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SUMMARY: On laser photolysis of azoalkane 1 at elevated temperature, besides the expected deni- 
trogenation into the tricyclane 2 via 1,3-diradical 2, the diazoalkane Z_ is directly observed, 
denitrogenating into vinylcyclopentene 2. 

The bicyclo[2.2.llheptane-2,6-diyl diradical 2, in principle accessible via denitrogena- 

Lion of the azoalkane 1 ', would be expected to generate a variety of products (Eq. I), of which 
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the tricyclane 2, cr-pinene (3) and the vinylcyclopentene 5 are likely ones. For example, ana- 

logous to the 5,6-benzobicyclo[2.2.2loct-5-ene-2,7-diyl diradical 2, ring closure of 2 would 

afford i, while migration of the C,-C7 bond to either radical site would lead to a-pinene (4). 

Alternatively, the 1,3-diradical 2 could suffer fragmentation into the carbene f3, which on 1,2- 

shift of hydrogen would produce the vinylcyclopentene 2. However, such a process is more likely 

to be observed in 185-nm photolyses.3 Since 4-phenyl-1,2,4-triazoline-3,5-dione (PTAD) cyclo- 

addition to cc-pinene (4) gave the urazole precursor to the azoalkane 1, the latter was prepared 

and its denitrogenation investigated in order to explore the chemical transformations of the 

1,3-diradical 2.4'5 

The results of the thermal and photochemical denitrogenations are collected in Table I. 

These data show that varying amounts of the tricyclane 2 and the vinylcyclopentene 2 are formed, 

but in all cases a-pinene (4) is lacking.5 Its thermal and photochemical stability under the 

reaction conditions was confirmed through control experiments. 
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Vacuum flash pyrolysis (VFP) required very high temperatures (Entry 1, Table I) in view 

of the high thermal stability of azoalkane 1. The tricyclane 3 was formed essentially exclu- 

sively in this thermal denitrogenation, since only traces of 2 could be detected by capillary 

GC. Similarly, the triplet sensitized denitrogenation with benzophenone (Entry 2, Table I) 

gave exclusively tricyclane 2. This implies that if the 1,3-diradical $ intervenes as product 

precursor, both its singlet state (thermal) and its triplet state (benzophenone-sensitized) 

suffer only cyclization. 

The product composition was, however, considerably more complex in the direct photolysis 

of azoalkane 1 (Entries 3 - 6, Table I). Depending on the solvent and temperature, variable 

amounts of tricyclane 2 and vinylcyclopentene 5 were produced. For example, in THF at -78°C 

(Entry 4, Table I) only 3 was formed, while in_THF at 60°C (Entry 6, Table I) ca. 70% of 3 

and 30% of 2 were produced. Clearly, the relative yield of 5 increased with increasing tem- 

perature. This temperature dependent product branching point required an additional inter- 

mediate in the direct photolysis of azoalkane 1. 

Since photo-cleavage of azoalkanes into diazoalkanes is a precedented process 697 , we sus- 

pected that diazoalkane 1 was a viable intermediate in the photolysis of azoalkane I, which 

would lead to the vinylcyclopentene 2 via carbene 9 on denitrogenation. For this reason the 

experiments with methanol (Entry 7, Table I), acetic acid (Entry 8) and methyl acrylate 

(Entry 9) were conducted. Indeed, on photolysis of l in methanol the amount of vinylcyclopentene 

product 5~ was reduced (cf. Entries 6 and 7, Table I); but more important, ca. 4% of ether g was 

32Me 3% e$yozMe 
Nj) (9) = (141 - 

detected by capillary GC (comparison with authentic material). With acetic acid (Entry 8, 

Table I) the trapping was still more efficient since 19% of acetate 2 was detected by capillary 
8 

GC. But since the ether H and acetate 2 are also trapping products of the carbene $ , the ex- 

periment with methyl acrylate (Entry 9, Table II) was carried out in the hope that 1,3-dipolar 

cycloaddition products such as the pyrazoline j.0 (or its tautomers) would be formed, thereby -- 

providing definitive proof that the diazoalkane l intervened. In the presence of methyl acry- 

late no vinylcyclopentene 2 was formed in the photolysis of azoalkane 1; however, although 

GC-MS analysis suggested that trapping products such as 18 were formed, a full characteriza- 

tion was not possible because of the complex product mixture. 

In view of this difficulty, authentic diazoalkane z was prepared analogous to standard 

synthetic methods. 
7 It is an extremely unstable material (loses nitrogen even at room tempera- 

ture), which exhibits a characteristic diazo band at 2060 cm 
-1 and a yellow color with 

h 
max = 

462 nm. Indeed, thermal as well as photochemical denitrogenation affords the vinylcyclo- 

pentene 2, but no tricyclane 2. It is also of interest to mention that diazoalkane i does not 

cyclize into azoalkane 1. In the presence of methanol and acetic acid the ether g and acetate 

2 were produced as expected. However, in the presence of methyl acrylate a complex, intractable 
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product mixture was formed, quite similar to that observed in the photolysis of azoalkane 1 

and methyl acrylate (Entry 9, Table I). 

A definitive answer on this mechanistic problem could be provided by means of laser photo- 

lysis of azoalkane 1, using a Coherent 18W Argon Ion Laser. On irradiation of a 0.10 M solution - 

of 1 in benzene at room temperature , after 8 min the colorless solution turned yellow, which on 

prolonged irradiation turned colorless again. IR and UV analysis of the yellow solution con- 

firmed that the transient species was the photolabile diazoalkane hdg The mechanistic scheme 

in Eq. 1 explains most effectively the experimental results described herein on the thermal 

and photochemical denitrogenation of azoalkane 1. 
10 
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It was possible, albeit difficult, to generate barely detectable amounts nf the transient 

diazoalkane color by irradiation either in the Rayonet Photoreactor or with a 1000-W Hanovia 

lamp, coupled to a monochromator. In fact, laser photolysis of azoalkane 1 constitutes the 

most convenient preparation of diazoalkane z. 

Preliminary results show that on laser photolysis the azoalkanes 11 - A! also give transient 

diazoalkanes and we are elucidating these in detail. 
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TABLE I: Product Distribution of the Denitrogenation of Azoalkane 1. 

Denitrogenation Products (%)a Product Balance 

Conditions (1) (2) (2) (%)b 

1. VFP (450°C at 18 Torr) 0 100 trace 100 

2. hv (300 nm, pentane; Ph2CO; 30°C)' 7 100 0 100 

3. hv (350 nm; C6H6; 30°C) d,e 0 81 19 100 

4. hv (350 nm; THF; -78"C)dyf 88 100 0 91 

5. hv (350 nm; THF; O°C)dyf 83 94 6 100 

6. hv (350 nm; THF; 65°C)d'f 47 74 26 100 

7. hv (350 nm; MeOH; 65°C)d'g 39 88 12 lOOh 

8. hv (350 nm; C6H6; HOAc; 70°C)dyi 24 89 11 IOOj 

9. hv (350 nm; C6H6; MA; 65°C) d,k 1 100 0 100' 

a) Determined by capillary GC on a 50-m OV-101 column, operated at injector, column and 

detector temperatures of 200, 100-180 and 2OO"C, respectively, and a nitrogen pressure 

of 0.7 kg/cm2; product yields are within 10% of the stated values; products 3 and 2 are 

normalized to 100%. 

b) Sum of absolute yields of 1, 3 and 2; remainder are unidentified products, unless speci- 

fied. 

c) [II = 0.011 fi; [Ph2C=O] = 0.19 M; Rayonet Photoreactor. 

d) Rayonet Photoreactor. 

e) [Al = 0.0074 E. 

f) [II Q 0.01 M. 

g) 111 = 0.014-F. 

h) Includes 4% ether 8. 

i) 111 = 0.014 !; [HOAcl = 0.35 E. 

j) Includes 19% acetate 9. 

k) [II = 0.012 M_; [MAI = 1.2 M; MA = methyl acrylate. 

1) Includes ca. 37% isomeric products with long retention times; MS shows that these products 

contain,nitrogen and the acrylate moiety. 
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