



# **Accepted Article**

**Title:** Preparation of Zn3In2S6/TiO2 for enhanced CO2 photocatalytic reduction activity via Z-scheme electron transfer

Authors: Houde She, Yan Wang, Hua Zhou, Yuan Li, Lei Wang, Jingwei Huang, and Qizhao Wang

This manuscript has been accepted after peer review and appears as an Accepted Article online prior to editing, proofing, and formal publication of the final Version of Record (VoR). This work is currently citable by using the Digital Object Identifier (DOI) given below. The VoR will be published online in Early View as soon as possible and may be different to this Accepted Article as a result of editing. Readers should obtain the VoR from the journal website shown below when it is published to ensure accuracy of information. The authors are responsible for the content of this Accepted Article.

To be cited as: ChemCatChem 10.1002/cctc.201801745

Link to VoR: http://dx.doi.org/10.1002/cctc.201801745



WILEY-VCH

www.chemcatchem.org

# Preparation of $Zn_3In_2S_6/TiO_2$ for enhanced $CO_2$ photocatalytic reduction activity via Z-scheme electron transfer

Houde She, Yan Wang, Hua Zhou, Yuan Li, Lei Wang, Jingwei Huang, Qizhao Wang\*

**Abstract:** Photocatalytic reduction of CO<sub>2</sub> is increasingly attracting research interest for the growing concerns about climate change resulted from the greenhouse effect due to the industrial emission of CO<sub>2</sub>. In this paper, we report the synthesis of  $Zn_3ln_2S_6$  modified TiO<sub>2</sub> nanocomposite via a facial hydrothermal method. The samples were characterized by photoluminescence spectra (PL), UV–vis diffuse reflectance spectra (DRS), X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscope (TEM), X-ray photoelectron spectroscopy (XPS) and energy dispersive X-ray spectroscopy (EDS). The production rate of CO from CO<sub>2</sub> is dramatically improved over the obtained composite catalyst. The contact between  $Zn_3ln_2S_6$  and TiO<sub>2</sub> is responsible for this ameliorated photocatalytic activity because of the formation of the Z-scheme charge transfer mechanism which favors the separation of photo-induced charges.

#### Introduction

With a considerable increase in greenhouse gas discharge <sup>[1]</sup>, seeking an environment-friendly way to address the problem generated by redundant carbon dioxide has become an urgent need in today's society. Employing CO<sub>2</sub> as a reactant and chemically preparing expected materials for industrial application is one of the most applicable ways. So far, artificial conversion methods of CO<sub>2</sub> mainly embrace high-temperature catalytic hydrogenation <sup>[2]</sup>, photocatalytic conversion <sup>[3]</sup>, photoelectric cooperative catalysis <sup>[4]</sup>, etc. Many catalysts like metal oxides <sup>[5-7]</sup>, sulfides <sup>[8-9]</sup> and nonmetallic oxide <sup>[10-11]</sup> have been developed for the purpose of reduction of CO<sub>2</sub> driven by irradiation of visible light and exhibited excellent performance in catalyzing the reaction.

Since S. Kato and F. Mosuo reported the oxidation of tetralin while using  $TiO_2$  as the photocatalyst in a liquid phase under UV irradiation <sup>[12]</sup>,  $TiO_2$  has been extensively studied because of its impressive chemical stability and low cost. However,  $TiO_2$  shows egregious recombination of photogenerated charges and is exclusively responsive to UV light, restricting its further pragmatic use. Therefore, a list of strategies, such as doping <sup>[13-14]</sup>, loading cocatalyst <sup>[15]</sup>

Dr. H. She, Y. Wang, H. Zhou, Y. Li, Dr. L. Wang, Dr. J. Huang, Prof. Q. Wang College of Chemistry and Chemical Engineering Northwest Normal University Lanzhou 730070, China E-mail: wangqizhao@163.com; qizhaosjtu@gmail.com. and forming heterojunction with other semiconductors <sup>[16]</sup> etc. have been explored to solve the problems. Amid them, loading cocatalyst is an efficacious approach, which is capable of greatly improving the efficiency of photogenerated carriers' separation <sup>[17]</sup>.

Precious metals are often used as cocatalysts in carbon dioxide reduction. Nevertheless, they are prohibited from extensive use owning to their high cost. Accordingly, using non-noble metals and its compound as cocatalysts have been studied in a large scale [18, 19], such as copper oxide [20],  $Co_3O_4^{[21]}$  and  $MoS_2^{[22]}$ . Among them, metal sulfides (CdS, ZnIn<sub>2</sub>S<sub>4</sub>, etc.) are visible-light-active Zn<sub>3</sub>In<sub>2</sub>S<sub>6</sub>, photocatalysts with unique electronic structure and optical properties [23-28]. Specifically, Zn-In-S, a visible light responding ternary semiconductor, has drawn widespread attention in photocatalysis owning to its high activity and narrow bandgap <sup>[29, 30]</sup>. For example, Bai's group used ZnIn<sub>2</sub>S<sub>4</sub> shells as visible light sensitizers to improve lightharvesting efficiency, and resultantly presents significantly enhanced photoelectrochemical performance [31]. Guang Yang et al. prepared ZnIn<sub>2</sub>S<sub>4</sub>/TiO<sub>2</sub> Z-system to reduce recombination of photogenerated electrons and holes with greatly ameliorated catalytic activity attained <sup>[32]</sup>. One-unitcell  $ZnIn_2S_4$  layers with rich zinc vacancies were successfully designed by Xingchen Jiao et al. for acquiring higher efficiency in photocatalytic reduction of CO<sub>2</sub><sup>[9]</sup>. While many studies aiming at ZnIn<sub>2</sub>S<sub>4</sub>, few are focused on Zn<sub>3</sub>In<sub>2</sub>S<sub>6</sub> that plays the role of cocatalyst in photocatalytic reduction of CO<sub>2</sub>. In fact,  $Zn_3In_2S_6$  owns suitable conduction band position, which will incur a synergistic effect when interacts with other semiconductor materials [33]. In this regard, adopting  $Zn_3In_2S_6$  as a cocatalyst can be a quite promising strategy to enhance the photocatalytic activity of TiO<sub>2</sub>.

In this study, a new hybrid photocatalyst,  $Zn_3In_2S_6/TiO_2$ (ZIS/TiO<sub>2</sub>), was synthesized by the solvothermal method. The practical application of it shows that ZIS/TiO2 composites have better photocatalytic properties than TiO<sub>2</sub> alone. The reason presumably lies in that the contact between cocatalyst  $Zn_3ln_2S_6$  and  $TiO_2$  forms a direct Zscheme electron transfer mechanism, raising the separation efficiency of photo-generated carriers. The photocatalytic reaction mechanism of Z-scheme electron transfer was elucidated fluorescence further by spectroscopy. transmission electron microscopy and theoretical calculations.

#### **Results and Discussion**

Morphological analysis of pure TiO<sub>2</sub> and 0.5ZIS/TiO<sub>2</sub> is performed using the field emission scanning electron microscopy (FE-SEM) and the transmission electron microscope (TEM). Fig. 1a, b show illustrative images of the original TiO<sub>2</sub> and 0.5% Zn<sub>3</sub>In<sub>2</sub>S<sub>6</sub> sample. Compared with original P25, 0.5ZIS/TiO<sub>2</sub> has no obvious changes in particle size and morphology. The possible reasons for this result could be demonstrated as follows: The relatively low temperature was used in the preparation of composite materials, which cannot change the primeval physical properties. On the other hand, it may be due to the low content of  $Zn_3ln_2S_6$  on TiO<sub>2</sub>. The transmission electron microscope pictures of TiO<sub>2</sub> and 0.5ZIS/TiO2 are shown in Fig. 1c and 1d. Two sets of different lattice images are observed in Fig. 1c. It can be seen that two sets of the corresponding streaks, with a distance of 0.355 nm and 0.226 nm, are in great keep with (101) lattice plane of anatase TiO<sub>2</sub> and (200) lattice plane of rutile TiO<sub>2</sub>. There are two sets of diverse lattice images in Fig. 1d. One set of the corresponding fringes, with an interval of 0.351 nm and 0.193 nm, are in perfect accord with (101) lattice plane of anatase TiO2 and (110) lattice plane of Zn<sub>3</sub>ln<sub>2</sub>S<sub>6</sub>. The structure of 0.5ZIS/TiO<sub>2</sub> composite can be further confirmed by XRD and EDS analysis (shown in Fig. 2,3.) and selected area electron diffraction (shown in Fig. S2.).



Fig.1 SEM images of (a) TiO<sub>2</sub> and (b) 0.5ZIS/TiO<sub>2</sub>; TEM images of (c) TiO<sub>2</sub> and (d) 0.5ZIS/TiO<sub>2</sub>.

The X-ray diffraction (XRD) patterns of the as-synthesized pure TiO<sub>2</sub> and TiO<sub>2</sub> with different amounts of Zn<sub>3</sub>ln<sub>2</sub>S<sub>6</sub> samples are shown in Fig. 2a. The X-ray peaks of the TiO<sub>2</sub> powder are in fine accordance with rutile phase (JCPDS, No. 21-1276) and anatase phase (JCPDS, No. 21-1272). The X-ray diffraction (XRD) spectrum of the pure Zn<sub>3</sub>ln<sub>2</sub>S<sub>6</sub> powder is shown in Fig. 2b, and it is found that the diffraction peak is finally consistent with the JCPDS of the hexagonal phase Zn<sub>3</sub>ln<sub>2</sub>S<sub>6</sub>, No. 80-0835. Moreover, the diffraction peak intensity of ZlS/TiO<sub>2</sub> gradually decreases with the increase of the loading of Zn<sub>3</sub>ln<sub>2</sub>S<sub>6</sub> is not observed

because of its low content.

The structure of  $0.5ZIS/TiO_2$  composite can be further confirmed by EDS analysis as shown in Fig.3. The matching elemental mappings of Ti are feckly uniform with that of O as shown in Fig.3, both of which entirely shape through the TiO<sub>2</sub> substrates structure. Additionally, it can be detected that the equably distributed elemental mappings of Zn, In, S are similar to each other, as suggested by its uniform colour, and no other elements are detected at the same time, which validates the coexistence of Zn<sub>3</sub>ln<sub>2</sub>S<sub>6</sub> and TiO<sub>2</sub>.



Fig.2 The X-ray diffraction patterns of  $TiO_2$  and ZIS/TiO<sub>2</sub> samples (a) and  $Zn_3In_2S_6$  sample (b).

|                                                             | Ti         | 0          |
|-------------------------------------------------------------|------------|------------|
| 1 am                                                        | <u>1μm</u> | <u>1μm</u> |
| In the same with the same same same same same same same sam | Zn         | S          |
|                                                             |            |            |
| <u>1µm</u>                                                  | <u>1µm</u> | <u>1µm</u> |

Fig.3 Elemental mapping images of 0.5ZIS/TiO<sub>2</sub>

In order to further study the valence state of  $Zn_3In_2S_6$  in the composite material, XPS measurements were performed on the as-prepared 0.5ZIS/TiO<sub>2</sub> sample. In Fig. 4a, the Zn 2p core splits into 2p 3/2 and 2p 1/2 peaks at 1021.70 eV and 1044.72 eV, which are consistent with the values for  $Zn^{2+}$  <sup>[34, 35]</sup>. Fig. 4b shows the energy spectrum of In 3d, and there are two peaks located at 444.8 eV and 452.4 eV, which correspond to the binding energy of In 3d 5/2 and In 3d 3/2, respectively. It proved that the valence state of element In is +3 <sup>[36, 37]</sup>. The XPS spectrum of S 2p in Fig. 4c can be divided into two peaks observed at 161.4 eV and 162.8 eV, which belong to S 2p3/2 and S 2p1/2, indicating the valence of S is -2 <sup>[38, 39]</sup>.

Fig. 5a shows UV–vis diffuse reflectance spectra (DRS) of the TiO<sub>2</sub>, 0.3ZIS/TiO<sub>2</sub>, 0.5ZIS/TiO<sub>2</sub>, 0.7ZIS/TiO<sub>2</sub> and Zn<sub>3</sub>In<sub>2</sub>S<sub>6</sub>. As shown in Fig.5a, TiO<sub>2</sub> possesses the strongest absorption in the ultraviolet region, and the absorption wavelength is around 385

FULL PAPER

## 10.1002/cctc.201801745

### WILEY-VCH

nm. Fig. 5b shows that the band gap of pure TiO<sub>2</sub> is 3.22 eV, which agrees well with the reported value <sup>[40, 41]</sup>. The strongest absorption peak of Zn<sub>3</sub>ln<sub>2</sub>S<sub>6</sub> lies in the visible light region as shown in Fig.5a. The band gap of Zn<sub>3</sub>ln<sub>2</sub>S<sub>6</sub> is 2.39 eV as shown in the inserted digital photo of Fig.5b. Compared with pure TiO<sub>2</sub>, the introduction of Zn<sub>3</sub>ln<sub>2</sub>S<sub>6</sub> has few effects on the absorption of TiO<sub>2</sub> in the UV region. The absorption edge of ZlS/TiO<sub>2</sub> exhibits a valid redshift into the visible light region. The band gap of ZlS/TiO<sub>2</sub> is smaller than that of TiO<sub>2</sub>, which is probably due to the subsequently formed energy level after the contact of ZlS and TiO<sub>2</sub> as well as overlap and bending of the bands between Zn<sub>3</sub>ln<sub>2</sub>S<sub>6</sub> and TiO<sub>2</sub>.



**Fig.5** (a) UV-vis diffuses reflectance spectrum and (b) the optical absorption edges of the TiO<sub>2</sub> and ZIS/TiO<sub>2</sub> samples; the inserted digital photo is the optical absorption edges of  $Z_1$ , (c) I-t curves of pure TiO<sub>2</sub> and 0.5ZIS/TiO<sub>2</sub> photo-electrodes at 0.8 V vs. REH bias potential in 0.5 M Na<sub>2</sub>SO<sub>4</sub> (pH ~ 7.35). (d) Nyquist plots of EIS measurements on the pure TiO<sub>2</sub> and 0.5ZIS/TiO<sub>2</sub> at the open circuit potential in 0.5 M Na<sub>2</sub>SO<sub>4</sub> (pH ~ 7.35).

In order to further understand the mechanism in CO2

photocatalytic reduction ZIS/TiO<sub>2</sub>, catalvzed by photoelectrochemical (PEC) properties of TiO2 and ZIS/TiO2 were measured. Fig. 5c shows the I-t curves of pureTiO2 and ZIS/TiO<sub>2</sub>. ZIS/TiO<sub>2</sub> presents ideal photocurrents intensity rather than TiO2. This trend is ascribed to the chummy interfacial links between Zn<sub>3</sub>ln<sub>2</sub>S<sub>6</sub> and TiO<sub>2</sub>, which promote interfacial charge transfer and enhance separation efficiency of photo-generated carriers. These photocurrent results suggest that Zn<sub>3</sub>ln<sub>2</sub>S<sub>6</sub> can efficaciously generate photo-induced electrons in ZIS/TiO<sub>2</sub> and effectively reduce the odds of recombination <sup>[42]</sup>. This result is also consistent with the test results of the CO<sub>2</sub> photocatalytic reduction performance under 300W Xe lamp. The electrochemical impedance spectroscopy (EIS) can further probe into the separation efficiency of photo-induced electronhole pairs and present the transfer resistance across the solidliquid junction in the electrode-electrolyte interface region [43, 44]. The Nyquist plots of TiO<sub>2</sub> and 0.5ZIS/TiO<sub>2</sub> are shown in Fig.5d. At the same high frequency, TiO<sub>2</sub> and 0.5ZIS/TiO<sub>2</sub> show one arc each while the arc of ZIS/TiO2 suddenly decreased at low frequency, indicating  $Zn_3In_2S_6/TiO_2$  possesses the greater separation efficiency of electron-hole and the faster charge transfer on interface [9].



Fig. 6 (a) PL spectra and (b) the N2 adsorption-desorption isotherm of TiO2 and 0.5ZIS/TiO<sub>2</sub>.

Fig. 6a displays photoluminescence (PL) spectra of both pure TiO<sub>2</sub> and 0.5ZIS/TiO<sub>2</sub> hybrid photocatalysts. Obviously, the emission intensity of 0.5ZIS/TiO<sub>2</sub> photocatalyst is higher than that of pristine TiO<sub>2</sub>. This phenomenon can be explained by the presence of the more photoexcited charge carriers as well as the reduced recombination rate in the photocatalytic system of ZIS/TiO<sub>2</sub> in comparison to neat TiO<sub>2</sub>. Commonly, the fluorescence intensity of photocatalyst is lowered because electrons are transferred to the surface of the cocatalyst which suppresses the photocarriers' recombination rate. However, in this study, the fluorescence intensity of the composite material is so apparently enhanced, which is not able to be appropriately explained by the aforementioned theory. In this regard, it is proposed that the composite material transfers electrons through a Z-scheme electron transfer process, suggesting that in the photocatalytic reaction, photogenerated electrons from conduction band (CB) of TiO2 and photo-induced holes from valence band (VB) of Zn<sub>3</sub>In<sub>2</sub>S<sub>6</sub> recombined at the interface between TiO<sub>2</sub> and Zn<sub>3</sub>In<sub>2</sub>S<sub>6</sub>, and thus facilitated the valid charge separation on both CB of  $Zn_3In_2S_6$  and VB of TiO<sub>2</sub>.

To further understand the nano-porous structures of  $TiO_2$  and 0.5ZIS/TiO<sub>2</sub>, the N<sub>2</sub> adsorption-desorption isotherm was performed (Fig. 6b). The test results show that the specific

surface area of pure TiO<sub>2</sub> is 44.79 m<sup>2</sup>·g<sup>-1</sup>, whereas 0.5ZIS/TiO<sub>2</sub> has a higher specific surface area of 51 m<sup>2</sup>·g<sup>-1</sup>. A large specific surface area is beneficial for a catalyst to provide more active sites for the photocatalytic reaction. This result is consistent with the photocatalytic performance test results.

The consequences for CO<sub>2</sub> photocatalytic conversion of the different samples are shown in Fig. 7a. It can be clearly seen that the rates of photocatalytic reduction of CO2 into CH4 are 0.2 µmol/(h·g) for TiO2, 4.75 µmol/(h·g) for  $0.3ZIS/TiO_2$ ,  $6.19 \mu mol/(h \cdot g)$  for  $0.5ZIS/TiO_2$ , 3.815 $\mu$ mol/(h·g) for 0.7ZIS/TiO<sub>2</sub> and 0.18  $\mu$ mol/(h·g) for Zn<sub>3</sub>In<sub>2</sub>S<sub>6</sub>. Also, their photocatalytic reduction rates of transforming CO<sub>2</sub> into CO are 0.15  $\mu$ mol/(h·g), 12.93  $\mu$ mol/(h·g), 23.35 µmol/(h·g), 8.73 µmol/(h·g) and 0.9 µmol/(h·g), respectively. These results indicate that the photocatalytic reduction rate of photocatalyst gradually rises along with the increment in the  $Zn_3In_2S_6$  content. The composite material exhibits the best photocatalytic performance when 0.5% Zn<sub>3</sub>ln<sub>2</sub>S<sub>6</sub> was loaded on the composite. The absorption edge is broadened and the charge separation efficiency is enhanced at the interface between TiO<sub>2</sub> and Zn<sub>3</sub>In<sub>2</sub>S<sub>6</sub> via a Z-scheme route, which is responsible for the high photocatalytic activity of ZIS/TiO<sub>2</sub>. Whereas, when Zn<sub>3</sub>In<sub>2</sub>S<sub>6</sub> was loaded up to 0.7%, the photocatalytic activity decreased. The CB electrons of TiO<sub>2</sub> cannot be excited by light when the redundant  $Zn_3In_2S_6$  cover over TiO<sub>2</sub>, leading to less photo-generated electrons produced from TiO<sub>2</sub> to consume the photo-generated holes of Zn<sub>3</sub>ln<sub>2</sub>S<sub>6</sub>. It eventually results in falling of charge carriers' separation efficiency and lower redox ability of photocatalyst. The photocatalytic performance cycle test is shown in Fig.7b, demonstrating a stable recycling performance of 0.5ZIS/TiO<sub>2</sub>. The XRD results of the samples after cycling further confirms its stability, as shown in Figure 7c.





photocatalytic CO<sub>2</sub> conversion of 0.5ZIS/TiO<sub>2</sub> under 300 W Xe lamps; (c) XRD patterns of 0.5ZIS/TiO<sub>2</sub> sample before and after recycling.

To further investigate the fundamental mechanism of photocatalytic  $CO_2$  conversion, the conduction and valence band edge positions of  $Zn_3ln_2S_6$  and  $TiO_2$  are calculated from the absolute electronegativity values via following empirical formula <sup>[45]</sup>:

$$E_{VB} = X - E + 0.5 E_g(1)$$

 $\mathsf{E}_{\mathsf{CB}} = \mathsf{E}_{\mathsf{VB}} - \mathsf{E}_{\mathsf{g}} \left( 2 \right)$ 

 $E_{VB}$ ,  $E_{CB}$ , E,  $E_g$  and X are valence band edge potential, conduction band edge potential, the free electron energy on hydrogen scale with energy of 4.5 eV, band gap and the geometric mean of electronegativity of the constituent atoms forming the semiconductor materials, respectively. The electronegativity of the constituent atoms are  $X_{TI} = 3.45$ ,  $X_O = 7.54$ ,  $X_{Zn} = 4.45$ ,  $X_{In} = 3.1$ , and  $X_S = 6.22$  <sup>[46]</sup>. The calculated electronegativity of TiO<sub>2</sub> is 5.81 eV, and the electronegativity of  $Zn_3ln_2S_6$  is 5 eV. The ECB and EVB of TiO<sub>2</sub> and  $Zn_3ln_2S_6$  are calculated by equations (1) and (2), the valence band positions for TiO<sub>2</sub> and  $Zn_3ln_2S_6$  are found to be at 2.92 eV and 1.7 eV, with their conduction band positions at -0.3 eV and -0.69 eV.

The potentials for reducing  $CO_2$  relative to the normal hydrogen electrode in water are shown in equations 1 and 2 (pH=7) <sup>[47]</sup>, in which the protons come from the photocatalytic water splitting.

 $CO_{2} + 2H^{+} + 2e^{-} \rightarrow CO + H_{2}O, E^{0}_{redox} = -0.53 \text{ eV} \quad (1)$   $CO_{2} + 8H^{+} + 8e^{-} \rightarrow CH_{4} + H_{2}O, E^{0}_{redox} = -0.24 \text{ eV} \quad (2)$  $2H_{2}O + 4h^{+} \rightarrow 4H^{+} + O_{2}, E^{0}_{redox} = 0.82 \text{ eV} \quad (3)$ 



Fig.8 The CO<sub>2</sub> photocatalytic reduction error mechanism of ZIS/TiO<sub>2</sub> (a) and the CO<sub>2</sub> photocatalytic reduction right mechanism of ZIS/TiO<sub>2</sub>.

According to the suitable band gap structures and Fermi level <sup>[48-51]</sup> of TiO<sub>2</sub> and Zn<sub>3</sub>In<sub>2</sub>S<sub>6</sub>, the possible transfer processes of photogenerated electron-hole pairs are proposed in Fig. 8. One possible explanation of the photogenerated carrier transfer process is presented in Fig. 8a. The photogenerated electrons in the CB of Zn<sub>3</sub>In<sub>2</sub>S<sub>6</sub> migrate to the CB of TiO<sub>2</sub> while the photoexcited holes in the VB of TiO<sub>2</sub>transfer to the VB of Zn<sub>3</sub>In<sub>2</sub>S<sub>6</sub>. Subsequently, the ECB of the photogenerated electrons is -0.3 eV. Because the E0 redox(CO<sub>2</sub>/CO) is -0.53 eV, CO<sub>2</sub> cannot be reduced to CO. Thereby, the presumed process in Fig. 8a is not feasible in this photocatalysis.

Another possible reaction mechanism is shown in Fig. 8b. In the photocatalytic reaction, the solid-solid contact interface

**FULL PAPER** 

between Zn<sub>3</sub>ln<sub>2</sub>S<sub>6</sub> and TiO<sub>2</sub> serves as the combination center of the photogenerated electrons in the CB of TiO<sub>2</sub> and the photogenerated holes in the VB of Zn<sub>3</sub>ln<sub>2</sub>S<sub>6</sub><sup>[40]</sup>, resulting in an increased fluorescence <sup>[42]</sup>. The photogenerated electrons involved in the reaction have a stronger reduction ability than that of pure TiO<sub>2</sub>, and thus perform a better photocatalytic activity for CO<sub>2</sub> reduction <sup>[32]</sup>. The photogenerated holes in the VB of TiO<sub>2</sub> oxidize water to form H<sup>+</sup> and O<sub>2</sub>, while the photogenerated electrons in the CB of Zn<sub>3</sub>ln<sub>2</sub>S<sub>6</sub> simultaneously reduce CO<sub>2</sub> to generate CO or CH<sub>4</sub>. In summary, all of the above analyses show that the electron transfer process of ZIS/TiO<sub>2</sub> is identified as Z-scheme electron transfer in this study.

#### Conclusions

In summary, Zn<sub>3</sub>In<sub>2</sub>S<sub>6</sub>/TiO<sub>2</sub> as a new hybrid photocatalyst was successfully prepared by a simple hydrothermal method. 0.5%ZIS/TiO<sub>2</sub> was found to exhibit best photocatalytic activity and excellent stability in CO<sub>2</sub> reduction under simulated solar light irradiation. The most likely reaction mechanism is the Z-scheme electron transfer in this study, which was demonstrated by the photoluminescence (PL) measurements and the results of the photocatalytic CO<sub>2</sub> reduction. The band gap edge of Zn<sub>3</sub>ln<sub>2</sub>S<sub>6</sub> can match with TiO<sub>2</sub> well, which provides a promising route for improving CO<sub>2</sub> photocatalytic reduction efficiency. The ZIS/TiO<sub>2</sub> composites have a strong photocatalytic activity because of the higher electron-hole separation efficiency and the stronger reduction ability than TiO<sub>2</sub>.

#### **Experimental Section**

Certain amount of (0.3%, 0.5%, 0.7%) Zn(NO<sub>3</sub>)<sub>2</sub>·6H<sub>2</sub>O and In(NO<sub>3</sub>)<sub>3</sub>·4.5H<sub>2</sub>O were dissolved in 54 ml ethylene glycol under constant magnetic stirring to form a solution, to which 0.3 g P25 was added and magnetically stirred for 0.5 h, followed by 1 h ultrasonic oscillation to obtain a suspension, to which certain amount of thioacetamide was added under magnetic stirring for 0.5 h. The mixed solution was poured into a 100 mL Teflon vessel held in a stainless steel autoclave and was maintained at 140 °C for 12 h. After that, the system was cooled down to room temperature. The obtained yellow suspension was washed by water and ethanol several times, and then completely dried in an oven at 60 °C for 24 h. The molar ratio of Zn, In and thioacetamide was kept at 1: 2: 8, and the molar ratio of Zn and TiO<sub>2</sub> was 0.3%, 0.5%, 0.7% for different samples which were labeled as 0.3ZIS/TiO<sub>2</sub>, 0.5ZIS/TiO<sub>2</sub>, and 0.7ZIS/TiO<sub>2</sub>, respectively.

0.5 mmol Zn(NO<sub>3</sub>)<sub>2</sub>·6H<sub>2</sub>O and 1 mmol In(NO<sub>3</sub>)<sub>3</sub>·4.5H<sub>2</sub>O were dissolved in 54 ml ethylene glycol under constant magnetic stirring for 0.5 h. Subsequently, 4 mmol thioacetamide was added to above solution under constant magnetic stirring for 0.5 h. The following steps are the same as the synthesis of Zn<sub>3</sub>In<sub>2</sub>S<sub>6</sub>/TiO<sub>2</sub> except that no P25 was added during the experiment.

#### **Supporting Information Summary**

All the information about the testing methods of materials is presented in the Supporting Information.

#### Acknowledgements

This work is financially supported by the National Natural Science Foundation of China (21663027, 21808189), the Program for the Young Innovative Talents of Longyuan and the Program for Innovative Research Team (NWNU-LKQN-15-2).

#### Keywords:

Cocatalyst, CO<sub>2</sub> photocatalytic reduction, TiO<sub>2</sub>,  $Zn_3In_2S_6$ , Z-scheme electron transfer

- 1 L. Wang, S. Duan, P. Jin, H. She, J. Huang, Z. Lei, T. Zhang and Q. Wang, Appl. Catal., B, **2018**, 239, 599-608.
- C. S. Chen, W. H. Cheng, S. S. Lin, *Appl. Catal.*, A, **2003**, 238, 55-67.
  S. Sato, T. Morikawa, T. Kajino, and O. Ishitani, *Angew. Chem.*, **2013**, 125, 1022-1026.
- 4 X. Chang, T. Wang, P. Zhang, Y. Wei, J. Zhao, and J. Gong, *Angew. Chem.*, **2016**, 128, 8986 -8991.
- 5 T. N. Huan, P. Simon, A. Benayad, L. Guetaz, V. Artero, and M. Fontecave, *Chem. Eur. J.*, **2016**, 22, 14029-14035.
- 6 M. Karamad, H. A. Hansen, J. Rossmeisl, and J. K. Nørskov, ACS Catal., 2015, 5, 4075-4081.
- 7 Y. Pan, Y. You, S. Xin, Y. Li, G. Fu, Z. Cui, Y. Men, F. Cao, S. Yu, and J. B. Goodenough, *J. Am. Chem. Soc.*, **2017**, 139, 4123–4129.
- 8 A. Aljabour, D. Hazar Apaydin, H. Coskun, F. Ozel, M. Ersoz, P. Stadler, N. S. Sariciftci, and M. Kus, ACS Appl. Mater. Interfaces, 2016, 8, 31695-31701.
- 9 X. Jiao, Z. Chen, X. Li, Y. Sun, S. Gao, W. Yan, C. Wang, Q. Zhang, Y. Lin, Y. Luo, and Y.Xie, J. Am. Chem. Soc., 2017, 139, 7586–759.
- 10 J. Jin, J. Yu, D. Guo, C. Cui, and W. Ho, *Small*, **2015**, 11, 5262-5271.
- 11 J. Low, J.Yu, and W. Ho, J. Phys. Chem. Lett., **2015**, 6, 4244-4251.
- 12 K. Kato, F. Masuo, Kogyo Kagaku Zashi, 1964, 67(8), 1136–1140.
- 13 H. She, H. Zhou, L. Li, L. Wang, J. Huang and Q. Wang. ACS Sustain. Chem. Eng, 2018, 6, 11939-11948.
- 14 Z. Xiong, Z. Lei, S. Ma, X. Chen, B. Gong, Y. Zhao, J. Zhang, C. Zheng, J. C.S. Wu, *Appl. Catal.*, B, **2017**, 219, 412–424.
- 15 L. L. Tan, W. J. Ong, S. P. Chai, A. R. Mohamed, Appl. Catal., B, 2015, 166-167, 251-259.
- 16 C. Wang, R. L. Thompson, J. Baltrus, and C. Matranga, J. Phys. Chem. Lett., 2010, 1, 48-53.
- 17 Z. Xiong, Z. Lei, C. C. Kuang, X. Chen, B. Gong, Y. Zhao, J. Zhang, C. Zheng, J. C.S. Wu, *Appl. Catal.*, B , **2017**, 202, 695-703.
- 18 Q. Wang, T. Niu, L. Wang, C. Yan, J. Huang, J. He, H. She, B. Su and Y. Bi, *Chem. Eng. J.* **2018**, 337, 506-514.
- 19 Q. Wang, J. He, Y. Shi, S. Zhang, T. Niu, H. She, Y. Bi and Z. Lei, *Appl. Catal. B*, **2017**, 214, 158-167.
- 20 L. Tan, Y. Yang, N. Li, S. Chen, Z. Liu, *Catal. Sci. Technol*, **2017**, 7, 1315-1323.
- 21 D. S. Lee, H. J. Chen, Y. W. Chen, *J. Phys. Chem. Solids*, **2012**, 73, 661-669.
- 22 W. Tu, Y. Li, L. Kuai, Y. Zhou, Q. Xu, H. Li, X. Wang, M. Xiao and Z. Zou, *Nanoscale*, **2017**, 9, 9065-9070.
- 23 R. Wei, Z. Huang, G. Gu, Z. Wang, L. Zeng, Y. Chen, Z. Liu, *Appl. Catal. B Environ*, **2018**, 231, 101-107.

#### ChemCatChem

- 24 K. Iwashina, A. Iwase, Y. H. Ng, R. Amal, A. Kudo, J. Am. Chem. Soc., 2015, 137, 604-607.
- 25 J. Han, Z. Liu, K. Guo, B. Wang, X. Zhang, T. Hong. Applied Catalysis B: Environmental, **2015**, 163: 179-188.
- 26 W. Chen, Y. X. Hua, Y. Wang, T. Huang, T. Y. Liu, X. H. Liu, J. Catal., 2017, 349, 8.
- 27 S. K. Batabyal, S. E. Lu, J.J. Vittal, Cryst. Growth Des. 2016, 16, 2231.
- 28 A. Iwase, S. Yoshino, T. Takayama, Y. H. Ng, R. Amal, A. Kudo, J. Am. Chem. Soc., 2016, 138, 10260.
- 29 J. Song, C. Ma, W. Zhang, S. Yang, S. Wang, L. Lv, L. Zhu, R. Xia, X. Xu, J. Mater. Chem. B, 2016, 4, 7909-7918.
- 30 B. Xu, P. He, H. Liu, P. Wang, G. Zhou, and X. Wang, Angew. Chem., 2014, 126, 2371-2375.
- 31 Z. Bai, X. Yan, Z. Kang, Y. Hu, X. Zhang, Y. Zhang, Nano Energy, 2015, 14, 392-400.
- 32 G. Yang, D. Chen, H. Ding, J. Feng, J. Z. Zhang, Y. Zhu, S. Hamid, D. W. Bahnemann, *Appl. Catal.*, *B*, **2017**, 219, 611-618.
- 33 J. Zhang, S. Meng, X. Ye, C. Ling, S. Zhang, X. Fu, S. Chen, *Appl. Catal.*, B, **2017**, 218, 420-429.
- 34 Q. Liu, H. Lu, Z. Shi, F. Wu, J. Guo, K. Deng, and L. Li, ACS Appl. Mater. Interfaces, 2014, 6(19), 17200-17207.
- 35 X. Wang, S. Li, Y. Ma, H. Yu, J. Yu, J. Phys. Chem. C, 2011, 115(30), 14648-14655.
- 36 C. Tan, G. Zhu, M. Hojamberdiev, K. S. Lokesh, X. Luo, L. Jin, J. Zhou, P. Liu, *J. Hazard. Mater.* **2014**, 278, 572-583.
- 37 L. Yuan, M. Yang, Y. Xu, J. Mater. Chem. A, 2014, 2(35), 14401-14412.

- 38 Zhang C, Xu Y J. ACS Appl. Mater. Interfaces, 2013, 5(24), 13353-13363.
- 39 H. Yu, W. Liu, X. Wang, F. Wang, Appl. Catal. B-Environ, 2018, 225, 415-423.
- 40 J. Pascual, J. Camassel, and H. Mathieu, *Phys. Rev. Lett.*, **1977**, 39, 1490-1493.
- 41 H. Yu, P. Xiao, J. Tian, F. Wang, J. Yu, ACS Appl. Mater. Interfaces, 2016, 8, 29470-29477.
- 42 R. Ye, H. Fang, Y. Zheng, N. Li, Y. Wang, and X. Tao, ACS Appl. Mater. Interfaces, 2016, 8, 13879-13889.
- 43 N. Li, G. Liu, C. Zhen, F. Li, L. Zhang, H. Cheng, Adv. Funct. Mater., 2011, 21, 1717-1722.
- 44 Z. Hosseini, N. Taghavinia, N. Sharifi, M. Chavoshi, M. Rahman, J. Phys.Chem. C, 2008, 112, 18686–18689.
- 45 Y. Xu and M.A.A. Schoonen , Am. Mineral., 2000, 85, 543-556.
- 46 D. C. Ghosh, T. Chakraborty, J. Mol. Struct. Theochem, 2009, 906, 87-93.
- 47 Y. Pan, Y. You, S. Xin, Y. Li, G. Fu, Z. Cui, Y. Men, F. Cao, S. Yu, and J. B. Goodenough, J. Am. Chem. Soc., 2017, 139, 4123-4129.
- 48 Z. Huang, J. Song, X. Wang, L. Pan, K. Li, X. Zhang, L. Wang, J. Zou, Nano Energy, 2017, 40, 308-316.
- 49 I. Poulios and N. Papadpoulos, *Solar Energy Materials*, **1990**, 20, 43-51.
- 50 V. Subramanian, E. E. Wolf, and P. V. Kamat, *J. Am. Chem. Soc.*, **2004**, 126, 4943-4950.
- 51 P. Zhou, J. Yu, and M. Jaroniec, *Adv. Mater.*, **2014**, 26, 4920-4935.
- 52 G. Zhou, M. Wu, Q. Xing, F. Li, H. Liu, X. Luo, J. Zou, J. Luo, A. Zhang, *Appl. Catal. B-Environ*, **2018**, 220, 607–614.

**FULL PAPER** 

## WILEY-VCH

## **Entry for the Table of Contents**



Zn3ln2S6 was used to modify TiO2 based photocatalytic system, giving rise to a greatly improved reduction of CO2 into CO. The ameliorated photocatalytic activity might be ascribable to Z-scheme electron transfer, resulting in dramatically enhanced separation and transfer efficiencies of photo-induced electron-hole.