C6H4 100 204–206 204–206

Fig. 3. Recyclability of TMU-16-NH2 in the reaction.
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NH2) and [Zn(BDC)(4-bpdh)]·2DMF (TMU-16), were used as hetero-
geneous catalysts. These two MOFs can be used as solid catalysts for
selective synthesis of Pyrano[2,3-d]pyrimidines. The reaction in the
presence of TMU-16-NH2 is faster because of basic –NH2 group in its
structure. No contribution from leached active species present in the
liquid phase was detected. The catalyst can be easily separated from the
reaction mixture by simple decantation, and can be reused several times
without a significant degradation in its activity, thus offering a route to
green chemistry transformations.
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