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ABSTRACT: We report here for the first time a novel difluoromethylated ketimine
building block condensed by thioisatin and difluoroethylamine, offering efficient
access to a broad range of enantioenriched products bearing difluoroethylamine
units (27 examples, ≤98% yield, >99% ee) in the presence of quinine-derived
squaramide. Further transformation of the intermediate would generate a variety of
versatile functional blocks like α-difluoromethyl amines, β-amino acid, and β-
diamine with retention of the enantiomeric excess at the difluoromethyl-bound
carbon.

I t is well-known that hydrogen bonding plays a critical role
in the specific interactions of bioactive compounds with

chiral receptors like enzymes and proteins, and therefore, it has
a wide range of applications in drug design. However, a series
of potentially undesirable effects may follow because of the
high sensitivity and reactivity of traditional hydrogen bond
donors like thiols.1 It is gratifying that the difluoromethyl
group (CF2H) has exhibited useful properties as a chemically
inert surrogate of alcohols, thiols, and other polar functional
groups.2 The incorporation of a difluoromethyl group into
various molecules could not only avoid adverse reactions3

caused by original polar groups and retain a key recognition
element for biologic targets but also provide additional benefits
due to the effect of fluoroalkyl groups on the physical and
biological properties of molecules.4−7 For instances, upon
replacement of 1α-OH groups with 1-CF2H of calcitriol
derivatives, the toxic calcemic activity of target compounds
could be greatly decreased (≤20-fold).3 In addition, the
improvement of the inhibition of hepatitis C virus NS3
protease has been successfully achieved through the exchange
of a sulfhydryl group and a difluoromethyl group.8

A growing amount of attention being paid to difluoromethyl
groups in the field of pharmaceutical chemistry has inspired
substantial research efforts that aimed to develop general
methods for the controlled introduction of difluoromethyl
groups into a wide scope of substrates, yet only a handful of
effective strategies for the construction of enantioenriched
tertiary and quaternary centers bearing CF2H groups have
emerged. To date, the direct fluorination method has not yet

been extensively studied.9 Although excellent enantioselectivity
has been achieved in the development of difluoromethylation
methods targeting Csp

3−CCF2H bond construction, the substrate

scope of those reports was limited to chiral auxiliary-based
imines, mostly based on a precisely designed catalytic
model.10−15 Preparing synthetic building blocks bearing
preinstalled CF2H groups on the prechiral center has been
the most widely studied strategy, taking advantage of the easy
preparation of fluorinated substrates and the diversity of
addition reactions. Seminal works by Funabiki have enabled
asymmetric addition of Cα-difluoromethyl-substituted aldi-
mines with acetone.16 Subsequently, the use of diverse imines
as precursors for stereoselectively introducing difluoromethyl
groups has been reported successively by Zhou and Wang,17

Qing,18 and Pozo and Fustero.19 In those reports, aromatic
groups attached to the N-end of the imine were not easily
removed, hindering the further application of such blocks.
When aldehydes,20−22 ketones,23−31 and alkenes,32−36 carrying
a difluoromethyl group, acted as CF2H-containing building
blocks, metal catalytic conditions were normally used.
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Given the limited types of synthetic blocks, we considered
that invention of a stable building block could provide an
attractive method, easy to implement, for accessing enantioen-
riched difluoromethyl group-bearing compounds, particularly if
it would facilitate the preparation of a wide array of molecular
architectures containing the CF2H groups. Herein, we first
reported a building block based on O’Donnell Schiff bases,
condensed by thioisatin and difluoroethylamine, which is an
active methylene compound prone to alkylation with electro-
philes. The block would provide a new, potentially powerful
avenue for the enantioselective synthesis of desired compounds
bearing γ-nitro-β,β-difluoroethylamine units that could be
extended to a series of derivatives possessing useful functional
handles such as α-difluoromethyl amines, β-amino acids, and
β-diamines when nitroalkene derivatives were chosen as
another candidate substrate.
In the past several decades, bifunctional organocatalysts

derived from cinchona alkaloids have shown versatile ability in
asymmetric alkylation of O’Donnell Schiff base deriva-
tives.37−40 Hence, initial evaluation of the proposed alkylation
was carried out using quinine-derived thiourea C1 (Figure 1)

as the precatalyst and (E)-(2-nitrovinyl)benzene 2a as the
acceptor in toluene at room temperature. Gratifyingly, the
desired product 3a was obtained in 85% yield and 92% ee
(Table 1, entry 1). Further extensive evaluation of different
cinchona-based thiourea and squaramide [C2−C8 (Figure 1)]
provided pretty good yields and enantioselectivity (Table 1,
entries 2−8), and quinine-derived squaramide C5 proved to be
the best (Table 1, entry 5).
The influence of solvents and temperature then was studied,

showing that the enantioselectivity and yields of reactions were
extremely dependent on the solvents used while the ee value of
the products was almost unaffected by temperature. The best
results were obtained in toluene, furnishing stereoisomer 3a in
88% yield and 98% ee (Table 1, entry 5). Solvents such as
tetrahydrofuran and ethyl acetate led to good performance in
terms of yields and ee values (Table 1, entries 9 and 10,
respectively). Remarkably, no product was observed in the
polar solvent dichloromethane and the protic solvent methanol
(Table 1, entries 11 and 12, respectively). In the dipolar
solvents acetone and acetonitrile, moderate yields and ee
values were obtained (Table 1, entries 13 and 14, respectively).
In contrast, the reaction enantioselectivity and diastereose-
lectivity remained excellent at different temperatures albeit

with a slight increase or decrease in yield (Table 1, entries 15−
17). In addition, an impressive decrease in yields is seen in
Table 1 when a range of lower catalyst loadings were used
(Table 1, entries 18 and 19). Under 1% catalyst loading, only
traces of products were observed (Table 1, entry 19).
The scope of the reaction was investigated (Scheme 1)

under the optimal conditions (Table 1, entry 5) using a wide
range of β-nitrostyrenes possessing halo substituents such as F
(3d, 3f, and 3j), Cl (3c and 3k), and Br (3d, 3g, and 3l) or
alkyl substituents such as OMe (3e, 3h, and 3m) and Me (3n)
on phenyl moieties. Notably, the enantioselectivity of the
asymmetric alkylation process was not influenced by the
electronic effect of the substituents, whereas the reactivities of
2-substituted nitrostyrenes were significantly reduced com-
pared with those of 3- or 4-substituted substituents. This fact
shows that greater steric hindrance might exist when the ortho-
substituted nitroalkenes combined with N-2,2-difluoroethylth-
ioisatin ketimines, and the increase in the reaction energy
barrier resulted in a lower reaction conversion rate. To
determine the absolute configuration of our products, we grew
crystals of compound 3l and subjected them to X-ray
crystallographic analysis (Scheme 1). Regardless, substrates
with strong coordination abilities, such as those with a
trifluoromethyl (3i and 3o) and double halogen atoms (3p
and 3q) on phenyl moieties, still underwent the asymmetric
addition to afford the desired products in good yields and
enantioselectivities. Only when the hydroxyl group was
introduced at the ortho position of the benzene ring did the
yield decrease sharply to 46%.

Figure 1. Structures of the catalysts.

Table 1. Screening of Reaction Conditionsa

entry catalyst solvent time (h) yield (%)b drc ee (%)d

1 C1 toluene 6 85 >20:1 92
2 C2 toluene 6 88 >20:1 −84
3 C3 toluene 6 66 >20:1 −88
4 C4 toluene 6 80 >20:1 93
5 C5 toluene 4 88 >20:1 98
6 C6 toluene 4 68 >20:1 −97
7 C7 toluene 4 77 >20:1 −96
8 C8 toluene 4 61 >20:1 94
9 C5 THF 5 96 >20:1 94
10 C5 EA 6.5 93 >20:1 87
11 C5 DCM 24 nr − −
12 C5 MeOH 24 nr − −
13 C5 acetone 24 85 >20:1 88
14 C5 acetonitrile 48 68 >20:1 89
15e C5 toluene 6 82 >20:1 97
16f C5 toluene 8 69 >20:1 97
17g C5 toluene 4 89 >20:1 97
18h C5 toluene 6 69 >20:1 97
19i C5 toluene 9 trace − −

aReaction conditions: N-2,2-difluoroethylthioisatin ketimines 1 (0.10
mmol), β-nitrostyrenes 2a (0.15 mmol), catalyst (10 mol %), solvent
(1 mL), room temperature. bIsolated yield. cDetermined by chiral
HPLC analysis or 1H NMR. dDetermined by chiral phase HPLC
analysis. eAt 0 °C. fAt −10 °C. gAt 35 °C. hWith 5 mol % catalyst.
iWith 1 mol % catalyst.
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Non-benzene ring-substituted nitroethylenes were also
studied. The naphthyl groups of substrates 2 did not hinder
the reaction process, and the reactions afforded corresponding
product 3s and 3t (Scheme 2) in good yield and ee. Biphenyl-
containing substrate 2u was tolerated and gave product 3u in
73% yield and 98% ee. (E)-1-(Benzyloxy)-4-(2-nitrovinyl)-
benzene 2v could be transformed successfully under the
reaction conditions, as well. Asymmetric alkylation of N-2,2-
difluoro-ethylthioisatin ketimines with either a thiophene (3w
and 3x) or a furan (3y) moiety at the α-position of
nitroethylene proceeded smoothly. Even ethyl acetate-contain-
ing compound 1z and CF3-containing compound 1aa were
also accommodated with minimal impact on enantioselectivity
(3z and 3aa, respectively). Although 3z was obtained in 30%
yield, the yield could be increased to 56% when the reaction
temperature was increased to 40 °C. To further study the effect
of the increase in temperature on the reaction yield, the
reaction of substrates 1 and 2a was carried out at 50 °C, with a
decrease in the catalyst loading to 5%. The desired product 3a
was obtained in 70% yield and 97% ee, which shows that the

loading of catalyst has a greater impact on the yield of the
reaction than the reaction temperature. Under lower catalyst
loadings, the desired yield cannot be achieved just by
increasing the reaction temperature.
To showcase the practical utility of our new building blocks,

we conducted a 2.0 mmol reaction and obtained 3a in 85%
yield and 98% ee.
As noted at the outset, enantioenriched difluoromethylated

products are extremely versatile intermediates for the synthesis
of important families of compounds bearing CF2H groups
bound to defined stereogenic centers. Several illustrative
examples are provided. First, hydrolysis product 4a (Scheme
3), with a chiral α-difluoromethyl amine unit showing
performance better than those of tri- or monofluoromethyl

Scheme 1. Scope of β-Nitrostyrenesa

aThe reaction time required for each substrate is given. The yields of
the isolated products are reported. The ee values and dr values were
determined by HPLC analysis or 1H NMR.

Scheme 2. Scope of Non-Benzene Ring-Substituted
Nitroethylenea

aThe reaction time required for each substrate is given. The yields of
the isolated products are reported. The ee values and dr values were
determined by HPLC analysis or 1H NMR. *At 40 °C.

Scheme 3. Application of Our Developed Building Blocks
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substitutents in regulating the basicity and bioavailability of
biologically active molecules,4 could be offered by removal of
thioisatin units under mild acidic conditions. Further reduction
of 4a enables the facile preparation of the chiral α-
difluoromethylated vicinal diamine whose synthetic methods
were rarely reported,11 albeit with their ubiquity in natural
products.41 Conversion to 6a was performed to accurately
determine the ee value. The nitryl group in product 4a could
be oxidized to yield the CF2H-substituted β-amino acid (5a) in
92% yield without loss of ee. Such amino acids, different from
their α counterparts, are being used to solve the problem of
antibiotic resistance. It is very important that none of the
conversion processes described above resulted in erosion of the
stereochemical purity.
On the basis of the X-ray crystallographic structure of

product 3l, a potential transition mechanism was proposed. As
shown in Figure 2, first, the tertiary amine of the squaramide

catalyst deprotonates ketimine to furnish the methylene ylide
intermediate while the squaramide moiety binds and activates
the nitroalkene through hydrogen bonds. Subsequently, the
bifunctional catalyst drew the two substrates closer in a special
way, and the C anion attacked the nitroalkene to give the
desirable product.
In summary, we have developed a novel building block from

simple starting materials and revealed a promising approach for
stereoselective construction of functionalized difluoromethyl-
containing adducts with excellent efficiency, remarkable
enantioselectivity, and excellent functional group tolerance.
Noteworthy is the fact that the newly developed asymmetric
alkylation of N-2,2-difluoroethylthioisatin ketimines with
nitroalkene derivatives has obvious advantages in terms of
high reactivity, easy accessibility of raw material, mild reaction
conditions, and simple workup, which could effectively simplify
the synthesis of α-difluoromethyl-substituted targets. Further-
more, the approach offers a broadly applicable platform
enabling efficient access to other useful chiral difluoromethyl-
containing building blocks bearing versatile functional groups
via further transformation and thus expands the application of
this block for research in chemistry, biology, and medicine.
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Figure 2. Potential transition mechanism.
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