



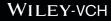
Chemistry Europe

European Chemical

Societies Publishing

European Journal of Organic Chemistry

Accepted Article


Title: Iodolactonization of 3-Alkynylthiophene-2-Carboxylic and 3-Alkynylpicolinic Acids for the Synthesis of Fused Heterocycles

Authors: Raffaella Mancuso, Mariangela Novello, Patrizio Russo, Antonio Palumbo Piccionello, and Bartolo Gabriele

This manuscript has been accepted after peer review and appears as an Accepted Article online prior to editing, proofing, and formal publication of the final Version of Record (VoR). This work is currently citable by using the Digital Object Identifier (DOI) given below. The VoR will be published online in Early View as soon as possible and may be different to this Accepted Article as a result of editing. Readers should obtain the VoR from the journal website shown below when it is published to ensure accuracy of information. The authors are responsible for the content of this Accepted Article.

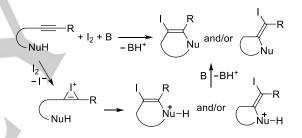
To be cited as: Eur. J. Org. Chem. 10.1002/ejoc.202000468

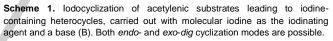
Link to VoR: https://doi.org/10.1002/ejoc.202000468

WILEY-VCH

Iodolactonization of 3-Alkynylthiophene-2-Carboxylic and 3-Alkynylpicolinic Acids for the Synthesis of Fused Heterocycles

Raffaella Mancuso,*^[a] Mariangela Novello,^[a] Patrizio Russo,^[a] Antonio Palumbo Piccionello,^[b] and Bartolo Gabriele*^[a]


[a]	Dr. R. Mancuso, M. Novello, P. Russo, Prof. Dr. B. Gabriele
	Laboratory of Industrial and Synthetic Organic Chemistry (LISOC), Department of Chemistry and Chemical Technologies
	University of Calabria
	Via Pietro Bucci 12/C, 87036 Arcavacata di Rende (CS), Italy
	E-mail: raffaella.mancuso@unical.it (R. M.), bartolo.gabriele@unical.it (B. G.).
	URL: https://www.unical.it/portale/strutture/dipartimenti_240/ctc/didattica/homedid/docenti/ricercatori/mancusor/ (R.M.)
	URL: https://www.unical.it/portale/strutture/dipartimenti_240/ctc/didattica/homedid/docenti/ordinari/gabriele/# (B.G.)
[b]	Prof. Dr. A. Palumbo Piccionello,
	Department of Biological, Chemical and Pharmaceutical Science and Technology-STEBICEF
	University of Palermo
	Viale delle Scienze Ed.17, Palermo 90128, Italy
	Supporting information for this article is given via a link at the end of the document.


Abstract: The iodolactonization of 3-alkynylthiophene-2-carboxylic acids and 3-alkynylpicolinic acids has been investigated. Using I₂ as the iodine source and NaHCO3 as the base in MeCN, the process place smoothly to afford thienopyranones took and pyranopyridinones, respectively, from 6-endo-dig cyclization. The method also worked nicely for the transformation 2of (phenylethynyl)thiophene-3-carboxylic acid and 3-(phenylethynyl)isonicotinic acid into 7-iodo-6-phenyl-4H-thieno[3,2c]pyran-4-one and 4-iodo-3-phenyl-1H-pyrano[4,3-c]pyridin-1-one, respectively. Although with some 3-alkynylpicolinic acids the process led to a mixture of the 6-endo-dig and 5-exo-dig products, it could be still made selective toward the pyranopyridinone compound working in 1-ethyl-3-methylimidazolium ethyl sulfate as the solvent. On the other hand, the exclusive formation of the 5-exo-dig product was observed in N-ethyl-N-methylmorpholinium dicyanamide starting from 3-(3,3-dimethylbut-1-yn-1-yl)picolinic acid. Some representative iodinated thienopyridinone products were successfully used as substrates for Pd-catalyzed Suzuki and Sonogashira reactions.

Introduction

lodocyclization of acetylenic substrates bearing a suitably placed nucleophilic group is a powerful method for the direct synthesis of a variety of iodine-containing heterocyclic derivatives.^[11] The process usually occurs using molecular iodine as iodinating agent in the presence of a base to buffer the hydrogen iodide that is formally eliminated in the process, as shown in Scheme 1. The intermediate formation of an iodonium species is generally accepted as the key mechanistic step, which is then followed by either *exo*- or *endo*-cyclization (Scheme 1). The resulting products bearing an iodovinyl moiety can be further conveniently decorated by cross-coupling reactions to afford more complex heterocyclic motifs.

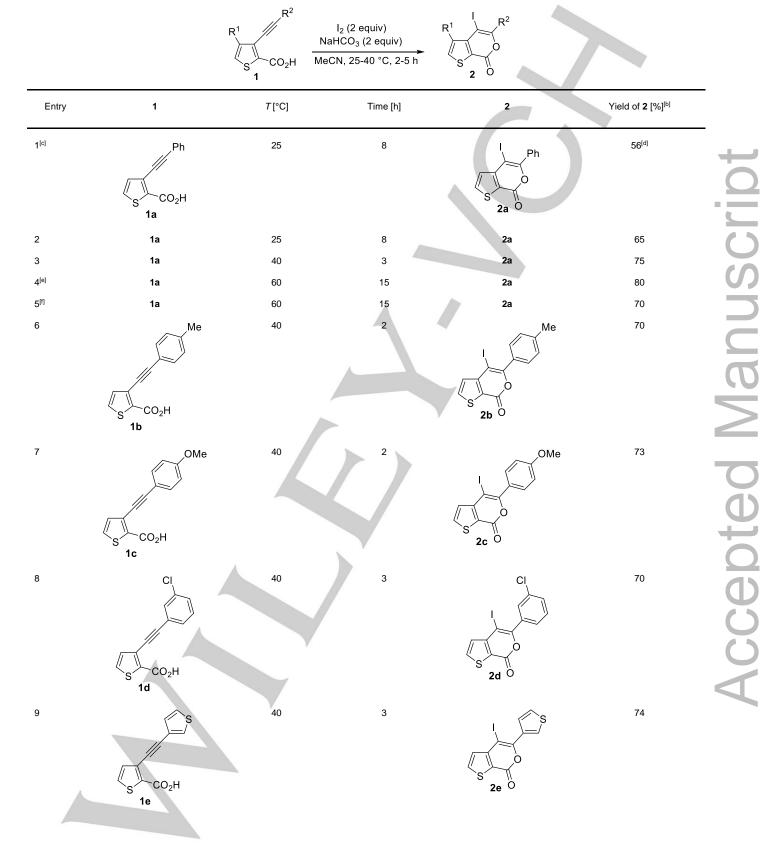
We recently studied the iodolactonization of simple 2alkynylbenzoic acids to give either isobenzofuranones or isochromenones, depending on reaction conditions.^[2] Here, we report an extension of this kind of reactivity to the use of 3alkynylthiophene-2-carboxylic acids **1** and 3-alkynylpicolinic acids **3** aimed at developing a simple and convenient new protocol for the direct synthesis of important iodinated fused heterocyclic derivatives.^[3]

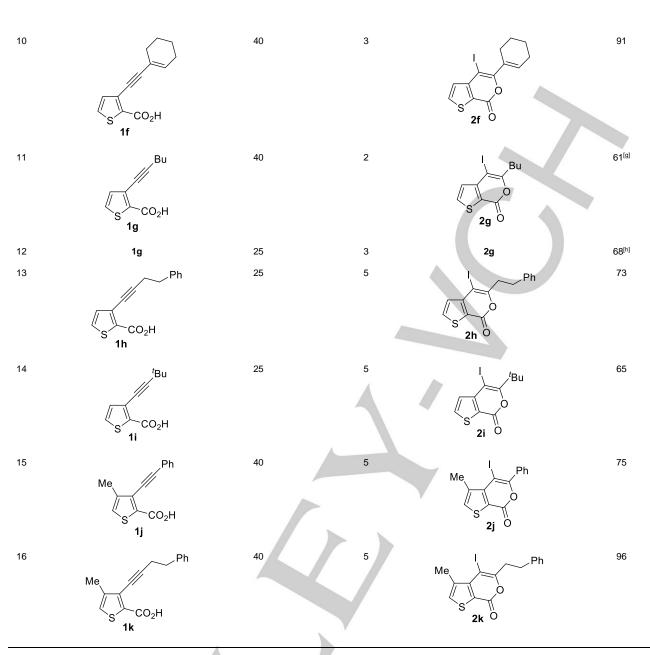
Results and Discussion

The 3-alkynylthiophene-2-carboxylic acids **1** and 3alkynylpicolinic acids **3** used as substrates in this work were prepared by Sonogashira coupling of the corresponding methyl 3-halothiophene-2-carboxylates and methyl 3-bromopicolinate (commercially available) with terminal alkynes followed by hydrolysis, as depicted in Schemes S1 and S2 (Supporting Information) and detailed in the Experimental Section.

To assess the reactivity 3-alkynylthiophene-2-carboxylic acids under iodocyclization conditions, we used 3-(phenylethynyl)thiophene-2-carboxylic acid **1a** as initial substrate. The first experiment was carried out with 1.5 equiv of l_2 and NaHCO₃ in MeCN at room temperature. After 8 h, analysis of the reaction mixture evidenced a substrate conversion of 75% and the formation of a single product, which was isolated and identified as 4-lodo-5-phenyl-7*H*-thieno[2,3-*c*]pyran-7-one **2a** (yield: 56%, Table 1, entry 1). Substrate conversion was quantitative using 2 equiv of iodine and the base, either after 8 h at rt or after 3 h at 40 °C, with a **2a** yield of 65% (Table 1, entry 2) and 75% (Table 1, entry 3) respectively.

The reaction could also be performed

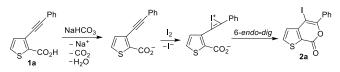



Table 1. Synthesis of 4-lodo-7*H*-thieno[2,3-*c*]pyran-7-ones 2 by Regioselective lodolactonization of 3-Alkynylthiophene-2-Carboxylic Acids 1.^[a]

WILEY-VCH

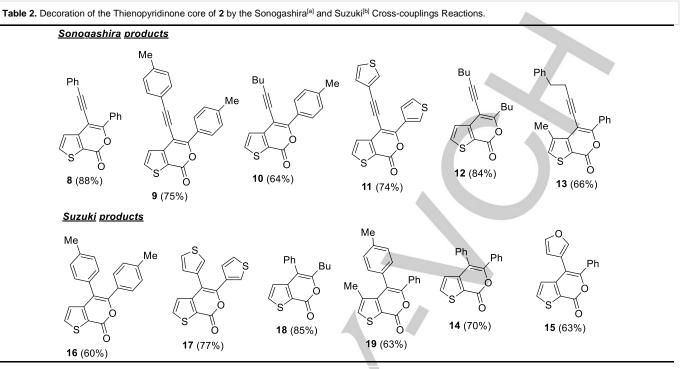
2

This article is protected by copyright. All rights reserved.


WILEY-VCH

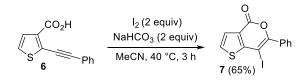
[a] Unless otherwise noted, all reactions were carried using 2 equiv of l₂ and 2 equiv of NaHCO₃ in MeCN as the solvent (0.05 mmol of **1** per mL of MeCN) with a substrate scale of 0.25 mmol. Products yields were even higher when representative experiments were carried out in a larger scale (2.2 mol of **1**; see the Experimental Section for details). [b] Isolated yield, based on starting material **1**. [c] The reaction was carried out with 1.5 equiv of l₂ and 1.5 equiv of NaHCO₃. [d] Substrate conversion was 75% (determined by isolation of unreacted **1a**). [e] The reaction was carried out in 1-ethyl-3-methylimidazolium ethyl sulfate (EmimEtSO₄) as the solvent (0.2 mmol of **1a** per mL of solvent) in the absence of NaHCO₃. [f] The reaction also led to the formation of 5-butyl-7*H*-thieno[2,3-*c*]pyran-7-one **5** in 17% yield. [h] The reaction also led to the formation of **5** in 10% yield.

in the absence of NaHCO₃ in a basic ionic liquid (IL) as the solvent (such as 1-ethyl-3-methylimidazolium ethyl sulfate (EmimEtSO₄) or *N*-ethyl-*N*-methylmorpholinium dicyanamide (Mor_{1,2}N(CN)₂), even though the substrate conversion rate was slower, so the process was carried out at 60 °C for 15 h (Table 1, entries 4 and 5). The regiochemical output of the process, however, did not change, as **2a** was still formed exclusively.


Considering the presence of the carboxylic group in the substrate, it is most likely that the cyclization takes place after substrate deprotonation by the base, as shown in Scheme 2.

Scheme2.ProposedMechanismfortheRegioselective6-endo-digIodolactonization of 3-(Phenylethynyl)thiophene-2-carboxylic acid1a to 4-lodo-5-phenyl-7H-thieno[2,3-c]pyran-7-one2a.

WILEY-VCH


10.1002/ejoc.202000468

[a] Sonogashira reactions were carried out with an alkyne: **2** molar ratio = 2.2 in the presence of catalytic amounts of PdCl₂(PPh₃)₂ (10 mol%) and Cul (6 mol%) in Pr_2NH as the solvent (0.1 mmol of **2** per mL of solvent) at 70 °C for 24 h. [b] Suzuki reactions were carried out with a boronic acid: **2** molar ratio = 1.2 in the presence of catalytic amounts of Pd(PPh₃)₄ (1 mol%) and Cs₂CO₃ (1.4 equiv) in DMF as the solvent (0.035 mmol of **2** per mL of DMF) at 80 °C for 24 h.

The method was then extended to other 3-alkynylthiophene-2-carboxylic acids, bearing different aryl and alkyl groups on the triple bond (Table 1, entries 6-16). Substrates bearing a p-tolyl (1b), p-methoxyphenyl (1c), or m-chlorophenyl group on the triple bond behaved similarly to 1a and, under the same conditions as those of entry 3, led to the corresponding iodothienopyranones 2b-d in good yields (70-73%, respectively) after 2-3 h reaction time (Table 1, entries 6-8). A heteroaryl grup, such as 3-thienyl (1e), as well as an alkenyl group, like 1cyclohexenyl (1f), were also well tolerated, and the corresponding iodothienopyranone products 2e and 2f were formed in 74% and 91% yields, respectively (Table 1, entries 9 and 10). The reaction of 3-(hex-1-yn-1-yl)thiophene-2-carboxylic acid 1g, substituted with a butyl group, was less chemoselective, and led to a mixture of iodothienopyranone 2g and thienopyranone 5 (from a simple cycloisomerization process) in 61% and 17% yields, respectively (Table 1, entry 11). A more selective reaction toward 2g, however, could be achieved by carrying out the process a room temperature for 3 h (yields of 2g and 5 were 68% and 10%, respectively, Table 1, entry 12). 3-(4-Phenylbut-1-yn-1-yl)thiophene-2-carboxylic acid 1h was slightly less reactive, as its conversion reached 100% after 5 h at rt, but the corresponding iodothienopyranone 2h was formed exclusively in 73% yield (Table 1, entry 13). The method worked nicely even with sterically hindered 3-(3,3-dimethylbut-1-yn-1yl)thiophene-2-carboxylic acid 1i, bering a tert-butyl group on the triple bond, which was converted after 5 h into 5-(tert-butyl)-4iodo-7H-thieno[2,3-c]pyran-7-one 2i with a reasonable yield of 65% (Table 1, entry 14). The presence of a methyl group close to the triple bond did not hinder the iodocyclization process, as demonstrated by the results obtained with substrates **1j** and **1k**, which were converted into the corresponding iodothienopyranones in good to excellent yields (75% and 96%, respectively, Table 1, entries 15 and 16).^[4]

We also tested the reactivity of 2-(phenylethynyl)thiophene-3-carboxylic acid **6**, with the positions of the alkynyl and the carboxylic groups inverted with respect to substrates **1**. As can be seen from Scheme 3, the idocyclization of this substrate was also regioselective, and led to the 6-*endo-dig* product (7-iodo-6phenyl-4*H*-thieno[3,2-*c*]pyran-4-one **7**) in 65% yield.

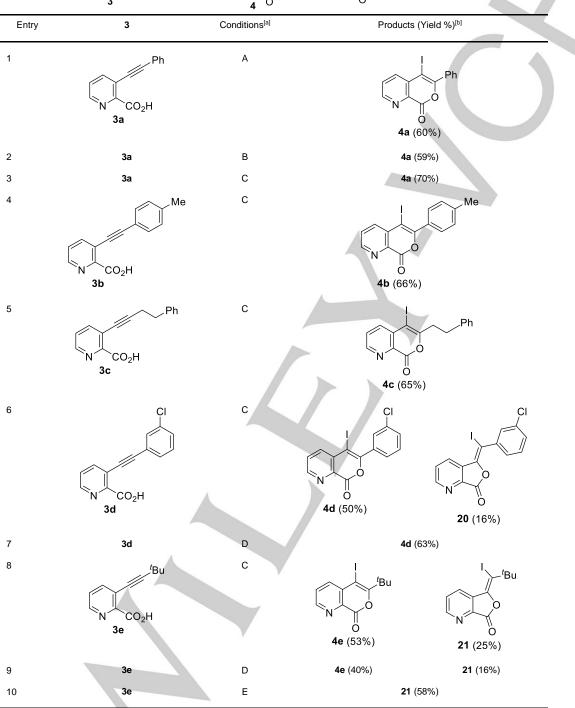
Scheme 3. lodolactonization of 2-(Phenylethynyl)thiophene-3-carboxylic Acid 6 Leading to 7-lodo-6-phenyl-4*H*-thieno[3,2-*c*]pyran-4-one 7.

To expand the synthetic potentiality of the newly prepared iodothienopyranones **2**, we carried out some paradigmatic cross-coupling reactions, such as the Sonogashira and the Suzuki reactions. The results obtained are summarized in Table 2. As can be seen from Table 2, fair to good yields of the corresponding products were obtained with all iodothienopyranones tested, using different terminal alkynes or arylboronic acids as the coupling partners.

European Journal of Organic Chemistry

Table 3. Iodolactonization of 3-Alkynylpicolinic Acids 3 under Different Conditions^[a]

12

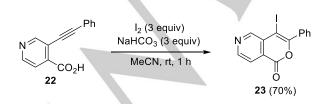

conditions

Ö

CO₂H

3

R


[a] Conditions: A: The reaction was carried using 2 equiv of I2 and 2 equiv of NaHCO3 at 25 °C in MeCN as the solvent (0.05 mmol of 3 per mL of MeCN) for 1 h with a substrate scale of 0.35 mmol. Products yields were even higher when representative experiments were carried out in a larger scale (2.2 mol of 3; see the Experimental Section for details).; B: Same conditions as A, but at 40 °C; C: Same conditions as A, but using 3 equiv of I2 and 3 equiv of NaHCO3; D: The reaction was carried out with 1.5 equiv of I2 in EmimEtSO4 as the solvent (0.2 mmol of 3 per mL of solvent) at 50 °C 3 h in the absence of NaHCO3; E: Same conditions as D, but with $Mor_{1,2}N(CN)_2$ as the solvent. ^[b] Isolated yield, based on starting **3**.

10.1002/ejoc.202000468

WILEY-VCH

The iodolactonization of 3-alkynylpicolinic acids 3 was also studied (Table 3).^[5] 3-(Phenylethynyl)picolinic acid 3a was initially allowed to react with 2 equiv of I2 and 2 equiv of NaHCO3 at 25 °C in MeCN. Substrate conversion was quantitative already after 1 h, with selective formation of 5-iodo-6-phenyl-8Hpyrano[3,4-b]pyridin-8-one 4a (from 6-endo-dig cyclization) in 60% yield (formation of heavy products, that are. chromatographically immobile materials, accounted for the difference between 1a conversion and 4a yield) This relatively low selectivity was probably due to the basic nature of the pyridinic ring, which may interact with iodine.^[6] This result did not improve by rising the temperature at 40 °C (Table 3, entry 2). However, the use of 3 equiv of both I_2 and the base raised the yield to 70% (Table 3, entry 3). Under these latter conditions, other 3-alkynylpicolinic acids 3b and 3c (bearing a p-tolyl or a phenethyl group on the triple bond) behaved similarly, and gave the corresponding iodopyranopyrimidinones 4b and 4c in 66% and 65% vields, respectively (Table 3, entries 4 and 5). On the other hand, the reaction of 3-[(3-chlorophenyl)ethynyl]picolinic acid 3d led to a mixture of the 6-endo-dig product [6-(3chlorophenyl)-5-iodo-8H-pyrano[3,4-b]pyridin-8-one, 4d] and the 5-exo-dia product [(E)-5-[(3chlorophenyl)iodomethylene]furo[3,4-b]pyridin-7(5H)-one, 20] in 50% and 16% yields, respectively (Table 3, entry 6) This is probably due to the steric effect exerted by the metachlorophenyl group, which tends to make the 5-exo-dig process leading to 20 competitive with the 6-endo-dig route leading to 4d. However, the process could be made regioselective toward 4d using EmimEtSO4 as the solvent at 50 °C for 3 h in the absence of NaHCO₃, as shown in Table 3, entry 7. A similar effect of this IL on the regiochemical output of the iodolactonization reaction was observed with simple 2-alkynybenzoic acids, and was confirmed by DFT calculations.^[2] A mixture of regioisomeric 4e and 21 was also obtained in MeCN starting from 3-(3,3dimethylbut-1-yn-1-yl)picolinic acid 3e, bearing a bulky tert-butyl group on the triple bond (Table 3, entry 8), thus confirming the steric effect exerted by the substituent on the triple bond on the regiochemical output of the process. Interestingly, while a mixture was still obtained in EmimEtSO₄ (Table 3, entry 9), the exclusive formation of the 5-exo-dig product 21 was observed in Mor_{1,2}N(CN)₂ (58% yield, Table 3, entry 10), which is in line with the effect of this IL on iodocyclization regioselectivity previously observed with 2-alkynylbenzoic acids.^[2]

The synthetic versatility of the process was further demonstrated by the reaction of 3-(phenylethynyl)isonicotinic acid **22** (isomeric with respect to **3a**) which, under the usual conditions, was smoothly converted into 4-iodo-3-phenyl-1*H*-pyrano[4,3-*c*]pyridin-1-one **23** in 70% yield (Scheme 4).

Scheme 4. lodolactonization of 3-(Phenylethynyl)isonicotinic acid 22 Leading to 4-lodo-3-phenyl-1*H*-pyrano[4,3-*c*]pyridin-1-one 23.

Conclusion

In conclusion, we have reported that iodocyclization of 3alkynylthiophene-2-carboxylic acids 1 and 3-alkynylpicolinic acids 3 takes place under mild reaction conditions (25-40 °C) in MeCN as the solvent using 2-3 equiv of I_2 as the iodine source and NaHCO₃ as the base. With 3-alkynylthiophene-2-carboxylic acids, the process is completely regioselective, and affords the 6-endo-dig cyclization products (4-iodo-7H-thieno[2,3-c]pyran-7ones 2) in fair to excellent yields (65-96%). In a similar manner, 3-alkynylpicolinic acids 3 are selectively converted into and 5iodo-8H-pyrano[3,4-b]pyridin-8-ones 4 in 50-70% yields. With some picolinic substrates, however, the reaction also leads to negligible amounts of the 5-exo-dig product not [iodomethylene]furo[3,4-b]pyridin-7(5H)-one derivative], but the process can still be made selective toward either the pyranopyridinone or the furopyridinone product working in an appropriate basic ionic liquid [EmimEtSO₄ or Mor_{1.2}N(CN)₂] as the solvent in the absence of NaHCO₃. Some representative iodinated thienopyridinone products were successfully used as substrates for Pd-catalyzed cross-coupling reactions.

Experimental Section

General Experimental Methods. Solvent and chemicals were reagent grade and were used without further purification. All reactions were analyzed by TLC on silica gel 60 F254 and by GLC using capillary columns with polymethylsilicone + 5% phenylsilicone as the stationary phase. Column chromatography was performed on silica gel 60 (70-230 mesh) or neutral alumina (90-170). Evaporation refers to the removal of solvent under reduced pressure. Melting points are uncorrected. ¹H NMR and ¹³CNMR spectra were recorded at 25 °C on a 300 Spectrometer in CDCl₃ and DMSO- d_6 with Me₄Si as internal standard. Chemical shifts (δ) and coupling constants (J) are given in ppm and in Hz, respectively. IR spectra were taken with an FT-IR spectrometer. Mass spectra were obtained using a GC-MS apparatus at 70 eV ionization voltage (normal resolution) and by electrospray ionization mass spectrometry (ESI-MS) (high resolution) with a UHD accurate-mass Q-TOF spectrometer equipped with a Dual AJS ESI source working in positive mode, and were recorded in the 150-1000 m/z range. The LC-MS experimental conditions were as follows: N2 was employed as desolvation gas at 300°C and a flow rate of 9 L/min. The nebulizer was set to 45 psig. The Sheat gas temperature was set at 350°C and a flow of 12 L/min. A potential of 3.5 kV was used on the capillary for positive ion mode. The fragmentor was set to 175 V.

Preparation of Substrates. 3-Alkynylthiophene-2-carboxylic acids 1a-k, 2-(phenylethynyl)thiophene-3-carboxylic acid 6, 3-alkynylpicolinic acids 3a-e and 3-(phenylethynyl)isonicotinic acid 22 were prepared by Sonogashira coupling of the corresponding methyl 3-halothiophene-2-carboxylate, methyl 2-bromothiophene-3-carboxylate, methyl 3-bromopicolinate, and methyl 3-bromoisonicotinate with terminal alkynes to give methyl alkynylthiophene carboxylates, followed by hydrolysis (Schemes S1 and S2, Supporting Information), as described below.

1st Step: Sonogashira Coupling of Methyl Halothiophene Carboxylates Give with Terminal Alkynes Methvl to Alkynylthiophene Carboxylates. Methyl 3-bromothiophene-2carboxylate, methyl 3-iodo-4-methylthiophene-2-carboxylate, and methyl 2-bromothiophene-3-carboxylate were commercially available. A solution of the methyl halothiophene carboxylate (4.5 mmol; 3-bromothiophene-2carboxylate, 1.00 g; methyl 3-iodo-4-methylthiophene-2-carboxylate, 1.27 g; 2-bromothiophene-3-carboxylate, 1.00 g), PdCl₂(PPh₃)₂ (325.0 mg, 0.46 mmol), Cul (54.0 mg, 0.28 mmol), and the terminal alkyne

(phenylacetylene, 1.01 g; 1-ethynyl-4-methylbenzene, 1.15 g; 1-ethynyl-4-methoxybenzene, 1.31 g; 1-chloro-3-ethynylbenzene, 1.35 g; 3-ethynylthiophene, 1.07 g; 1-ethynylcyclohexene, 1.05 g; 1-hexyne, 0.81 g; but-3-yn-1-ylbenzene, 1.29 g; 3,3-dimethyl-1-butyne, 0.81 g) (9.91 mmol) in anhydrous diisopropylamine (45 mL) was allowed to stir under nitrogen at 70 °C (oil bath) for 15 h. After cooling to room temperature, AcOEt (100 mL) was added, and the mixture was washed with water (3 x 100 mL). The organic layer was washed with a saturated solution of NH₄Cl (1x100 mL) and then water until neutral pH. After drying over Na₂SO₄, the solvent was evaporated, and the residue was purified by column chromatography on silica gel using hexane-AcOEt (9:1) as eluent.

Methyl 3-(*phenylethynyl*)*thiophene-2-carboxylate*. Yield: 827.5 mg, 76% based on methyl 3-bromothiophene-2-carboxylate. Brown solid, mp = 70-72 °C. ¹H NMR (CDCl₃, 300 MHz): δ = 7.63-7.54 (m, 2 H), 7.48-7.43 (m, 1 H), 7.39-7.31 (m, 3 H), 7.22-7.17 (m, 1 H), 3.93 (s, 3 H); ¹³CNMR (CDCl₃, 75 MHz): δ = 161.8, 133.4, 132.1, 131.8, 130.5, 128.8, 128.4, 127.4, 122.9, 95.3, 84.0, 52.2; IR (KBr): v = 2210 (w), 1717 (s), 1697 (s), 1439 (m), 1238 (s), 1099 (m), 1076 (m), 772 (m), 756 (m), 691 (w) cm⁻¹; GC-MS (EI, 70 eV): *m/z* = 242 (M⁺, 100), 227 (73), 211 (35), 199 (27), 171 (18), 139 (99); HRMS-ESI (*m/z*): [(M+H)⁺] cald for C₁₄H₁₁O₂S⁺: 243.0463; found: 243.0467. The spectroscopic data agreed with those reported.^[7]

Methyl 3-(*p*-tolylethynyl)thiophene-2-carboxylate. Yield: 875.5 mg, 76% based on methyl 3-bromothiophene-2-carboxylate. Yellow solid, mp = 72-73 °C. ¹H NMR (CDCl₃, 300 MHz): δ = 7.51-7.43 (m, 3 H), 7.21-7.13 (m, 3 H), 3.93 (s, 3 H), 2.37 (s, 3 H); ¹³CNMR (CDCl₃, 75 MHz): δ = 161.9, 139.0, 133.0, 132.1, 131.7, 130.5, 129.2, 127.6, 119.8, 95.6, 83.4, 52.2, 21.6; IR (KBr): v = 2210 (w), 1717 (s), 1697 (s), 1531 (m), 1435 (m), 1238 (s), 1099 (m), 1076 (m), 818 (m), 775 (m) cm⁻¹; GC-MS (EI, 70 eV): *m*/z = 256 (M⁺, 100), 241 (78), 225 (27), 213 (28), 197 (6), 185 (11), 169 (8), 139 (7), 112 (10), 98 (8); HRMS-ESI (*m*/z): [(M+H)⁺] cald for C₁₅H₁₃O₂S⁺: 257.0631; found: 257.0623. The spectroscopic data agreed with those reported.^[8]

Methyl 3-((4-methoxyphenyl)ethynyl)thiophene-2-carboxylate. Yield: 1.14 g, 94% based on methyl 3-bromothiophene-2-carboxylate. Light yellow solid, mp = 96-98 °C. ¹H NMR (CDCl₃, 300 MHz): δ = 7.52 (d, *J* = 8.7, 2 H), 7.45 (d, *J* = 5.1, 1 H), 7.18 (d, *J* = 5.1, 1 H), 6.89 (d, *J* = 8.7, 2H), 3.93 (s, 3 H), 3.82 (s, 3 H); ¹³CNMR (CDCl₃, 75 MHz): δ = 162.0, 160.0, 133.4, 132.6, 132.0, 130.4, 127.9, 115.0, 114.0, 95.6, 82.9, 55.3, 52.2; IR (KBr): v = 2207 (w), 1713 (s), 1697 (s), 1605 (m), 1531 (s), 1439 (m), 1298 (m), 1238 (s), 1076 (m), 1030 (m), 833 (m), 775 (m) cm⁻¹; GC-MS (EI, 70 eV): *m/z* = 272 (M⁺, 100), 257 (70), 241 (12), 229 (16), 201 (11), 169 (18); HRMS-ESI (*m/z*): [(M+H)⁺] cald for C₁₅H₁₃O₃S⁺: 273.0571; found: 273.0571. The spectroscopic data agreed with those reported.^[8]

Methyl 3-((3-chlorophenyl)ethynyl)thiophene-2-carboxylate. Yield: 1.20 g, 97% based on methyl 3-bromothiophene-2-carboxylate. Yellow solid, mp = 93-94 °C. ¹H NMR (CDCl₃, 300 MHz): δ = 7.59-7.55 (m, 1H), 7.50-7.44 (m, 2 H), 7.36-7.25 (m, 2 H), 7.23-7.18 (m, 1 H), 3.93 (s, 3 H); ¹³CNMR (CDCl₃, 75 MHz): δ = 161.7, 134.2, 133.8, 132.0, 131.6, 130.6, 130.0, 129.6, 129.0, 126.9, 124.6, 93.6, 85.0, 52.3; IR (KBr): v = 1709 (s), 1593 (w), 1435 (m), 1304 (w), 1234 (m), 1076 (m), 941 (m), 772 (s) cm⁻¹; GC-MS (EI, 70 eV): *m/z* = 278 [(M+2)⁺, 41), 276 (M⁺, 100), 263 (24), 261 (62), 247 (16), 245 (40), 226 (28), 175 (15), 173 (46); HRMS-ESI (*m/z*): [(M+H)⁺] cald for C₁₄H₁₀ClO₂S⁺: 277.0084; found: 277.0083.

Methyl 3-(*thiophen-3-ylethynyl*)*thiophene-2-carboxylate*. Yield: 0.94 g, 84% based on methyl 3-bromothiophene-2-carboxylate). Yellow solid, mp = 102-103 °C. ¹H NMR (CDCl₃, 300 MHz): δ = 7.63-7.59 (m, 1 H), 7.56 (d, J = 5.1, 1 H), 7.33-7.29 (m, 1 H), 7.27-7.22 (m, 1 H), 7.19 (d, J = 5.1, 1 H), 3.92 (s, 3 H); ¹³CNMR (CDCl₃, 75 MHz): δ = 161.8, 133.1, 132.1, 130.5, 130.0, 129.6, 127.4, 125.5, 121.9, 90.5, 83.5, 52.2; IR (KBr): v = 2210 (vw), 1701 (s), 1539 (w), 1435 (m), 1281 (m), 1238 (m), 1076 (w), 787 (s) cm⁻¹; GC-MS (EI, 70 eV): m/z = 248 (M⁺, 100), 233 (71), 217 (30),

205 (43), 177 (16), 145 (85); HRMS-ESI (m/z): [(M+H)⁺] cald for C₁₂H₉O₂S₂⁺: 249.0038; found: 249.0039.

Methyl 3-(*cyclohex-1-en-1-ylethynyl*)*thiophene-2-carboxylate.* Yield: 0.84 g, 76% based on methyl 3-bromothiophene-2-carboxylate. Yellow oil. ¹H NMR (CDCl₃, 300 MHz): δ = 7.41 (d, *J* = 5.1, 1 H), 7.09 (d, *J* = 5.1, 1 H), 6.35-6.26 (m, 1 H), 3.89 (s, 3 H), 2.30-2.21 (m 4 H), 2.31-2.11 (m, 2 H), 1,74-1.55 (m, 4 H); ¹³CNMR (CDCl₃, 75 MHz): δ = 161.9, 136.7, 132.5, 132.1, 130.3, 128.1, 120.6, 97.5, 81.5, 52.1, 28.9, 25.9, 22.3, 21.5; IR (film): v = 2203 (w), 1724 (s), 1697 (s), 1524 (m), 1435 (m), 1384 (m), 1231 (s), 1099 (m), 1076 (m), 922 (w), 775 (m) cm⁻¹; GC-MS (EI, 70 eV): *m/z* = 246 (M⁺, 100), 231 (30), 203 (28), 187 (32), 171 (23), 147 (25), 115 (43); HRMS-ESI (*m/z*): [(M+H)⁺] cald for C₁₄H₁₅O₂S⁺: 247.0787; found: 247.0785.

Methyl 3-(*hex-1-yn-1-yl*)*thiophene-2-carboxylate*. Yield: 0.91 g, 91% based on methyl 3-bromothiophene-2-carboxylate). Yellow oil. ¹H NMR (CDCl₃, 300 MHz): δ = 7.40 (d, *J* = 6.9, 1 H), 7.08 (d, *J* = 5.1, 1 H), 3.89 (s, 3 H), 2.49 (t, *J* = 6.9, 2 H), 1.70-1.42 (m, 4 H), 0.95 (t, *J* = 7.2, 3 H); ¹³CNMR (CDCl₃, 75 MHz): δ = 162.0, 132.54, 132.50, 130.2, 128.4, 97.3, 75.2, 52.0, 30.6, 22.0, 19.5, 13.7; IR (film): v = 2234 (w), 1724 (s), 1701 (s), 1524 (m), 1439 (m), 1377 (m), 1273 (m), 1227 (m), 1080 (m), 775 (m) cm⁻¹; GC-MS (EI, 70 eV): *m/z* = 222 (M⁺, 10), 180 (100), 165 (30), 137 (35); HRMS-ESI (*m/z*): [(M+H)⁺] cald for C₁₂H₁₅O₂S⁺: 223.0787; found: 223.0785. The spectroscopic data agreed with those reported.^[8]

Methyl 3-(4-phenylbut-1-yn-1-yl)thiophene-2-carboxylate. Yield: 1.17 g, 96% based on methyl 3-bromothiophene-2-carboxylate. Yellow oil. ¹H NMR (CDCl₃, 300 MHz): δ = 7.39 (d, *J* = 5.1, 1 H), 7.33-7.25 (m, 5 H), 7.04 (d, *J* = 5.1, 1 H), 3.87 (s, 3 H), 2.97 (t, *J* = 7.5, 2 H), 2.81-2.73 (m, 2 H); ¹³CNMR (CDCl₃, 75 MHz): δ = 161.9, 140.6, 132.5, 130.3, 128.5, 128.4, 128.2, 126.3, 96.3, 75.8, 52.1, 34.9, 22.0; IR (film): v = 2234 (w), 1717 (s), 1697 (s), 1524 (m), 1435 (m), 1269 (m), 1223 (s), 1080 (m), 775 (m), 698 (m) cm⁻¹; GC-MS (EI, 70 eV): *m/z* = 270 (M⁺, 5), 269 (15), 238 (38), 149 (13), 91 (100)); HRMS-ESI (*m/z*): [(M+H)⁺] cald for C₁₆H₁₅O₂S⁺: 271.0787; found: 271.0788. Spectroscopic data were in good agreement with those reported.^[9]

Methyl 3-(3,3-*dimethylbut*-1-*yn*-1-*yl*)*thiophene*-2-*carboxylate.* Yield: 0.76 g, 76% based on methyl 3-bromothiophene-2-carboxylate. Yellow oil. ¹H NMR (CDCl₃, 300 MHz): δ = 7.39 (d, *J* = 5.1, 1 H), 7.06 (d, *J* = 5.1, 1 H), 3.89 (s, 3 H), 1.35 (s, 9 H); ¹³CNMR (CDCl₃, 75 MHz): δ = 162.0, 132.8, 132.3, 130.2, 128.2, 105.0, 73.8, 51.9, 30.8, 28.3; IR (film): v = 2222 (m), 1724 (s), 1701 (s), 1524 (m), 1439 (m), 1377 (m), 1242 (s), 1076 (m), 871 (w), 775 (m) cm⁻¹; GC-MS (EI, 70 eV): *m/z* = 222 (M⁺, 30), 207 (100), 175 (68), 163 (94), 148 (55), 147 (60); HRMS-ESI (*m/z*): [(M+H)⁺] cald for C₁₂H₁₅O₂S⁺: 223.0787; found: 223.0787.

Methyl 4-methyl-3-(phenylethynyl)thiophene-2-carboxylate. Yield: 0.82 g, 71% based on methyl 3-lodo-4-methylthiophene-2-carboxylate. Yellow solid, mp = 62.2-63.5 °C.¹H NMR (CDCl₃, 300 MHz): δ = 7.64-7.56 (m, 2 H), 7.39-7.32 (m, 3 H), 7.16-7.12 (m, 1 H), 3.92 (s, 3 H), 2.36 (s, 3 H); ¹³CNMR (CDCl₃, 75 MHz): δ = 162.0, 141.3, 133.0, 131.8, 128.7, 128.44, 128.38, 126.4, 123.1, 97.9, 83.6, 52.1, 15.2; IR (KBr): v = 2210 (w), 1717 (s), 1701 (s), 1454 (m), 1373 (m), 1296 (m), 1227 (s), 1123 (m), 756 (m), 691 (w) cm⁻¹; GC-MS (EI, 70 eV): m/z = 256 (M⁺, 100), 241 (78), 225 (39), 213 (22), 197 (13), 152 (25); HRMS-ESI (m/z): [(M+H)⁺] cald for C₁₅H₁₃O₂S⁺: 257.0631; found: 257.0633.

Methyl 4-methyl-3-(4-phenylbut-1-yn-1-yl)thiophene-2-carboxylate. Yield: 1.16 g, 91% based on methyl 3-lodo-4-methylthiophene-2-carboxylate. Yellow oil. ¹H NMR (CDCl₃, 300 MHz): δ = 7.33-7.19 (m, 5 H), 7.07-7.03 (m, 1 H), 3.85 (s, 3 H), 2.98 (distorted t, *J* =7.2, 2 H), 2.84 (distorted t, *J* =7.2, 2 H), 2.15 (s, 3 H); ¹³CNMR (CDCl₃, 75 MHz): δ = 162.1, 141.6, 140.5, 132.3, 129.2, 128.5, 128.4, 126.3, 126.1, 98.8, 75.4, 52.0, 35.0, 22.0, 15.1; IR (film): v = 2230 (w), 1717 (s), 1694 (m), 1454 (m), 1369 (m), 1273 (s), 1200 (s), 1146 (m), 1080 (m), 1018 (w), 779 (m), 698 (m) cm⁻¹; GC-MS (EI, 70 eV): *m/z* = 284 (M⁺, 6), 283 (12), 252 (78), 237 (17), 225

(17), 193 (31), 169 (30), 163 (22), 91 (100); HRMS-ESI (m/z): [(M+H)⁺] cald for C₁₇H₁₇O₂S⁺: 285.0943; found: 285.0946.

Methyl 2-(*phenylethynyl*)*thiophene-3-carboxylate.* Yield: 0.93 g, 85% based on methyl 2-bromothiophene-3-carboxylate. Yellow oil. ¹H NMR (CDCl₃, 300 MHz): δ = 7.61-7.54 (m, 2 H), 7.44 (d, J = 5.4, 1 H), 7.40-7.32 (m, 3 H), 7.19 (d, J = 5.4, 1 H), 3.91 (s, 3 H, OMe); ¹³CNMR (CDCl₃, 75 MHz): δ = 162.8, 134.1, 131.7, 129.6, 129.0, 128.9, 128.4, 125.8, 122.6, 99.1, 81.8, 51.8; IR (film): v = 2207 (w), 1713 (s), 1524 (w), 1435 (m), 1300 (m), 1242 (s), 1153 (m), 999 (w), 756 (w) cm⁻¹; GC-MS (EI, 70 eV): m/z = 242 (M⁺, 93), 227 (57), 211 (30), 199 (21), 171 (13), 139 (100); HRMS-ESI (m/z): [(M+H)⁺] cald for C₁₄H₁₁O₂S⁺: 243.0474; found: 243.0472.

1st Step: Sonogashira Coupling of Methyl 3-bromopicolinate and Methyl 3-bromoisonicotinate with Terminal Alkynes to Give Methyl 3-Alkynylpicolinate and Methyl 3-(Phenylethynyl)isonicotinate. Methyl 3-bromopicolinate and methyl 3-bromoisonicotinate were commercially available. A solution of methyl 3-bromopicolinate (4.65 mmol; 1.00 g), or methyl 3-bromoisonicotinate (4.65 mmol; 1.00 g), PdCl₂(PPh₃)₂ (327.0 mg, 0.46 mmol), Cul (53.0 mg, 0.28 mmol), the terminal alkyne (phenylacetylene, 1.05 g; 1-ethynyl-4-methylbenzene, 1.20 g; 1-hexyne, 0.84 g; but-3-yn-1-ylbenzene, 1.34 g; 1-chloro-3ethynylbenzene, 1.40 g; 3,3-dimethyl-1-butyne, 0.85 g) (10.3 mmol) in anhydrous diisopropylamine (23 mL) was allowed to stir under nitrogen for at 70 °C (oil bath) for 15 h. After cooling, AcOEt (50mL) was added, and the mixture was washed with water (3 \times 60 mL). The organic layer was washed with a saturated solution of NH₄Cl (1x80 mL) and then with water until neutral pH. After drying over Na2SO4, the solvent was evaporated, and the residue was purified by column chromatography on silica gel using hexane-AcOEt (9:1) as eluent.

Methyl 3-(phenylethynyl)picolinate. Yield: 0.97 g, 88% based on methyl 3-bromopicolinate. Brown solid, mp = 66-68 °C. ¹H NMR (CDCl₃, 300 MHz): δ = 8.63 (d, J = 3.7, 1 H), 7.96 (dd, J = 7.9, 1.1, 1 H), 7.64-7.55 (m, 2 H), 7.43 (dd, J = 7.9, 4.7, 1 H), 7.41-7.31 (m, 3 H), 4.04 (s, 3 H); ¹³CNMR (CDCl₃, 75 MHz): δ = 165.0, 149.1, 148.0, 141.5, 31.8, 129.1, 128.5, 125.4, 122.5, 120.9, 97.3, 85.2, 52.9; IR (KBr): v = 2218 (w), 1732 (s), 1493 (m), 1443 (m), 1296 (s), 1207 (m), 1134 (m), 1088 (m), 760 (m), 691 (m) cm⁻¹; GC-MS (EI, 70 eV): m/z = 237 (M⁺, 87), 222 (20), 179 (100), 178 (67), 177 (29), 166 (35), 151 (55); HRMS-ESI (m/z): [(M+H)⁺] cald for C1₅H₁₂NO₂⁺: 238.0862; found: 238.0872. The spectroscopic data agreed with those reported.^[10]

Methyl 3-(*p*-tolylethynyl)picolinate. Yield: 1.05 g, 90% based on methyl 3-bromopicolinate. Brown solid, mp= 79-81 °C. ¹H NMR (CDCl₃, 300 MHz): $\delta = 8.63$ (d, J = 3.4, 1 H), 7.96 (dd, J = 7.9, 1.5, 1 H), 7.52-7.38 (m, 3 H), 7.17 (d, J = 7.9, 2 H), 4.04 (s, 3 H), 2.38 (s, 3 H, Me); ¹³CNMR (CDCl₃, 75 MHz): $\delta = 165.1$, 149.0, 147.8, 141.4, 139.4, 131.8, 129.2, 125.4, 121.1, 119.5, 97.7, 84.7, 52.9, 21.6; IR (KBr): v = 2218 (m), 1732 (s), 1512 (w), 1447 (m), 1296 (m), 1207 (w), 1134 (w), 1084 (m), 964 (w), 818 (s), cm⁻¹; GC-MS (EI, 70 eV): *m/z* = 251 (M⁺, 100), 236 (30), 208 (19), 194 (15), 193 (54), 180 (22); HRMS-ESI (*m/z*): [(M+H)⁺] cald for C₁₆H₁₄NO₂⁺: 252.1019; found: 252.1025.

Methyl 3-(4-phenylbut-1-yn-yl)picolinate. Yield: 1.07 g, 87% based on methyl 3-bromopicolinate. Brown oil. ¹H NMR (CDCl₃, 300 MHz): δ = 8.58 (dd, *J* = 4.5, 1.1, 1 H), 7.78 (dd, *J* = 7.9, 1.1, 1 H), 7.40-7.19 (m, 6 H), 3.98 (s, 3 H), 2.97 (m, 2 H), 2.79 (m, 2 H); ¹³CNMR (CDCl₃, 75 MHz): δ = 165.3, 149.3, 147.5, 141.9, 140.4, 128.5, 128.4, 126.4, 125.3, 121.3, 98.4, 76.7, 52.8, 34.7, 22.0; IR (film): v = 2234 (w), 1732 (s), 1454 (m), 1420 (w), 1300 (s), 1204 (m), 1134 (m), 1099 (m), 702 (w) cm⁻¹; GC-MS (EI, 70 eV): *m/z* = 265 (M⁺, 14), 264 (41), 250 (17), 232 (29), 206 (31), 204 (34), 116 (15), 91 (100); HRMS-ESI (*m/z*): [(M+H)⁺] cald for C₁₇H₁₆NO₂⁺: 266.1176; found: 266.1174.

Methyl 3-((3-chlorophenyl)ethynyl)picolinate. Yield: 1.07 g, 85% based on methyl 3-bromopicolinate. Brown solid, mp= 70.2-71.0 °C. ¹H NMR

 $\begin{array}{l} (\text{CDCl}_3, \ 300\ \text{MHz}): \ \delta = 8.66\ (\text{dd},\ J = 4.6,\ 1.6,\ 1\ \text{H}),\ 7.97\ (\text{dd},\ J = 7.9,\ 1.6, \\ 1\ \text{H}),\ 7.61\text{-}7.51\ (\text{m},\ 1\ \text{H}),\ 7.51\text{-}7.40\ (\text{m},\ 2\ \text{H}),\ 7.40\text{-}7.28\ (\text{m},\ 2\ \text{H}),\ 4.05\ (\text{s}, \\ 3\ \text{H});\ ^{13}\text{CNMR}\ (\text{CDCl}_3,\ 75\ \text{MHz}):\ \delta = 164.9,\ 149.1,\ 148.3,\ 141.6,\ 134.3, \\ 131.6,\ 130.0,\ 129.7,\ 129.3,\ 125.5,\ 124.2,\ 120.5,\ 95.7,\ 86.3,\ 53.0;\ \text{IR} \\ (\text{KBr}):\ v = 2222\ (vw),\ 1721\ (\text{s}),\ 1474\ (\text{m}),\ 1420\ (\text{m}),\ 1304\ (\text{s}),\ 1088\ (\text{s}), \\ 887\ (\text{m}),\ 810\ (\text{w}),\ 787\ (\text{w}),\ 702\ (\text{m}),\ 679\ (\text{m})\ \text{cm}^{-1};\ \text{GC-MS}\ (\text{EI},\ 70\ \text{eV}): \\ m/z = 273\ [(\text{M+2})^+,\ 35),\ 271\ (\text{M}^+,\ 94),\ 213\ (100),\ 177\ (46),\ 150\ (30); \\ \text{HRMS-ESI\ }(m/z):\ [(\text{M+H})^+]\ \text{cald}\ \text{for}\ C_{15}\text{H}_{11}\text{NO}_2^+:\ 272.0473;\ \text{found:} \\ 272.0474. \end{array}$

Methyl 3-(3,3-*dimethylbut*-1-*yn*-*yl*)*picolinate*. Yield: 0.90 g, 89% based on methyl 3-bromopicolinate. Brown oil. ¹H NMR (CDCl₃, 300 MHz): δ = 8.57 (dd, J = 4.7, 1.7, 1 H), 7.82 (dd, J = 7.9, 1.7, 1 H), 7.37 (dd, J = 7.9, 4.7, 1 H), 4.00 (s, 3 H), 1.35 (s, 9 H); ¹³CNMR (CDCl₃, 75 MHz): δ = 165.5, 149.8, 147.4, 141.4, 125.1, 121.2, 106.9, 75.1, 52.6, 30.6, 28.3; IR (film): v = 2241 (w), 1740 (s), 1450 (m), 1420 (w), 1308 (m), 1292 (m), 1196 (m), 1134 (m), 1096 (m), 810 (m) cm⁻¹; GC-MS (EI, 70 eV): m/z = 217 (M⁺, 34), 202 (87), 187 (37), 186 (21), 158 (100), 142 (47), 130 (23), 115 (31); HRMS-ESI (m/z): [(M+H)⁺] cald for C₁₃H₁₆NO₂⁺: 218.1176; found: 218.1169.

Methyl 3-(phenylethynyl)isonicotinate. Yield: 1.07 g, 97% based on methyl 3-bromoisonicotinate. Brown solid, mp= 50-51 °C. ¹H NMR (CDCl₃, 300 MHz): δ = 8.91 (s, br, 1 H), 8.70-8.75 (m, 1 H), 7.78 (d, *J* = 4.8, 1 H), 7.65-7.51 (m, 2 H), 7.45-7.30 (m, 3 H), 4.00 (s, 3 H); ¹³CNMR (CDCl₃, 75 MHz): δ = 165.2, 154.5, 148.5, 138.3, 131.9, 129.1, 128.5, 123.1, 122.5, 119.4, 97.4, 85.0, 52.8; IR (KBr): v= 2218 (w), 1740 (s), 1493 (m), 1435 (m), 1396 (w), 1276 (m), 1099 (m), 964 (w), 756 (m), 671 (m) cm⁻¹; GC-MS (EI, 70 eV): *m/z* = 237 (M⁺, 100), 222 (41), 206 (11), 194 (23), 178 (15), 166 (21), 151 (29); HRMS-ESI (*m/z*): [(M+H)⁺] cald for C₁₅H₁₂NO₂⁺: 238.0862; found: 238.0867.

2nd Step: Hydrolysis of Methyl Alkynylthiophene Carboxylates to Give Alkynylthiophene carboxylic acids 1a-1k and 6. A stirred solution of the methyl alkynylthiophene carboxylate [2.5 mmol; methyl 3-(phenylethynyl)thiophene-2-carboxylate, 610 mg; methyl 3-(ptolylethynyl)thiophene-2-carboxylate, 645 methyl 3-((4mg; methoxyphenyl)ethynyl)thiophene-2-carboxylate, 680 mg; methyl 3-((3chlorophenyl)ethynyl)thiophene-2-carboxylate, 693 mg; methyl 3-(thiophen-3-ylethynyl)thiophene-2-carboxylate, 626 mg; methyl 3-(cyclohex-1-en-1-ylethynyl)thiophene-2-carboxylate, 621 mg; methyl 3-(hex-1-yn-1-yl)thiophene-2-carboxylate, 558 mg; methyl 3-(4-phenylbut-1-yn-1-yl)thiophene-2-carboxylate, 670 mg; methyl 3-(3,3-dimethylbut-1yn-1-yl)thiophene-2-carboxylate, 555 methyl ma: 4-methyl-3-(phenylethynyl)thiophene-2-carboxylate, 643 mg; methyl 4-methyl-3-(4phenylbut-1-yn-1-yl)thiophene-2-carboxylate, 705 mg; methyl 2-(phenylethynyl)thiophene-3-carboxylate, 608 mg] and 1 N NaOH (14.0 mL) in THF (3.0 mL) was heated at 50 °C for 15 h. After cooling to room temperature, the mixture was washed with Et₂O (3 × 15 mL), further cooled with the aid of an ice bath, and neutralized with 1 N HCl. The resulting mixture was extracted at room temperature with CH2Cl2 (3 × 50 mL), and the collected organic layers were dried over Na₂SO₄. Filtration and evaporation of the solvent (at 20 °C, under vacuum) afforded the crude alkynylthiophene carboxylic acids, which were further purified by crystallization with Et₂O/hexane.

3-(*Phenylethynyl*)*thiophene-2-carboxylic acid* (**1a**). Yield: 515 mg, 90% based on methyl 3-(phenylethynyl)thiophene-2-carboxylate. Light yellow solid, mp = 146-147 °C. ¹H NMR (DMSO-*d*₆, 300 MHz): δ = 7.92 (d, *J* = 5.1, 1 H), 7.61-7.51 (m, 2 H), 7.51-7.41 (m, 3 H), 7.36 (d, *J* = 5.1, 1 H); ¹³CNMR (DMSO-*d*₆, 75 MHz): δ = 161.8, 135.0, 132.0, 131.9, 131.3, 129.0, 128.7, 125.7, 122.3, 94.1, 84.4; IR (KBr): v = 2210 (vw), 1744 (s), 1678 (m), 1423 (m), 1258 (w), 918 (m), 775 (m), 752 (s), 691 (m) cm⁻¹; HRMS-ESI (*m/z*): [(M-H)⁻] cald for C₁₃H₇O₂S⁻: 227.0172; found: 227.0172. The spectroscopic data agreed with those reported.^[7]

3-(p-Tolylethynyl)thiophene-2-carboxylic acid (1b). Yield: 502 mg, 83% based on methyl 3-(p-tolylethynyl)thiophene-2-carboxylate. White solid,

WILEY-VCH

mp = 162-164 °C. ¹H NMR (CDCl₃, 300 MHz): δ = 10.93 (s, br, 1 H), 7.55 (d, *J* = 5.1, 1 H), 7.48 (d, *J* = 8.0, 2 H), 7.23 (d, *J* = 5.1, 1 H), 7.13 (d, *J* = 7.8, 2 H), 2.36 (s, 3 H); ¹³CNMR (CDCl₃, 75 MHz): δ= 167.0, 139.1, 132.5, 132.4, 132.0, 131.8, 129.2, 128.9, 119.7, 96.8, 83.3, 21.6; IR (KBr): v= 2210 (vw), 1682 (s), 1659 (s), 1447 (m), 1423 (m), 1300 (m), 1261 (m), 1103 (w), 914 (m), 818 (m), 775 (w) cm⁻¹; HRMS-ESI (*m/z*): [(M-H)⁻] cald for C₁₄H₉O₂S⁻: 241.0328; found: 241.0330.

3-((4-Methoxyphenyl)ethynyl)thiophene-2-carboxylic acid (**1c**). Yield: 475 mg, 74% based on methyl 3-((4-methoxyphenyl)ethynyl)thiophene-2-carboxylate. White solid, mp = 175-177 °C. ¹H NMR (DMSO-*d*₆, 300 MHz): δ = 7.90 (d, *J* = 5.1, 1 H), 7.49 (d, *J* = 8.6, 2 H), 7.31 (d, *J* = 5.1, 1 H), 7.00 (d, *J* = 8.6, 2 H), 3.81 (s, 3 H); ¹³CNMR (DMSO-*d*₆, 75 MHz): δ = 162.0, 159.7, 134.3, 132.9, 131.9, 131.8, 126.1, 114.4, 114.2, 94.6, 83.3, 55.2; IR (KBr): v= 2207 (vw), 1674 (s), 1647 (s), 1450 (s), 1288 (m), 1146 (w), 1226 (m), 833 (s) cm⁻¹; HRMS-ESI (*m/z*): [(M-H)⁻] cald for C₁₄H₉O₃S⁻: 257.0277; found: 257.0278.

3-((3-Chlorophenyl)ethynyl)thiophene-2-carboxylic acid (1d). Yield: 363 mg, 55% based on methyl 3-((3-chlorophenyl)ethynyl)thiophene-2-carboxylate. Yellow solid, mp = 150-151 °C.¹H NMR (DMSO-*d*₆, 300 MHz): 7.93 (d, *J* = 5.1, 1 H), 7.63-7.57 (m, 1 H), 7.57-7.45 (m, 3 H), 7.36 (d, *J* = 5.1, 1 H), 3.86 (s, br, 1 H); ¹³CNMR (DMSO-*d*₆, 300 MHz): δ = 162.4, 136.2, 133.8, 132.54, 132.45, 131.1, 130.4, 129.6, 125.5, 124.7, 92.9, 86.1; IR (KBr): v= 2214 (vw), 1682 (s), 1667 (s), 1520 (w), 1435 (s), 1304 (s), 1273 (s), 995 (w), 880 (w), 772 (s) cm⁻¹; HRMS-ESI (*m*/*z*): [(M+H)⁺] cald for C₁₃H₈ClO₂S⁺: 262.9928; found: 262.9929.

3-(*Thiophen-3-ylethynyl*)*thiophene-2-carboxylic acid* (**1e**). Yield: 563 mg, 96% based on methyl 3-(thiophen-3-ylethynyl)thiophene-2-carboxylate. Yellow solid, mp = 133-136 °C. ¹H NMR (DMSO-*d*₆, 300 MHz): δ = 7.94-7.84 (m, 2 H), 7.71-7.63 (m, 1 H), 7.32 (d, *J* = 5.0, 1 H), 7.26 (d, *J* = 4.4, 1 H); ¹³CNMR (DMSO-*d*₆, 75 MHz): δ= 161.9, 134.6, 132.0, 131.9, 130.2, 129.4, 127.0, 125.7, 121.1, 89.8, 83.7; IR (KBr): v= 2210 (w), 1667 (s), 1504 (m), 1427 (m), 1296 (m), 999 (m), 845 (w), 779 (s) cm⁻¹; HRMS-ESI (*m/z*): [(M+H)⁺] cald for C₁₁H₇O₂S₂⁺: 234.9882; found: 234.9889.

3-(Cyclohex-1-en-1-ylethynyl)thiophene-2-carboxylic acid (**1f**). Yield: 520 mg, 90% based on methyl 3-(cyclohex-1-en-1-ylethynyl)thiophene-2-carboxylate. Yellow solid, mp = 110-113°C. ¹H NMR (CDCl₃, 300 MHz): δ = 11.38 (s, br, 1 H), 7.51 (d, *J* = 5.1, 1 H), 7.13 (d, *J* = 5.1, 1 H), 6.35-6.25 (m, 1 H), 2.31-2.09 (m, 4 H), 1.75-1.55 (m, 4 H); ¹³CNMR (CDCl₃, 75 MHz): δ= 166.9, 137.1, 132.4, 132.0, 131.8, 129.2, 120.6, 98.6, 81.3, 28.8, 25.9, 22.3, 21.4; IR (KBr): v= 2203 (w), 1678 (s), 1524 (m), 1431 (m), 1288 (m), 1246 (w), 1107 (w), 981 (w), 779 (w) cm⁻¹; HRMS-ESI (*m/z*): [(M+H)⁺] cald for C₁₃H₁₁O₂S⁺: 231.0485; found: 231.0484.

3-(Hex-1-yn-1-yl)thiophene-2-carboxylic acid (**1g**). Yield: 260 mg, 50% based on methyl 3-(hex-1-yn-1-yl)thiophene-2-carboxylate. Yellow oil. ¹H NMR (CDCl₃, 300 MHz): δ = 11.72 (s, br, 1 H), 7.53-7.46 (m, 1 H), 7.14-7.07 (m, 2 H), 2.49 (t, *J* = 6.8, 2 H), 1.73-1.44 (m, 4 H), 0.96 (t, *J* = 7.2, 3 H); ¹³CMR (CDCl₃, 75 MHz): δ = 167.0, 132.8, 132.0, 131.8, 129.7, 98.6, 75.1, 30.5, 22.0, 19.5, 13.6; IR (film): v= 2230 (vw), 1717 (s), 1624 (m), 1524 (w), 1427 (m), 1211 (w), 1099 (w), 999 (w) cm⁻¹; HRMS-ESI (*m*/z): [(M-H)⁻] cald for C1₁H₁₁O₂S⁻: 207.0485; found: 207.0482.

3-(4-Phenylbut-1-yn-1-yl)thiophene-2-carboxylic acid (**1h**). Yield: 560 mg, 87% based on methyl 3-(4-phenylbut-1-yn-1-yl)thiophene-2-carboxylate. White solid, mp = 84-86 °C. ¹H NMR (CDCl₃, 300 MHz): δ = 11.26 (s, br, 1 H), 7.47 (d, J = 5.1, 1 H), 7.35-7.18 (m, 5 H), 7.06 (d, J = 5.1, 1 H), 2.94 (t, J = 7.3, 2 H), 2.75 (t, J = 7.3, 2 H); ¹³CNMR (CDCl₃, 75 MHz): δ = 166.8, 140.4, 132.9, 131.8, 129.4, 129.3, 128.5, 128.4, 126.4, 97.6, 75.7, 34.7, 22.0; IR (KBr): v= 2230 (w), 1678 (s), 1524 (m), 1427 (m), 1281 (s), 1234 (w), 779 (w), 667 (w) cm⁻¹; HRMS-ESI (*m/z*): [(M-H)⁻] cald for C₁₅H₁₁O₂S⁻: 255.0485; found: 255.0490.

3-(3,3-Dimethylbut-1-yn-1-yl)thiophene-2-carboxylic acid (1i). Yield: 421 mg, 81% based on methyl 3-(3,3-dimethylbut-1-yn-1-yl)thiophene-2-

carboxylate. White solid, mp = 120-123 °C. ¹H NMR (CDCl₃, 300 MHz): δ = 11.50 (s, br, 1 H), 7.49 (d, *J* = 5.1, 1 H), 7.09 (d, *J* = 5.1, 1 H), 1.35 (s, 9 H); ¹³CNMR (CDCl₃, 75 MHz): δ= 166.9, 132.5, 132.4, 131.7, 129.4, 106.5, 73.7, 30.6, 28.4; IR (KBr): v= 2222 (w), 1678 (s), 1524 (w), 1427 (m), 1292 (m), 1258 (m), 872 (w), 779 (w) cm⁻¹; HRMS-ESI (*m/z*): [(M-H)⁻] cald for C₁₁H₁₁O₂S⁻: 207.0485; found: 207.0486.

4-Methyl-3-(phenylethynyl)thiophene-2-carboxylic acid (1j). Yield: 523 mg, 86% based on methyl 4-methyl-3-(phenylethynyl)thiophene-2-carboxylate. Yellow solid, mp = 168-170 °C. ¹H NMR (DMSO-*d*₆, 300 MHz): δ = 13.26 (s br, 1H, OH), 7.63-7.51 (m, 3 H), 7.51-7.41 (m, 3 H), 2.31 (s, 3 H); ¹³CNMR (DMSO-*d*₆, 300 MHz): δ = 162.0, 140.4, 134.9, 131.2, 128.9, 128.7, 127.2, 126.5, 122.3, 96.7, 83.9, 14.8; IR (KBr): v= 2214 (vw), 1651 (s), 1458 (m), 1304 (m), 1242 (w), 1034 (w), 918 (m), 756 (m) cm⁻¹; HRMS-ESI (*m*/*z*): [(M+H)⁺] cald for C₁₄H₁₀ O₂S⁺: 243.0474; found: 243.0480.

4-Methyl-3-(4-phenylbut-1-yn-1-yl)thiophene-2-carboxylic acid (**1k**). Yield: 585 mg, 87% based on methyl 4-methyl-3-(4-phenylbut-1-yn-1-yl)thiophene-2-carboxylate. Yellow solid, mp = 108-110 °C. ¹H NMR (DMSO-*d*₆, 300 MHz): δ = 7.52-7.45 (m, 1 H), 7.37-7.25 (m, 4 H), 7.25-7.15 (m, 1 H), 2.95-2.74 (m, 4 H), 2.06 (s, 3 H); ¹³CNMR (DMSO-*d*₆, 300 MHz): δ = 162.1, 141.3, 140.3, 133.6, 128.5, 128.1, 127.7, 126.9, 126.1, 98.5, 75.5, 34.1, 21.1, 14.7; IR (KBr): v= 2230 (w), 1682 (s), 1651 (s), 1543 (w), 1458 (m), 1288 (m), 1211 (w), 1072 (w), 926 (w), 864 (w), 787 (m), 733 (m), cm⁻¹; HRMS-ESI (*m*/z): [(M+H)+] cald for C₁₆H₁₅O₂S+: 271.0787; found: 271.0792.

2-(Phenylethynyl)thiophene-3-carboxylic acid (6). Yield: 560 mg, 98% based on Methyl 2-(phenylethynyl)thiophene-3-carboxylate. Yellow solid, mp = 122.5-125.2 °C. ¹H NMR (DMSO-*d*₆, 300 MHz): δ = 8.30 (s, 1 H), 7.66 (d, *J* = 5.3, 1 H), 7.61-7.51 (m, 2 H), 7.51-7.40 (m, 4 H); ¹³CNMR (DMSO-*d*₆, 75 MHz): δ= 162.9, 135.6, ,131.2, 129.3, 129.0, 128.8, 127.8, 127.4, 121.8, 98.0, 82.0; IR (KBr): v= 2199 (vw), 1667 (s), 1528 (m), 1443 (m), 1304 (s), 1258 (m), 1165 (w), 1072 (w), 926 (s), 756 (s), 733 (s) cm⁻¹; HRMS-ESI (*m*/*z*): [(M+H)⁺] cald for C₁₃H₉O₂S⁺: 229.0318; found: 229.0318.

2nd Step: Hydrolysis of Methyl 3-Alkynylpicolinate and Methyl 3-Phenylisonicotinate to Give 3-Alkynylpicolinic Acids 3a-f and of 3-(Phenylethynyl)isonicotinic Acid 22. To a stirred solution of the methyl 3-alkynylpicolinate [4.0 mmol; methyl 3-(phenylethynyl)picolinate, 958 mg; methyl 3-(p-tolylethynyl)picolinate, 1.00 g; methyl 3-(4-phenylbut-1yn-yl)picolinate, 1.05 g; methyl 3-((3-chlorophenyl)ethynyl)picolinate, 1.08 g; methyl 3-(3,3-dimethylbut-1-ynyl)picolinate, 875 mg] or methyl 3-(phenylethynyl)isonicotinate (4.0 mmol, 960 mg) in MeOH (26.5 mL) was added a solution of KOH (3.3 N in H₂O, 6 mL) at 0°C with stirring. After stirring at 0 °C for 15 min, the mixture was allowed to warm up to room temperature and then stirred for additional 2 h. The solution was then cooled with the aid of an ice bath, and neutralized with 1 N HCl until pH=3. The resulting mixture was extracted with AcOEt (3 × 50 mL), and the collected organic layers were dried over Na₂SO₄. Filtration and evaporation of the solvent (at 20 °C, under vacuum) afforded the crude products, which were further purified by crystallization with $\text{Et}_2\text{O}/\text{hexane}.$

3-(*Phenylethynyl*)*picolinic acid* (**3a**). Yield: 850 mg, 95% based on methyl 3-(phenylethynyl)picolinate. Yellow solid, mp = 110-112 °C. ¹H NMR (DMSO-*d*₆, 300 MHz): δ = 8.65 (dd, *J* = 6.0, 1.4, 1 H), 8.13 (dd, *J* = 7.9, 1.4, 1 H), 7.66-7.53 (m, 3 H), 7.53-7.43 (m, 3 H); ¹³CNMR (DMSO-*d*₆, 75 MHz): δ = 166.4, 151.8, 148.2, 140.7, 131.3, 129.3, 128.8, 125.2, 121.8, 117.6, 95.5, 85.2; IR (KBr): v = 2218 (w), 1748 (s), 1639 (m), 1493 (m), 1431 (m), 1072 (m), 930 (w), 841 (w), 760 (s), 691 (m) cm⁻¹; HRMS-ESI (*m/z*): [(M+H)⁺] cald for C₁₄H₁₀NO₂⁺: 224.0706; found: 224.0703. The spectroscopic data agreed with those reported.^[10]

 $\begin{array}{l} 3\text{-}(p\text{-}Tolylethynyl)picolinic acid (3b). Yield: 856 mg, 90\% based on Methyl 3-(p\text{-}tolylethynyl)picolinate. Brown solid, mp = 108\text{-}110 \ ^\circ\text{C}. \ ^1\text{H} \ \text{NMR} \ (\text{DMSO-}d_6, 300 \ \text{MHz}): \delta = 8.64 \ (\text{s}, \ \text{br}, \ 1 \ \text{H}), 8.16\text{-}8.04 \ (\text{m}, \ 1 \ \text{H}), 7.67\text{-}7.55 \end{array}$

WILEY-VCH

(m, 1 H), 7.52-7.39 (m, 2 H), 7.35-7.20 (m, 2 H), 2.36 (s, 3 H); $^{13}\text{CNMR}$ (DMSO- d_6 , 75 MHz): δ = 167.0, 152.2, 148.5, 141.1, 139.7, 131.8, 129.9, 125.7, 119.3, 118.3, 96.3, 85.2, 21.5; IR (KBr): v = 2222 (w), 1744 (s), 1636 (m), 1512 (m), 1335 (m), 1312 (s), 1204 (w), 810 (s), 687 (m) cm^{-1}; HRMS-ESI (*m/z*): [(M+H)*] cald for $C_{15}H_{11}NO_2^{**}$: 238.0862; found: 238.0870.

3-(4-Phenylbut-1-yn-1-yl)picolinic acid (**3c**). Yield: 954 mg, 95% based on methyl 3-(4-phenylbut-1-yn-yl)picolinate. Brown solid, mp = 83-84 °C. ¹H NMR (DMSO-*d*₆, 300 MHz): δ = 8.52 (m, 1 H), 7.85 (m, 1 H), 7.48 (s, br, 1 H), 7.40-7.11 (m, 6 H), 2.95-2.62 (m, 4 H); ¹³CNMR (DMSO-*d*₆, 75 MHz): δ = 166.9, 152.9, 147.4, 140.6, 140.3, 128.5, 128.2, 126.2, 124.7, 117.7, 96.9, 77.1, 34.0, 21.2; IR (KBr): v = 2222 (w), 1736 (s), 1497 (m), 1450 (m), 1427 (m), 1327 (s), 1242 (w), 1103 (w), 810 (s), 748 (m), 694 (m) cm⁻¹; HRMS-ESI (*m*/*z*): [(M+H)⁺] cald for C₁₃H₁₄NO₂⁺: 252.1019; found: 252.1020.

3-((3-Chlorophenyl)ethynyl)picolinic acid (**3d**). Yield: 966 mg, 94% based on methyl 3-((3-chlorophenyl)ethynyl)picolinate. Brown solid, mp = 120-121 °C. ¹H NMR (DMSO-*d*₆, 300 MHz): δ = 8.71-8.62 (m, 1 H), 8.14 (d, *J* = 7.33, 1 H), 7.70-7.42 (m, 5 H); ¹³CNMR (DMSO-*d*₆, 75 MHz): δ =166.3, 151.8, 148.5, 140.9, 133.4, 130.8, 130.7, 130.0, 129.4, 125.3, 123.8, 117.3, 93.9, 86.7; IR (KBr): v= 2222 (vw), 1736 (s), 1474 (m), 1335 (s), 1108 (s), 810 (m), 779 (m), 679 (s) cm⁻¹; HRMS-ESI (*m*/*z*): [(M+H)⁺] cald for C₁₄H₉CINO₂⁺: 258.0363; found: 258.0368.

3-(3,3-Dimethylbut-1-yn-1-yl)picolinic acid (**3e**). Yield: 750 mg, 92% based on methyl 3-(3,3-dimethylbut-1-yn-yl)picolinate. Yellow solid, mp = 97-99 °C. ¹H NMR (DMSO-*d*₆, 300 MHz): δ = 8.53 (d, *J* = 3.4, 1 H), 7.88 (d, *J* = 6.9, 1 H), 7.56-7.42 (m, 1 H), 1.29 (s, 9 H); ¹³CNMR (DMSO-*d*₆, 75 MHz): δ = 166.7, 152.6, 147.4, 140.2, 124.8, 117.8, 105.1, 74.9, 30.2, 27.8; IR (KBr): v = 2253 (w), 1697 (s), 1450 (m), 1381 (w), 1273 (m), 1196 (m), 1142 (m), 926 (m), 810 (s) cm⁻¹; HRMS-ESI (*m/z*): [(M+H)⁺] cald for C₁₂H₁₄NO₂⁺: 204.1019; found: 204.1015.

3-(Phenylethynyl)isonicotinic acid (22). Yield: 848 mg, 95% based on methyl 3-(phenylethynyl)isonicotinate. Brown solid, mp = 120-123 °C. ¹H NMR (DMSO-*d*₆, 300 MHz): δ = 8.93 (s, br, 1 H), 8.79-8.65 (m, 1 H), 7.90-7.78 (m, 1 H), 7.71-7.35 (m, 5 H); ¹³CNMR (DMSO-*d*₆, 75 MHz): δ = 165.9, 153.6, 149.2, 140.1, 131.4, 129.3, 128.8, 122.8, 121.9, 117.6, 96.0, 85.4; IR (KBr): v= 2222 (w), 1736 (s), 1489 (w), 1281 (s), 1219 (s), 1065 (m), 795 (m), 718 (m) cm⁻¹; HRMS-ESI (*m/z*): [(M+H)⁺] cald for C₁₄H₁₀NO₂⁺: 224.0706; found: 224.0710.

Preparation of Ionic Liquids. 1-Ethyl-3-methylimidazolium ethyl sulfate (EmimEtSO₄), and *N*-ethyl-*N*-methylmorpholinium dicyanamide [Mor_{1,2}N(CN)₂] were prepared according to literature procedures.^[2]

General Procedure for the lodolactonization of 3-Alkynylthiophene-2-Carboxylic Acids 1a-k and 2-(Phenylethynyl)thiophene-3carboxylic Acid 6 in MeCN for the Synthesis of 4-lodo-7H-thieno[2,3c]pyran-7-ones 2a-k and 7-lodo-6-phenyl-4H-thieno[3,2-c]pyran-4one 7, Respectively (Table 1 and Scheme 3). To a solution of 1 (0.25 mmol) (1a, 57 mg; 1b, 61 mg; 1c, 65 mg; 1d, 66 mg; 1e, 59 mg; 1f, 58.0 mg; 1g, 52 mg; 1h, 64 mg; 1i, 52 mg; 1j, 61 mg; 1k, 68 mg) or 6 (0.25 mmol, 56 mg) in MeCN (5 mL) were added NaHCO₃ (42 mg, 0.5 mmol) and I_2 (127 mg, 0.5 mmol) in this order under nitrogen. The mixture was allowed to stir at 40 °C for 2 h (1b,c) or 3h (1a, 1d-f, 6) or at 25°C for 3h (1g) or 5 h(1h-k). Saturated aqueous $Na_2S_2O_3$ (7 mL) was then added, and the mixture was allowed to stir for 10 min. The phases were separated, and the aqueous phase was extracted with Et₂O (3 × 10 mL). The collected organic layers were dried over Na₂SO₄. After filtration and evaporation of the solvent, products 2a-k and 7 were purified by column chromatography on silica gel using 99:1 hexane-AcOEt as the eluent.

4-lodo-5-phenyl-7H-thieno[2,3-c]pyran-7-one (2a). Yield: 66 mg, starting from 57 mg of 1a (75%) (Table 1, entry 3). White solid, mp = 149-150 °C. ¹H NMR (CDCl₃, 300 MHz): δ = 7.87 (d, *J* = 5.2, 1 H), 7.76-7.68 (m, 2 H), 7.51-7.43 (m, 3 H), 7.40 (d, *J* = 5.2, 1 H); ¹³CNMR (CDCl₃, 75 MHz): δ = 157.6, 156.3, 150.1, 135.7, 133.9, 130.3, 130.1, 129.9, 128.1, 121.5, 67.4; IR (KBr): v = 1717 (s), 1493 (w), 999 (w), 899 (w), 764 (m), 691 (w) cm⁻¹; GC-MS (EI, 70 eV): *m/z* = 354 (M⁺, 100), 326 (32), 227 (10), 199 (49), 171 (46), 77 (56); HRMS-ESI (*m/z*): [(M+H)⁺] cald for C₁₃H₈IO₂S⁺: 354.9284; found: 354.9276. The spectroscopic data agreed with those reported.^[11]

4-lodo-5-(*p*-tolyl)-7H-thieno[2,3-*c*]*pyran*-7-one (**2b**). Yield: 64 mg, starting from 61 mg of **1b** (70%) (Table 1, entry 6). White solid, mp = 153-155 °C. ¹H NMR (CDCl₃, 300 MHz): δ = 7.85 (d, *J* = 5.2, 1 H), 7.64 (d, *J* = 7.9, 2 H), 7.40 (d, *J* = 5.1, 1 H), 7.27 (d, *J* = 7.9, 2 H), 2.43 (s, 3 H, Me); ¹³CNMR (CDCl₃, 75 MHz): δ = 157.7, 156.6, 150.2, 140.7, 135.5, 131.0, 130.1, 129.8, 128.8, 121.4, 67.0, 21.5; IR (KBr): v = 1724 (s), 1578 (w), 1504 (m), 1427 (w), 1007 (m), 903 (w), 768 (m) cm⁻¹; GC-MS (EI, 70 eV): *m*/*z* = 368 (M⁺, 100), 340 (39), 241 (12), 213 (48), 185 (24); HRMS-ESI (*m*/*z*): [(M+H)⁺] cald for C₁₄H₁₀IO₂S⁺: 368.9441; found: 368.9438.

4-lodo-5-(4-methoxyphenyl)-7H-thieno[2,3-c]pyran-7-one (**2**c). Yield: 70 mg, starting from 65 mg of **1c** (73%) (Table 1, entry 7). White solid, mp = 166-167 °C. ¹H NMR (CDCl₃, 300 MHz): δ = 7.85 (d, J = 5.2, 1 H), 7.71 (d, J = 8.8, 2 H), 7.39 (d, J = 5.2, 1 H), 6.97 (d, J = 8.8, 2 H), 3.87 (s, 3 H); ¹³CNMR (CDCl₃, 75 MHz): δ = 161.0, 157.8, 156.3, 150.4, 135.5, 131.5, 130.1, 126.2, 121.2, 113.5, 66.6, 55.4; IR (KBr): v = 1717 (s), 1504 (m), 1258 (m), 1177 (w), 829 (m), 764 (m) cm⁻¹; GC-MS (EI, 70 eV): m/z = 384 (M⁺, 100), 356 (38), 341 (10), 313 (18), 257 (10), 229 (32); HRMS-ESI (m/z): [(M+H)⁺] cald for C₁₄H₁₀IO₃S⁺: 384.9317; found: 384.9385.

5-(3-*Chlorophenyl*)-4-*lodo*-7*H*-*thieno*[2,3-*c*]*pyran*-7-*one* (**2d**). Yield: 68 mg, starting from 66 mg of **1d** (70%) (Table 1, entry 8). White solid, mp = 181-182 °C. ¹H NMR (DMSO-*d*₆, 300 MHz): δ = 8.41-8.35 (m, 1 H), 7.82-7.76 (m, 1 H), 7.72-7.65 (m, 1 H), 7.65-7.54 (m, 2 H), 7.49-7.43 (m, 1 H); ¹³CNMR (DMSO-*d*₆, 75 MHz): δ = 156.7, 154.0, 150.0, 138.1, 135.9, 132.7, 130.2, 130.0, 129.8, 129.4, 128.5, 121.0, 69.9; IR (KBr): v = 1713 (s), 1574 (m), 1080 (w), 1011 (m), 918 (m), 764 (m) cm⁻¹; GC-MS (EI, 70 eV): *m/z* = 390 [(M+2)⁺, 38], 388 (M⁺, 100), 360 (25), 325 (47), 261 (13), 233 (31), 205 (36); HRMS-ESI (*m/z*): [(M+H)⁺] cald for C₁₃H₇CIIO₂S⁺: 388.8894; found: 388.8910.

4-lodo-5-(thiophen-3-yl)-7H-thieno[2,3-c]pyran-7-one (2e). Yield: 67 mg, starting from 59 mg of 1e (74%) (Table 1, entry 9). White solid, mp =127-128 °C. ¹H NMR (CDCl₃, 300 MHz): δ = 8.08 (dd, J = 3.0, 1.3, 1 H), 7.84 (d, J = 5.2, 1 H), 7.68 (distorted dd, J = 5.0, 1.3, 1 H), 7.43-7.33 (m, 2 H); ¹³CNMR (CDCl₃, 75 MHz): δ = 157.2, 151.9, 150.3, 135.5, 134.1, 130.3, 129.2, 128.3, 125.4, 121.2, 66.2; IR (KBr): v = 1721 (s), 1574 (m), 1501 (w), 1076 (w), 999 (m), 768 (m) cm⁻¹; GC-MS (EI, 70 eV): m/z = 360 (M⁺, 100), 332 (29), 233 (12), 205 (57), 177 (43); HRMS-ESI (m/z): [(M+H)⁺] cald for C₁₁H₆IO₂S₂⁺: 360.8848; found: 360.8841.

5-(Cyclohex-1-en-1-yl)-4-lodo-7H-thieno[2,3-c]pyran-7-one (**2f**). Yield: 81 mg, starting from 58 mg of **1f** (91%) (Table 1, entry 10). Yellow solid, mp = 103-104 °C. ¹H NMR (CDCl₃, 300 MHz): δ = 7.83 (d, *J* = 5.2, 1 H), 7.32 (d, *J* = 5.2, 1 H), 6.27-6.19 (m, 1 H), 2.38-2.28 (m, 2 H), 2.28-2.17 (m, 2 H), 1.83-1.64 (m, 4 H); ¹³CNMR (CDCl₃, 75 MHz): δ = 158.8, 157.9, 150.1, 135.5, 135.4, 132.5, 130.0, 121.0, 66.0, 26.5, 25.1, 22.2, 21.5; IR (KBr): v = 1728 (s), 1574 (m), 1427 (m), 1034 (m), 995 (w), 772 (m) cm⁻¹; GC-MS (EI, 70 eV): *m*/*z* = 358 (M⁺, 100), 329 (16), 304 (32), 277 (6), 231 (32), 203 (36); HRMS-ESI (*m*/*z*): [(M+H)⁺] cald for C₁₃H₁₂IO₂S⁺: 358.9597; found: 358.9583.

5-Butyl-4-Iodo-7H-thieno[2,3-c]pyran-7-one (**2g**). Yield: 57 mg, starting from 52 mg of **1g** (68%) (Table 1, entry 12). Yellow oil. ¹H NMR (CDCl₃, 300 MHz): δ = 7.82 (d, J = 5.2, 1 H), 7.26 (d, J = 5.2, 1 H), 2.87 (t, J = 7.7, 2 H), 1.78-1.64 (m, 2 H), 1.51-1.38 (m, 2 H), 0.96 (t, J = 7.3, 3 H);

 $^{13}\text{CNMR}$ (CDCl₃, 75 MHz): δ = 160.1, 158.2, 149.7, 135.7, 129.1, 120.7, 67.6, 35.7, 29.5, 22.2, 13.8; IR (film): v = 1724 (s), 1585 (m), 1427 (m), 1099 (w), 999 (m), 772 (m) cm^{-1}; GC-MS (EI, 70 eV): m/z = 334 (M⁺, 74), 291 (12), 263 (18), 165 (100), 137 (97); HRMS-ESI (m/z): [(M+H)⁺] cald for C₁₁H₁₂IO₂S⁺: 339.9597; found: 334.9627. The spectroscopic data agreed with those reported.^[11]

4-lodo-5-phenethyl-7H-thieno[2,3-c]pyran-7-one (**2h**). Yield: 70 mg, starting from 64 mg of **1h** (73%) (Table 1, entry 13). Yellow solid, mp = 82-84 °C. ¹H NMR (CDCl₃, 300 MHz): δ = 7.82 (d, J = 5.2, 1 H), 7.33-7.17 (m, 6 H), 3.19-3.10 (m, 2 H), 3.07-2.98 (m, 2 H); ¹³CNMR (CDCl₃, 75 MHz): δ = 158.6, 157.9, 149.5, 139.8, 135.7, 129.1, 128.6, 128.4, 126.5, 120.9, 68.2, 38.0, 33.5; IR (KBr): v = 1726 (s), 1589 (m), 1426 (m), 1099 (w), 769 (m), 699 (w) cm⁻¹; GC-MS (EI, 70 eV): m/z = 382 (M⁺, 13), 291 (3), 255 (10), 227 (3), 136 (5), 91 (100); HRMS-ESI (m/z): [(M+H)⁺] cald for C₁₅H₁₂IO₂S⁺: 382.9597; found: 382.9577.

5-(*tert-Butyl*)-4-*lodo-7H-thieno*[2,3-*c*]*pyran-7-one* (**2i**). Yield: 54 mg, starting from 52 mg of **1i** (65%) (Table 1, entry 14). Yellow solid, mp = 50-51 °C. ¹H NMR (CDCl₃, 300 MHz): δ = 7.80 (d, *J* = 5.2, 1 H), 7.43 (d, *J* = 5.2, 1 H), 1.58 (s, 9 H); ¹³CNMR (CDCl₃, 75 MHz): δ = 163.8, 157.4, 151.5, 134.7, 130.4, 120.5, 64.6, 38.7, 29.0; IR (KBr): v = 1728 (s), 1551 (m), 1504 (w), 1427 (m), 1092 (m), 1042 (m), 1003 (m), 937 (w), 845 (w), 768 (m) cm⁻¹; GC-MS (EI, 70 eV): *m/z* = 334 (M⁺, 100), 319 (25), 291 (18), 277 (38), 249 (19), 207 (58), 192 (16), 165 (56), 164 (57); HRMS-ESI (*m/z*): [(M+H)⁺] cald for C₁₁H₁₂lO₂S⁺: 334.9597; found: 334.9589.

4-lodo-3-methyl-5-phenyl-7H-thieno[2,3-c]pyran-7-one (**2**]). Yield: 69 mg, starting from 61 mg of **1j** (75%) (Table 1, entry 15). White solid, mp = 163-164 °C. ¹H NMR (CDCl₃, 300 MHz): δ = 7.64-7.57 (m, 2 H), 7.56-7.52 (m, 1 H), 7.50-7.44 (m, 3 H), 2.67 (s, 3 H); ¹³CNMR (CDCl₃, 75 MHz): δ = 158.0, 156.4, 144.5, 137.2, 135.3, 134.7, 130.1, 130.0, 128.2, 124.9, 66.3, 19.4; IR (KBr): v = 1713 (s), 1443 (w), 1381 (w), 1072 (m), 1003 (w), 764 (m), 694 (s) cm⁻¹; GC-MS (EI, 70 eV): *m/z* = 368 (M⁺, 100), 340 (39), 241 (12), 213 (41), 185 (25), 184 (21); HRMS-ESI (*m/z*): [(M+H)⁺] cald for C₁₄H₁₀IO₂S⁺: 368.9441; found: 368.9436.

4-lodo-3-methyl-5-phenethyl-7H-thieno[2,3-c]pyran-7-one (**2k**). Yield: 95 mg, starting from 68 mg of **1k** (96%) (Table 1, entry 16). Yellow solid, mp = 84-86 °C. ¹H NMR (CDCl₃, 300 MHz): δ = 7.50-7.45 (m, 1 H), 7.36-7.19 (m, 5 H), 3.30-3.17 (m, 2 H), 3.08-2.97 (m, 2 H), 2.62 (s, 3 H, Me); ¹³CNMR (CDCl₃, 75 MHz): δ = 158.4, 157.9, 144.2, 140.0, 136.6, 134.7, 128.6, 128.4, 126.5, 124.1, 66.8, 39.0, 33.4, 19.2; IR (KBr): v = 1728 (s), 1574 (m), 1450 (m), 1389 (w), 1026 (m), 748 (m), 702 (w) cm⁻¹; GC-MS (EI, 70 eV): m/z = 396 (M⁺, 36), 305 (14), 277 (12), 269 (6), 241 (5), 150 (8), 91 (100); HRMS-ESI (*m*/z): [(M+H)⁺] cald for C₁₆H₁₄IO₂S⁺: 396.9754; found: 396.9751.

7-*lodo-6-phenyl-4H-thieno*[3,2-*c*]*pyran-4-one* (**7**). Yield: 58 mg, starting from 56 mg of **6** (65%) (Scheme 3). White solid, mp = 124-126 °C. ¹H NMR (CDCl₃, 300 MHz): δ = 7.88 (d, *J* = 5.4, 1 H), 7.79-7.72 (m, 2 H), 7.51-7.44 (m, 3 H), 7.43 (d, *J* = 5.4, 1 H); ¹³CNMR (CDCl₃, 75 MHz): δ = 157.8, 155.6, 133.4, 130.5, 129.8, 128.2, 127.2, 126.0, 122.6, 63.9; IR (KBr): v = 1728 (s), 1562 (w), 1489 (w), 1053 (m), 976 (m), 895 (w), 772 (m), 698 (m) cm⁻¹; GC-MS (EI, 70 eV): *m/z* = 354 (M⁺, 100), 326 (24), 227 (7), 199 (42), 171 (33), 77 (49); HRMS-ESI (*m/z*): [(M+H)⁺] cald for C₁₃H₈IO₂S⁺: 354.9284; found: 354.9283. The spectroscopic data agreed with those reported.^[12]

5-Butyl-7H-thieno[2,3-c]pyran-7-one (5). Yield: 5 mg, starting from 52 mg of 1g (10%) (Table 1, entry 12). Yellow oil. ¹H NMR (CDCl₃, 300 MHz): δ = 7.80 (d, J = 5.1, 1 H), 7.12 (d, J = 5.1, 1 H), 6.45 (s, 1 H), 2.56 (t, J = 7.6, 2 H), 1.69 (quint, J = 7.5, 2 H), 1.39 (hexuplet, J = 7.5, 2 H), 0.94 (t, J = 7.3, 3 H); ¹³CNMR (CDCl₃, 75 MHz): δ = 161.0, 159.2, 147.6, 136.5, 124.2, 122.1, 100.5, 33.2, 29.2, 22.1, 13.8; IR (film): v = 1717 (s), 1628 (m), 1524 (w), 1439 (m), 1099 (w), 999 (m), 837 (w), 772 (m) cm⁻¹; GC-MS (EI, 70 eV): m/z = 208 (M⁺, 27), 166 (24), 151 (13), 137 (19), 124

(100), 95 (28); HRMS-ESI (m/z): [(M+H)⁺] cald for C₁₁H₁₃O₂S⁺: 209.0631; found: 209.0624. The spectroscopic data agreed with those reported.^[11]

Typical Procedure for the lodolactonization of 3-Alkynylthiophene-2-Carboxylic Acids 1 in MeCN in larger scale. To a solution of 1 (2.2 mmol; 1a, 502 mg; 1b, 533 mg; 1e, 515 mg) in MeCN (44 mL) were added NaHCO₃ (370 mg, 4.4 mmol) and I₂ (1.12 g, 4.4 mmol) in this order under nitrogen. The mixture was allowed to stir at 40 °C for 2 h (1b) or 3 h (1a and 1e). Saturated aqueous Na₂S₂O₃ (50 mL) was then added, and the mixture was allowed to stir for 10 min. The phases were separated, and the aqueous phase was extracted with Et₂O (3 × 80 mL). The collected organic layers were dried over Na₂SO₄. After filtration and evaporation of the solvent, products 2 were purified by column chromatography on silica gel using 99:1 hexane–AcOEt as the eluent to give 4-iodo-5-phenyl-7*H*-thieno[2,3-c]pyran-7-one (2a; 723 mg, 93%); 4-iodo-5-(*p*-tolyl)-7*H*-thieno[2,3-c]pyran-7-one (2e; 704 mg, 89%).

General Procedure for the Iodolactonization of 3-Alkynylpicolinic Acids 3a-e and of 3-(Phenylethynyl)isonicotinic acid 22 in MeCN for the Synthesis of 5-iodo-8H-pyrano[3,4-b]pyridin-8-ones 4a-e and of 4-lodo-3-phenyl-1*H*-pyrano[4,3-*c*]pyridin-1-one 23, Respectively (Table 3 and Scheme 4). To a solution of 3 (0.35 mmol) (3a, 78 mg; 3b, 83 mg; 3c, 88 mg; 3d, 90 mg; 3e, 72 mg) or 22 (0.35 mmol, 79 mg) in MeCN (7 mL) were added NaHCO_3 (88 mg, 1.05 mmol) and I_2 (267 mg, 1.05 mmol) in this order under nitrogen. The mixture was allowed to stir at 25 °C for 1 h. Saturated aqueous Na₂S₂O₃ (10 mL) was then added, and the mixture was allowed to stir for 10 min. The phases were separated, and the aqueous phase was extracted with Et_2O (3 × 15 mL). The collected organic layers were dried over Na₂SO₄. After filtration and evaporation of the solvent, products 4a-e and 23 were purified by column chromatography on silica gel using 99:1 hexane-AcOEt as the eluent.

5-*lodo-6-phenyl-8H-pyrano*[*3*,4-*b*]*pyridin-8-one* (**4a**). Yield: 86 mg, starting from 78 mg of **3a** (70%) (Table 3, entry 3). Yellow solid, mp = 204-206 °C. ¹H NMR (CDCl₃, 300 MHz): $\delta = 8.57$ (d, J = 3.1, 1 H), 8.26 (d, J = 6.0, 1 H), 7.81-7.66 (m, 3 H), 7.56-7.41 (m, 3 H); ¹³CNMR (CDCl₃, 75 MHz): $\delta = 159.2, 155.7, 151.5, 139.8, 136.9, 135.9, 134.2, 130.6, 129.9, 129.6, 128.2, 73.8; IR (KBr): v = 1740 (s), 1269 (w), 1180 (w), 1072 (m), 945 (m), 806 (w), 756 (w), 702 (m) cm⁻¹; GC-MS (EI, 70 eV): <math>m/z = 349$ (M⁺, 100), 321 (51), 222 (10), 194 (36), 166 (76), 139 (33), 105 (31), 77 (41); HRMS-ESI (*m/z*): [(M+H)⁺] cald for C1₁₄H₉INO₂⁺: 349.9672; found: 349.9676. The spectroscopic data agreed with those reported.^[111]

5-*lodo*-6-(*p*-*tolyl*)-8*H*-*pyrano*[3,4-*b*]*pyridin*-8-*one* (4b). Yield: 84 mg, starting from 83 mg of 3b (66%) (Table 3, entry 4). Yellow solid, mp = 204-206 °C. ¹H NMR (CDCl₃, 300 MHz): δ = 8.85 (d, *J* = 4.0, 1 H), 8.25 (d, *J* = 8.2, 1 H), 7.75 (dd, *J* = 8.2, 4.0, 1 H), 7.63 (d, *J* = 7.8, 2 H), 7.28 (d, *J* = 7.8, 2 H), 2.44 (s, 3 H); ¹³CNMR (CDCl₃, 75 MHz): δ = 159.4, 155.8, 151.4, 141.0, 139.8, 136.8, 136.0, 131.4, 129.9, 129.6, 128.8, 73.4, 21.6; IR (KBr): v = 1751 (s), 1508 (m), 1454 (w), 1180 (w), 1069 (m), 945 (m), 810 (m), 756 (m) cm⁻¹; GC-MS (EI, 70 eV): m/z = 363 (M⁺, 89), 335 (100), 236 (13), 208 (62), 180 (74), 179 (13), 152 (32); HRMS-ESI (*m/z*): [(M+H)⁺] cald for C1₅H₁₁INO₂⁺: 363.9829; found: 363.9828.

5-lodo-6-phenethyl-8H-pyrano[3,4-b]pyridin-8-one (**4c**). Yield: 86 mg, starting from 88 mg of **3c** (65%) (Table 3, entry 5). Yellow solid, mp = 101-105 °C. ¹H NMR (DMSO-*d*₆, 300 MHz): δ = 8.79 (d, *J* = 4.2, 1 H), 8.09 (d, *J* = 8.2, 1 H), 7.87 (dd, *J* = 8.2, 4.2, 1 H), 7.35-7.14 (m, 5 H), 3.23-3.07 (m, 2 H), 3.04-2.89 (m, 2 H); ¹³CNMR (DMSO-*d*₆, 75 MHz): δ = 158.4, 157.1, 150.8, 139.8, 138.4, 136.2, 135.1, 130.0, 128.4, 128.2, 126.2, 75.3, 32.4; IR (KBr): *v* = 1748 (s), 1582 (m), 1454 (m), 1308 (w), 1084 (m), 988 (w), 752 (m) cm⁻¹; GC-MS (EI, 70 eV): *m/z* = 377 (M⁺, 10), 250 (5), 91 (100); HRMS-ESI (*m/z*): [(M+H)⁺] cald for C₁₆H₁₃INO₂⁺: 377.9985; found: 377.9996.

6-(3-*Chlorophenyl*)-5-*iodo*-8*H*-*pyrano*[3,4-*b*]*pyridin*-8-*one* (**4d**). Yield: 67 mg, starting from 90 mg of **3d** (50%) (Table 3, entry 6). Grey solid, mp = 231-233 °C. ¹H NMR (DMSO-*d*₆, 300 MHz): δ = 8.91-8.82 (m, 1 H), 8.26 (d, J = 9.0, 1 H), 8.00-7.91 (m, 1 H), 7.78 (s, br, 1 H), 7.72-7.55 (m, 3 H); ¹³CNMR (DMSO-*d*₆, 75 MHz): δ = 158.2, 153.2, 151.4, 139.4, 136.8, 135.2, 132.7, 130.2, 130.1, 129.4, 128.5, 76.2; IR (KBr): *v* = 1744 (s), 1586 (w), 1474 (w), 1408 (w), 1180 (m), 1072 (m), 953 (m) cm⁻¹; GC-MS (EI, 70 eV): *m/z* = 383 (M⁺, 100), 355 (42), 320 (13), 228 (15), 200 (60), (24); HRMS-ESI (*m/z*): [(M+H)⁺] cald for C₁₄H₈CIINO₂⁺: 383.9283; found: 383.9272.

6-(*tert-Butyl*)-5-*iodo-8H-pyrano*[3,4-*b*]*pyridin-8-one* (**4e**). Yield: 61 mg, starting from 72 mg of **3e** (53%) (Table 3, entry 8). Brown solid, mp = 120-122 °C. ¹H NMR (CDCl₃, 300 MHz): δ = 8.87 (s, br, 1 H), 8.35 (d, *J* = 6.0, 1 H), 7.70 (s, br, 1 H), 1.63 (s, 9 H); ¹³CNMR (CDCl₃, 75 MHz): δ = 163.3, 159.2, 151.3, 139.5, 136.62, 136.59, 129.3, 71.3, 39.2, 29.0; IR (KBr): *v* = 1755 (s), 1574 (m), 1454 (w), 1265 (w), 1076 (m), 960 (m) cm⁻¹; GC-MS (EI, 70 eV): *m/z* = 329 (M⁺, 83), 244 (20), 202 (72), 174 (30), 160 (100); HRMS-ESI (*m/z*): [(M+H)⁺] cald for C₁₂H₁₃INO₂⁺: 329.9985; found: 329.9989.

4-lodo-3-phenyl-1H-pyrano[4,3-c]pyridin-1-one (23). Yield: 85 mg, starting from 79 mg of 22 (70%) (Scheme 4). Brown solid, mp = 178.3-180.1 °C. ¹H NMR (CDCl₃, 300 MHz): δ = 9.15 (s, br, 1 H), 8.95-8.85 (m, 1 H), 8.02-7.93 (m, 1 H), 7.25-7.63 (m, 2 H), 7.63-7.48 (m, 3 H); ¹³CNMR (CDCl₃, 75 MHz): δ = 160.3, 155.9, 153.7, 150.2, 135.1, 131.7, 130.8, 130.2, 128.7, 126.7, 120.6, 72.9; IR (KBr): *v* = 1748 (s), 1408 (w), 1238 (m), 1076 (m), 1003 (w), 853 (w), 752 (m) cm⁻¹; GC-MS (EI, 70 eV): *m/z* = 349 (M⁺, 100), 321 (46), 222 (36), 194 (48), 166 (68), 139 (70), 105 (50), 77 (84); HRMS-ESI (*m/z*): [(M+H)⁺] cald for C₁₄H₉INO₂⁺: 349.9672; found: 349.9695.

(*E*)-5-((3-chlorophenyl)iodomethylene)furo[3,4-b]pyridin-7(5H)-one (**20**). Yield: 22 mg, starting from 90 mg of **3d** (16%) (Table 3, entry 6). Yellow solid, mp = 205-207 °C. ¹H NMR (CDCl₃, 300 MHz): δ = 9.26 (d, *J* = 8.2, 1 H), 8.98 (d, *J* = 4.4, 1 H), 7.74 (dd, *J* = 7.7, 4.3, 1 H), 7.54 (s, br, 1 H), 7.50-7.40 (m, 1 H), 7.40-7.30 (m, 1 H); ¹³CNMR (CDCl₃, 75 MHz): δ = 162.9, 153.6, 144.5, 142.6, 140.7, 134.1, 133.7, 132.9, 130.1, 129.5, 128.3, 127.4, 81.1; IR (KBr): *v* = 1778 (s), 1408 (w), 1107 (m), 1007 (s), 868 (w), 764 (m) cm⁻¹; GC-MS (EI, 70 eV): *m/z* = 283 (M⁺, 15), 256 (100), 228 (25), 200 (41), 165 (21); HRMS-ESI (*m/z*): [(M+H)⁺] cald for C_{14H8}CIINO₂⁺: 383.9283; found: 383.9298.

(*E*)-5-(1-lodo-2,2-dimethylpropylidene)furo[3,4-b]pyridin-7(5H)-one (21). Yield: 29 mg, starting from 72 mg of **3e** (25%) (Table 3, entry 8). Yellow solid, mp = 135-136 °C. ¹H NMR (CDCl₃, 300 MHz): δ = 9.41-9.26 (m, 1 H), 8.95-8.80 (m, 1 H), 7.67-7.56 (m, 1 H), 1.52 (s, 9 H); ¹³CNMR (CDCl₃, 75 MHz): δ = 163.0, 152.6, 144.1, 141.1, 135.1, 133.8, 126.9, 106.3, 41.0, 32.4; IR (KBr): *v* = 1790 (s), 1474 (m), 1404 (w), 1099 (w), 1015 (m), 818 (w) cm⁻¹; GC-MS (EI, 70 eV): *m/z* = 329 (M⁺, 37), 273 (44), 202 (100), 187 (48), 159 (19), 130 (33); HRMS-ESI (*m/z*): [(M+H)⁺] cald for C₁₂H₁₃INO₂⁺: 329.9985; found: 329.9995.

Typical lodolactonization Procedure of 3-(Phenylethynyl)picolinic acid in MeCN in Larger Scale. To a solution of 3-(phenylethynyl)picolinic acid 3a (2.2 mmol, 490 mg) in MeCN (44 mL) were added NaHCO₃ (6.6 mmol, 555 mg) and I₂ (1.67 g, 6.6 mmol) in this order under nitrogen. The mixture was allowed to stir at 25 °C for 1 h. Saturated aqueous Na₂S₂O₃ (50 mL) was then added, and the mixture was allowed to stir for 10 min. The phases were separated, and the aqueous phase was extracted with Et₂O (3 x 80 mL). The collected organic layers were dried over Na₂SO₄. After filtration and evaporation of the solvent, product 5-iodo-6-phenyl-8*H*-pyrano[3,4-*b*]pyridin-8-one 4a was purified by column chromatography on silica gel using 99:1 hexane–AcOEt as the eluent (yield: 576 mg, 75%).

procedure for the Iodolactonization of Typical 3-[(3-Chlorophenyl)ethynyl]picolinic Acid 3d in EmimEtSO4 for the Synthesis of 6-(3-Chlorophenyl)-5-iodo-8H-pyrano[3,4-b]pyridin-8one 4d (Table 3, Entry 7). In a Schlenk flask containing EmimEtSO₄ (2 mL) was added, under nitrogen, 3-((3-chlorophenyl)ethynyl)picolinic acid 3d (0.40 mmol; 103 mg). To the solution of the substrate in the IL, was added, under nitrogen, I₂ (152 mg, 0.6 mmol), and the resulting mixture was heated with stirring at 50 °C (oil bath) for 3 h. After cooling, the product was extracted with diethyl ether (3 mL, followed by 6 × 4 mL). The collected ethereal phases were concentrated. After evaporation of the solvent, product 6-(3-chlorophenyl)-5-iodo-8H-pyrano[3,4-b]pyridin-8one 4d was purified by column chromatography on silica gel using 95:5 hexane-AcOEt as the eluent (yield: 97 mg, 63%).

Typical procedure for the lodolactonization of 3-(3,3-Dimethylbut-1yn-1-yl)picolinic Acid 3e in Mor_{1,2}N(CN)₂ for the Synthesis of (*E*)-5-(1-lodo-2,2-dimethylpropylidene)furo[3,4-*b*]pyridin-7(5*H*)-one 21 (Table 3, Entry 10). In a Schlenk flask containing Mor_{1,2}N(CN)₂ (2 mL) was added, under nitrogen, 3-(3,3-dimethylbut-1-yn-1-yl)picolinic acid 3e (0.40 mmol; 81 mg). To the solution of the substrate in the IL, was added, under nitrogen, I₂ (151 mg, 0.6 mmol), and the resulting mixture was heated with stirring at 50 °C (oil bath) for 3 h. After cooling, the product was extracted with diethyl ether (3 mL, followed by 6 × 4 mL). The collected ethereal phases were concentrated. After evaporation of the solvent, product (*E*)-5-(1-lodo-2,2-dimethylpropylidene)furo[3,4-*b*]pyridin-7(5*H*)-one 21 was purified by column chromatography on silica gel using 95:5 hexane–AcOEt as the eluent (yield: 76 mg, 58%).

General Procedure for the Sonogashira Coupling Between 4-lodo-*TH*-thieno[2,3-c]pyran-7-ones 2 and Terminal Alkynes (Table 2). A solution of 4-iodo-*TH*-thieno[2,3-c]pyran-7-one (0.3 mmol; 2a, 106 mg; 2b, 110 mg; 2e, 108 mg; 2g, 100 mg; 2j, 110 mg), $PdCl_2(PPh_3)_2$ (21 mg, 0.03 mmol), Cul (4 mg, 0.018 mmol), the terminal alkyne (0.66 mmol; phenylacetylene, 68 mg; 1-ethynyl-4-methylbenzene, 77 mg; 3ethynylthiophene, 71 mg; 1-hexyne, 54 mg; but-3-yn-1-ylbenzene, 86 mg) in anhydrous diisopropylamine (3 mL) was allowed to stir under nitrogen at 70 °C (oil bath) for 24 h. After cooling to room temperature, AcOEt (8 mL) was added, and the mixture was washed with water (3 × 10 mL). The organic layer was washed with a saturated solution of NH₄Cl (1x10 mL) and then water until pH=7. After drying over Na₂SO₄, the solvent was evaporated, and the residue was purified by column chromatography on silica gel using hexane-AcOEt (9:1) as eluent.

5-Phenyl-4-(phenylethynyl)-7H-thieno[2,3-c]pyran-7-one (**8**). Yield: 87 mg, starting from 106 mg of **2a** (88%). Yellow solid, mp = 105.8-108.0 °C. ¹H NMR (CDCl₃, 300 MHz): δ = 8.27-8.18 (m, 2 H), 7.89 (d, J = 5.1, 1 H), 7.57-5.43 (m, 6 H), 7.42-7.34 (m, 3 H); ¹³CNMR (CDCl₃, 75 MHz): δ = 158.5, 156.9, 148.3, 136.8, 131.8, 131.3, 130.6, 128.9, 128.6, 128.4, 128.3, 125.3, 122.5, 121.9, 98.3, 96.6, 82.8; IR (KBr): v = 2210 (vw), 1732 (s), 1489 (m), 1447 (m), 1096 (w), 999 (m), 941 (w), 756 (m), cm⁻¹; GC-MS (EI, 70 eV): m/z = 328 (M⁺, 100), 299 (13), 271 (57), 239 (14); HRMS-ESI (m/z): [(M+H)⁺] cald for C₂₁H₁₃O₂S⁺: 329.0631; found: 329.0641. The spectroscopic data agreed with those reported.^[13]

5-(*p*-*Tolyl*)-4-(*p*-*tolylethynyl*)-7*H*-*thieno*[2,3-*c*]*pyran*-7-*one* (**9**). Yield: 80 mg, starting from 110 mg of **2b** (75%). Yellow solid, mp = 164-166.0 °C. ¹H NMR (CDCl₃, 300 MHz): δ = 8.13 (d, *J* = 8.2, 2 H), 7.84 (d, *J* = 5.1, 1 H), 7.49 (d, *J* = 5.1, 1 H), 7.37 (distorted d, *J* = 8.0, 2 H), 8.27 (d, *J* = 8.2, 2 H), 7.16 (distorted d, *J* = 8.0, 2 H), 2.41 (s, 3 H), 2.37 (s, 3 H); ¹³CNMR (CDCl₃, 75 MHz): δ = 158.4, 157.0, 148.6, 140.9, 139.1, 136.6, 131.2, 129.3, 129.1, 129.0, 128.2, 125.3, 121.5, 119.6, 97.8, 96.9, 82.4, 21.6, 21.5; IR (KBr): v= 2214 (vw), 1728 (s), 1504 (m), 1096 (w), 1072 (w), 1011 (m), 945 (w), 779 (m) cm⁻¹; GC-MS (EI, 70 eV): *m/z* = 356 (M⁺, 100), 341 (28), 313 (19), 285 (17); HRMS-ESI (*m/z*): [(M+H)⁺] cald for C₂₃H₁₇O₂S⁺: 357.0944; found: 357.0964. The spectroscopic data agreed with those reported.^[13]

4-(Hex-1-yn-1-yl)-5-(p-tolyl)-7H-thieno[2,3-c]pyran-7-one (**10**). Yield: 62 mg, starting from 110 mg of **2b** (64%). Yellow solid, mp = 85-86 °C. ¹H NMR (CDCl₃, 300 MHz): δ = 8.09 (d, J = 7.3, 2 H), 7.82 (d, J = 4.2, 1 H), 7.10 (d, J = 4.2, 1 H), 7.25 (d, J = 7.3, 2 H), 2.49 (t, J = 6.3, 2 H), 2.41 (s, 3 H), 1.70-1.55 (m, 2 H), 1.55-1.40 (m, 2 H), 0.96 (t, J = 6.6, 3 H); ¹³CNMR (CDCl₃, 75 MHz): δ =158.1, 157.2, 149.3, 140.6, 136.4, 129.2, 128.9, 128.1, 125.4, 121.5, 98.3, 73.9, 30.5, 22.1, 21.5, 19.5, 13.6; IR (KBr): v = 2226 (vw), 1732 (s), 1504 (m), 1435 (m), 1084 (m), 999 (m), 822 (w), 772 (m). cm⁻¹; GC-MS (EI, 70 eV): *m*/z = 322 (M⁺, 100), 293 (32), 280 (65), 265 (20), 251 (40), 208 (28), 119 (44), 91 (61); HRMS-ESI (*m*/z): [(M+H)⁺] cald for C₂₀H₁₉O₂S⁺: 323.1100; found: 323.1114.

5-(Thiophen-3-yl)-4-(thiophen-3-ylethynyl)-7H-thieno[2,3-c]pyran-7-one

(11). Yield: 75 mg, starting from 108 mg of **2e** (74%). Yellow solid, mp =110-112 °C. ¹H NMR (CDCl₃, 300 MHz): δ = 8.39-8.31 (m, 1 H), 8.00 (dd, *J* = 5.1, 1.2, 1 H), 7.85 (d, *J* = 5.1, 1 H), 7.64-7.53 (m, 1 H), 7.46 (d, *J* = 5.1, 1 H), 7.43-7.32 (m, 2 H), 7.29-7.17 (m, 1 H); ¹³CNMR (CDCl₃, 75 MHz): δ = 156.6, 154.4, 148.4, 136.7, 133.5, 129.5, 129.4, 127.8, 126.9, 126.0, 125.8, 125.2, 121.5, 121.3, 96.7, 93.2, 82.5; IR (KBr): v = 2214 (vw), 1721 (s), 1582 (m), 1520 (m), 1080 (m), 1003 (w), 972 (w), 778 (m) cm⁻¹; GC-MS (EI, 70 eV): *m/z* = 340 (M⁺, 100), 311 (13), 283 (54), 251 (17); HRMS-ESI (*m/z*): [(M+H)⁺] cald for C₁₇H₉O₂S₃⁺: 340.9759; found: 340.9756.

5-Butyl-4-(hex-1-yn-1-yl)-7H-thieno[2,3-c]pyran-7-one (**12**). Yield: 73 mg, starting from 100 mg of **2g** (84%). Yellow oil. ¹H NMR (CDCl₃, 300 MHz): δ = 7.82 (d, *J* = 5.2, 1 H), 7.30 (d, *J* = 5.2, 1 H), 2.80 (t, *J* = 7.5, 2 H), 2.49 (t, *J* = 6.9, 2 H), 1.80-1.35 (m, 8 H), 1.03-0.91 (m, 6 H); ¹³CNMR (CDCl₃, 75 MHz): δ = 164.3, 157.9, 148.3, 136.5, 124.6, 121.2, 99.5, 97.2, 72.5, 31.8, 30.8, 29.5, 22.2, 22.0, 19.3, 13.8, 13.6; IR (film): v = 2230 (vw), 1736 (s), 1597 (m), 1520 (w), 1435 (m), 1096 (w), 995 (m), 779 (m) cm⁻¹; GC-MS (EI, 70 eV): *m/z* = 288 (M⁺, 80), 259 (53), 245 (100), 203 (43), 189 (29), 161 (16), 147 (16), 115 (14), 89 (12); HRMS-ESI (*m/z*): [(M+H)⁺] cald for C₁₇H₂₉O₂S⁺: 289.1257; found: 289.1295. The spectroscopic data agreed with those reported.^[13]

3-*Methyl-5-phenyl-4-(4-phenylbut-1-yn-1-yl)-7H-thieno*[2,3-*c*]*pyran-7-one* (13). Yield: 73 mg, starting from 110 mg of 2j (66%). Yellow solid, mp = 103.2-106.9 °C. ¹H NMR (CDCl₃, 300 MHz): δ = 8.00-7.92 (m, 2 H), 7.47-7.33 (m, 4 H), 7.33-7.13 (m, 5 H), 2.87 (dist t, *J* = 7.3, 2 H), 2.71 (t, *J* = 7.3, 2 H), 2.51 (s, 3 H, Me); ¹³CNMR (CDCl₃, 75 MHz): δ = 159.0, 157.5, 144.8, 140.2, 136.3, 133.2, 132.2, 130.0, 128.9, 128.5, 128.3, 127.9, 126.5, 123.6, 100.0, 97.3, 75.0, 34.2, 21.7, 16.5; IR (KBr): v = 2220 (vw), 1728 (s), 1582 (w), 1489 (m), 1450 (m), 1396 (w), 1072 (m), 995 (m), 748 (m), 694 (m) cm⁻¹; GC-MS (EI, 70 eV): *m/z* = 370 (M⁺, 100), 279 (97), 251 (58), 234 (7), 221 (27), 208 (25), 105 (37), 91 (22); HRMS-ESI (*m/z*): [(M+H)⁺] cald for C₂₄H₁₉O₂S⁺: 371.1100; found: 371.1126.

General Procedure for the Suzuki Coupling Between 4-lodo-7*H*thieno[2,3-*c*]pyran-7-ones 2 and Arylboronic Acids (Table 2). A solution of the 4-iodo-7*H*-thieno[2,3-*c*]pyran-7-one 2 (0.3 mmol; 2a, 107 mg; 2b, 110 mg; 2e, 109 mg; 2g, 101 mg; 2j, 110 mg), boronic acid (0.36 mmol; phenylboronic acid, 44 mg; furan-3-ylboronic acid, 40 mg; *p*tolylboronic acid; 49 mg; thiophen-3-ylboronic acid, 46 mg), Pd(PPh₃)₄ (0.03 mmol, 35 mg), and Cs₂CO₃ (0.42 mmol; 136 mg) in anhydrous DMF (8.6 mL) was allowed to stir under nitrogen at 80 °C (oil bath) for 24 h. After cooling to room temperature, AcOEt (10 mL) and a saturated solution of NH₄Cl (10 mL) were added. The organic layer was washed with a saturated solution of NH₄Cl (3x10 mL) and then with brine (1X10 mL). After drying over Na₂SO₄, the solvent was evaporated, and the residue was purified by column chromatography on silica gel using hexane-AcOEt (9:1) as eluent.

4,5-Diphenyl-7H-thieno[2,3-c]pyran-7-one (14). Yield: 64 mg, starting from 107 mg of **2a** (70%). White solid, mp = 182-184 °C. ¹H NMR (CDCl₃, 300 MHz): δ = 7.76 (d, *J* = 4.7, 1 H), 7.46-7.17 (m, 10 H), 6.96 (d, *J* = 4.7, 1 H); ¹³CNMR (CDCl₃, 75 MHz): δ = 158.2, 153.4, 149.5, 136.3, 134.8, 132.3, 130.3, 129.3, 129.2, 129.1, 128.2, 128.0, 125.2, 122.8, 115.9; IR

(KBr): v = 1721 (s), 1489 (m), 1443 (w), 1427 (w), 1080 (m), 1026 (m), 779 (m), 694 (m) cm⁻¹; GC-MS (EI, 70 eV): m/z = 304 (M⁺, 100), 276 (21), 227 (50), 215 (10), 199 (15), 171 (19), 105 (66), 77 (59); HRMS-ESI (*m/z*): [(M+H)⁺] cald for C₁₉H₁₃O₂S⁺: 305.0631; found: 305.0626. The spectroscopic data agreed with those reported.^[14]

4-(*Furan-3-yl*)-5-phenyl-7H-thieno[2,3-c]pyran-7-one (**15**). Yield: 56 mg, starting from 106 mg of **2a** (63%). White solid, mp = 181.8-184.5 °C. ¹H NMR (CDCl₃, 300 MHz): δ = 7.82 (distorted d, J = 5.2, 1 H), 7.55-7.41 (m, 3 H), 7.41-7.21 (m, 4 H), 7.15 (distorted d, J = 5.2, 1 H), 6.32 (s, br, 1 H); ¹³CNMR (CDCl₃, 75 MHz): δ = 158.0, 154.1, 149.3, 143.7, 141.4, 136.5, 132.4, 129.5, 129.2, 128.1, 125.0, 122.8, 118.8, 112.0, 106.9; IR (KBr): v = 1713 (s), 1435 (w), 1157 (w), 1011 (m), 872 (w), 772 (m), 702 (m) cm⁻¹; GC-MS (EI, 70 eV): m/z = 294 (M⁺, 100), 266 (41), 237 (57), 208 (35), 165 (30), 105 (31), 77 (58); HRMS-ESI (m/z): [(M+H)⁺] cald for C₁₇H₁₁₀₃S⁺: 295.0423; found: 295.0426.

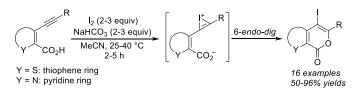
4,5-*di*-*p*-*Tolyl*-*7H*-*thieno*[2,3-*c*]*pyran*-*7*-*one* (**16**). Yield: 60 mg, starting from 110 mg of **2b** (60%). White solid, mp =152-154 °C. ¹H NMR (CDCl₃, 300 MHz): δ = 7.74 (d, *J* = 5.1, 1 H), 7.33-7.07 (m, 6 H), 7.02 (d, *J* = 8.0, 2 H), 6.95 (d, *J* = 5.1, 1 H), 2.40 (s, 3 H), 2.29 (s, 3 H); ¹³CNMR (CDCl₃, 75 MHz): δ = 158.3, 153.4, 149.9, 139.3, 137.9, 136.0, 132.0, 130.1, 129.8, 129.6, 129.2, 128.7, 125.2, 122.5, 115.3, 21.3; IR (KBr): v = 1721 (s), 1504 (m), 1427 (w), 1080 (w), 1018 (m), 826 (m), 756 (m) cm⁻¹; GC-MS (EI, 70 eV): *m/z* = 332 (M⁺, 100), 304 (36), 289 (8), 261 (11), 241 (34), 213 (11), 119 (50), 91 (37); HRMS-ESI (*m/z*): [(M+H)⁺] cald for C₂₁H₁₇O₂S⁺: 333.0944; found: 333.0948.

4,5-Di(thiophen-3-yl)-7H-thieno[2,3-c]pyran-7-one (**17**). Yield: 73 mg, starting from 109 mg of **2e** (77%). White solid, mp = 195-197 °C. ¹H NMR (CDCl₃, 300 MHz): δ = 7.76 (d, *J* = 5.2, 1 H), 7.51 (distorted dd, *J* = 4.9, 2.9, 1 H), 7.43 (distorted dd, *J* = 2.9, 1.2, 1 H), 7.32 (distorted dd, *J* = 2.9, 1.2, 1 H), 7.15 (distorted dd, *J* = 5.2, 2.9, 1 H), 7.04 (dd, *J* = 5.2, 1.2, 1 H), 6.91 (d, *J* = 5.2, 1 H), 7.81 (dd, *J* = 5.2, 1.2, 1 H), ¹³CNMR (CDCl₃, 75 MHz): δ = 157.7, 149.8, 149.7, 136.4, 134.4, 133.5, 128.8, 127.2, 126.9, 125.3, 125.0, 121.9, 109.7; IR (KBr): v = 1713 (s), 1597 (w), 1504 (w), 1165 (w), 1011 (m), 772 (s), 648 (m) cm⁻¹; GC-MS (EI, 70 eV): *m/z* = 316 (M⁺, 100), 288 (70), 259 (45), 227 (37), 111 (47); HRMS-ESI (*m/z*): [(M+H)⁺] cald for C₁₅H₉O₂S₃⁺: 316.9759; found: 316.9782.

5-*Butyl-4-phenyl-7H-thieno*[2,3-*c*]*pyran-7-one* (**18**). Yield: 72 mg, starting from 101 mg of **2g** (85%). Yellow oil. ¹H NMR (CDCl₃, 300 MHz): δ = 7.72 (d, *J* = 5.2, 1 H), 7.54-7.38 (m, 3 H), 7.35-7.25 (m, 2 H), 6.78 (d, *J* = 5.2, 1 H), 2.48 (t, *J* = 7.6, 2 H), 1.67 (quintuplet, *J* = 7.6, 2 H), 1.29 (hexuplet, *J* = 7.6, 2 H), 0.83 (t, *J* = 7.3, 3 H); ¹³CNMR (CDCl₃, 75 MHz): δ = 158.8, 157.7, 149.2, 136.1, 134.6, 129.9, 128.9, 128.2, 124.7, 121.8, 115.6, 30.5, 30.0, 22.2, 13.7; IR (film): v = 1728 (s), 1620 (w), 1520 (m), 1427 (m), 1096 (w), 1011 (m), 779 (m), 702 (m) cm⁻¹; GC-MS (EI, 70 eV): *m/z* = 284 (M⁺, 100), 241 (20), 227 (81), 213 (37), 200 (42), 171 (28); HRMS-ESI (*m/z*): [(M+H)⁺] cald for C₁₇H₁₆O₂S⁺: 285.0944; found: 285.0995.

3-Methyl-5-phenyl-4-(p-tolyl)-7H-thieno[2,3-c]pyran-7-one (**19**). Yield: 63 mg, starting from 111 mg of **2j** (63%). White solid, mp = 162-164 °C. ¹H NMR (CDCl₃, 300 MHz): δ = 7.38-7.37 (m, 1 H), 7.35-7.29 (m, 2 H), 7.23-7.12 (m, 7 H), 2.38 (s, 3 H), 1.62 (s, 3 H); ¹³CNMR (CDCl₃, 75 MHz): δ = 158.8, 153.1, 146.1, 138.1, 136.2, 133.4, 132.9, 131.1, 129.29, 129.27, 128.7, 127.8, 124.1, 116.6, 21.4, 16.6; IR (KBr): v = 1728 (s), 1512 (w), 1489 (w), 1450 (m), 1072 (m), 1003 (w), 756 (m), 694 (w) cm⁻¹; GC-MS (EI, 70 eV): *m*/*z* = 332 (M⁺, 100), 255 (69), 227 (23), 207 (16), 105 (72), 77 (39); HRMS-ESI (*m*/*z*): [(M+H)⁺] cald for C₂₁H₁₇O₂S⁺: 333.0944; found: 333.0948.

Keywords: alkynylcarboxylic acids • fused heterocycles • iodolactonization • iodothienopyranones • iodothienopyrimidinones •


13

- For recent reviews, see: a) T. Khan, S. Yaragorla, *Eur. J. Org. Chem.* 2019, 3989-4012; b) S. Pallabi, S Gogoi, *Adv. Synth. Catal.* 2018, 360, 2063-2075; c) T. Aggarwal, S. Kumar, A. K. Verma, *Org. Biomol. Chem.* 2016, *14*, 7639-7653; d) S. Singh S. S. Chimni, *Synthesis* 2015, *47*, 1961-1989; e) B. Gabriele, R. Mancuso R. C. Larock, *Curr. Org. Chem.* 2014, *18*, 341-358; f) R. Mancuso, B. Gabriele, *Molecules* 2014, *19*, 15687-15719; g) P. T. Parvaktar, P. S. Parameswaran, S. G. Tilve, *Chem. Eur. J.* 2012, *18*, 5460-5489; h) K. C. Majumdar, *RSC Adv.* 2011, *1*, 1152-1170; i) A. K. Banerjee, M. S. Laya, E. V. Cabrera, *Curr. Org. Chem.* 2011, *15*, 1058-1080; j) M. J. Mphahlele, *Molecules* 2009, *14*, 4814-4837. For recent examples, see: k) S. Yaragorla, R. Dada, D. Bag, *Eur. J. Org. Chem.* 2019, 6983-6988; l) S. Yaragorla, A. Pareek, R. Dada, P. L. Saini, *Eur. J. Org. Chem.* 2017, 4600-4608.
- [2] R. Mancuso, C. S. Pomelli, F. Malafronte, A. Maner, N. Marino, C. Chiappe, B. Gabriele, Org. Biomol. Chem. 2017, 15, 4831-4841.
- The cores of the ioodothienopyranones and iodopyranopyrimidinones [3] synthesized in this work have known to possess important pharmacological activities. For representative examples of biologically active molecules bearing the thienopyranone moiety, see: a) S: Raju, V. R. Batchu, N. K. Swamy, V. Dev, B. R. Sreekanth, J. M. Babu, K. Vyas, P. R. Kumar, K. Mukkanti, P. Annamalai, M. Palb, Tetrahedron 2006, 62, 9554-9570; b) M. S. Rao, M. Haritha, N. Chandrasekhar, M. V. B. Rao, M. Pal, Tetrahedron Lett. 2014, 55, 1660-1663. For representative of biologically active molecules bearing examples the pyranopyrimidinone moiety, see: a) H. Natsugari, T. Doi, Y. Ikeura, (Takeda Chemical Industries, Ltd., Japan). US Pat. Appl. 2002, 20020132817 (A1); d) H. Natsugari, Y. Ikeura, I. Kamo, T. Ishimaru, Y. Ishichi, A. Fujishima, T. Tanaka, F. Kasahara, M. Kawada, T. Doi, J. Med. Chem. 1999, 42, 3982-3993; e) Y. Ikeura, T. Ishimaru, T. Doi, M. Kawada, A. Fujishima, H. Natsugari, Chem. Commun. 1998, 2141-2142. f) G. Dorey, G. Poissonnet, M.-C. Potier, L. Prado de Carvalho, P. Venault, G. Chapouthier, J. Rossier, P. Potier, R. H. Dodd, J. Med. Chem. 1989. 32, 1799-1804.
- [4] Reactions were typically carried out with a substrate scale of 0.25 mmol. Products yields were even higher when representative experiments were carried out in a larger scale (2.2 mol of 1; for example, the yields of 2a, 2b, and 2e were 93%, 90%, and 89%, respectively. See the Experimental Section for details).
- [5] Reactions were typically carried out with a substrate scale of 0.35 mmol. Products yields were even higher when representative experiments were carried out in a larger scale (2.2 mol of 3), for example, the yield of 4a was 75% (see the Experimental Section for details).
- [6] See, for example: E. Karlsen, J. Spamget-Larsen, Chem. Phys. Lett. 2009, 473, 227-232.
- [7] S. V. Giofrè, R. Mancuso, F. Araniti, R. Romeo, D. Iannazzo, M. R. Abenavoli, B. Gabriele, *ChemPlusChem* 2019, 84, 942-950.
- [8] V. O. Iaroshenko, S. Ali, T. M. Babar, M. S. A. Abbasi, V. Y. Sosnovskikh, A. Villinger, A. Tolmachev, P. Langer, *Tetrahedron* 2013, 69, 3167-3181.
- [9] A. Padwa, U. Chiacchio, D. J. Fairfax, J. M. Kassir, A. Litrico, M. A. Semones, S. I. A. Xu, J. Org. Chem. 1993, 23, 6429-6437.
- [10] M. L. Falck-Pedersen, K. Undheim, Acta Chem. Scand. 1998, 52, 1327-1332.
- [11] M. Peuchmaur, V. Lisowski, C. Gandreuil, L. T. Maillard, J. Martinez, J.-F. Hernandez, J. Org. Chem. 2009, 74, 4158-4165.
- [12] A. Nakhi, R. Adepu, D. Rambabu, R. Kishore, G. R. Vanaja, A. M. Kalle, M. Pal, *Bioorg. Med. Chem. Lett.* **2012**, *22*, 4418-4427.
- [13] S. Raju, V. R. Batchu, N. K. Swamy, R. V. Dev, B. R. Sreekanth, J. M. Babu, K. Vyas, P. R. Kumar, K. Mukkanti, P. Annamalai, M. Pal, *Tetrahedron* 2006, *62*, 9554-9570.
- [14] X. G. Li, K. Liu, G. Zou, P. N. Liu, Adv. Synth. Catal. 2014, 356, 1496-1500.

WILEY-VCH

WILEY-VCH

Entry for the Table of Contents

High value added iodinated fused heterocycles from simple substrates: lodothienopyranones and iodopyranopyrimidinones are obtained under mild reaction conditions (25-40 °C, 2-3 equiv of I_2 and NaHCO₃ in MeCN) by iodolactonization of readily available 3-alkynylthiophene-2-carboxylic and 3-alkynylpicolinic acids, respectively.

KEY TOPIC: FUSED HETEROCYCLES

Accepted Manuscript